
Software Technology Roadmap

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

Glossary &
Indexes

Software Technology Roadmap

What was the STR?

The Software Technology Roadmap (STR) was a directed guide containing the
information on more than 69 software technologies. It was of interest to anyone
acquiring, building, or maintaining software intensive systems.

When was the STR last updated?

The STR was last updated in 2002. The Software Engineering Institute no longer
maintains or coordinates changes to the STR.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/index.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/7/28/2008 11:26:58 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/index.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/about/disclaimer.html

Software Technology Roadmap

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

Glossary &
Indexes

Software Technology Roadmap

What was the STR?

The Software Technology Roadmap (STR) was a directed guide containing the
information on more than 69 software technologies. It was of interest to anyone
acquiring, building, or maintaining software intensive systems.

When was the STR last updated?

The STR was last updated in 2002. The Software Engineering Institute no longer
maintains or coordinates changes to the STR.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/index.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/index.html7/28/2008 11:26:58 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/index.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/about/disclaimer.html

About The STR

Software
Technology
Roadmap

Background &
Overview

Background

Target
Audiences

Sponsors &
Contributors

Technology
Descriptions

Taxonomies

Glossary &
Indexes

About The STR

 Background

 Target Audiences

 Sponsors &
Contributors

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/about/index.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/about/index.html7/28/2008 11:26:59 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/about/index.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/about/disclaimer.html

STR Technology Descriptions

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

STR Technology Descriptions

About the Technology Descriptions

Defining Software Technology

Technology Categories

Template for Technology Descriptions

List of Technology Descriptions

An alphabetical list of approximately 69 software technologies is below. Browse
to find the topic that interests you, or search on key words or phrases to see a
list of relevant technologies.

 Help

Ada 95

Algorithm Formalization

Application Programming
Interface

Architecture Description
Languages

Argument-Based Design
Rationale Capture Methods for
Requirements Tracing

Maintenance of Operational Systems--
An Overview

Message-Oriented Middleware

Middleware

Model-Based Verification

Module Interconnection Languages

Multi-Level Secure Database
Management Schemes

http://www.sei.cmu.edu/str/descriptions/index.html (1 of 4)7/28/2008 11:27:00 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/index.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://search.sei.cmu.edu/str/help/

STR Technology Descriptions

Black-box Modernization of
Information Systems

Capability Maturity Model
Integration (CMMI)

Cleanroom Software Engineering

Client/Server Software
Architectures--An Overview

Common Management
Information Protocol

Common Object Request Broker
Architecture

Component-Based Software
Development / COTS Integration

Component Object Model
(COM), DCOM, and Related
Capabilities

Computer System Security--An
Overview

COTS and Open Systems--An
Overview

Cyclomatic Complexity

Database Two Phase Commit

Defense Information
Infrastructure Common
Operating Environment (DII
COE)

Multi-Level Secure One Way Guard
with Random Acknowledgment

Network Management--An Overview

Nonrepudiation in Network
Communications

Object-Oriented Analysis

Object-Oriented Database

Object-Oriented Design

Object-Oriented Programming
Languages

Object Request Broker

Organization Domain Modeling

People Capability Maturity Model (P-
CMM)

Personal Software Process for Module-
Level Development

Public Key Cryptography

Public Key Digital Signatures

Rate Monotonic Analysis

Reference Models, Architectures,
Implementations--An Overview

Remote Procedure Call

Requirements Tracing--An Overview

http://www.sei.cmu.edu/str/descriptions/index.html (2 of 4)7/28/2008 11:27:00 AM

STR Technology Descriptions

Digital Certificates

Distributed/Collaborative
Enterprise Architectures

Distributed Computing
Environment

Domain Engineering and
Domain Analysis

Feature-Based Design Rationale
Capture Method for
Requirements Tracing

Feature-Oriented Domain
Analysis

Firewalls and Proxies

Function Point Analysis

Graphic Tools for Legacy
Database Migration

Graphical User Interface
Builders

Halstead Complexity Measures

Intrusion Detection

Java

Mainframe Server Software
Architectures

Rule-Based Intrusion Detection

Simple Network Management Protocol

Six Sigma

Simplex Architecture

Software Inspections

Statistical-Based Intrusion Detection

Statistical Process Control for
Software

TAFIM Reference Model

Team Software Process

Three Tier Software Architectures

Transaction Processing Monitor
Technology

Trusted Operating Systems

Two Tier Software Architectures

Virus Detection

http://www.sei.cmu.edu/str/descriptions/index.html (3 of 4)7/28/2008 11:27:00 AM

STR Technology Descriptions

Maintainability Index Technique
for Measuring Program
Maintainability

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/index.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/index.html (4 of 4)7/28/2008 11:27:00 AM

http://www.sei.cmu.edu/about/disclaimer.html

Taxonomies

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

About the
Taxonomies

View the
Application
Taxonomy

View the
Quality
Measures
Taxonomy

Glossary &
Indexes

Taxonomies

About the Taxonomies

View the Application Taxonomy

View the Quality Measures Taxonomy

Search the Taxonomies

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/taxonomies/index.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/taxonomies/index.html7/28/2008 11:27:00 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/taxonomies/index.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/cgi-bin/tax.cgi?Go=Locate%20Articles
http://www.sei.cmu.edu/about/disclaimer.html

Glossary & Indexes

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

Glossary &
Indexes

Glossary

Keyword Index

Glossary & Indexes

Glossary

Keyword Index

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/indexes/index.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/indexes/index.html7/28/2008 11:27:01 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/indexes/index.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/about/disclaimer.html

Background

Software
Technology
Roadmap

Background &
Overview

Background

Target
Audiences

Sponsors &
Contributors

Technology
Descriptions

Taxonomies

Glossary &
Indexes

Background

The Air Force acquisition community tasked the Software Engineering Institute
(SEI) to create a reference document that would provide the Air Force with a
better understanding of software technologies. This knowledge will allow the Air
Force to systematically plan the research and development (R&D) and
technology insertion required to meet current and future Air Force needs, from
the upgrade and evolution of current systems to the development of new
systems.

Scope

The initial release of the Software Technology Roadmap is a prototype to
provide initial capability, show the feasibility, and examine the usability of such a

document. This prototype generally emphasizes software technology1 of
importance to the C4I (command, control, communications, computers, and
intelligence) domain. This emphasis on C4I neither narrowed nor broadened the
scope of the document; it did, however, provide guidance in seeking out
requirements and technologies. It served as a reminder that this work is
concerned with complex, large-scale, distributed, real-time, software-intensive,
embedded systems in which reliability, availability, safety, security, performance,
maintainability, and cost are major concerns.

We note, however, that these characteristics are not only applicable to military
command and control systems, they apply as well to commercial systems, such
as financial systems for electronic commerce. Also, for a variety of reasons,
commercial software will play an increasingly important role in defense systems.
Thus, it is important to understand trends and opportunities in software
technology -- including commercial software practice and commercially-available
software components -- that may affect C4I systems.

Vision

Our long-term goal is to create a continuously-updated, community "owned,"
widely-available reference document that will be used as a shared knowledge
base. This shared knowledge base will assist in the tradeoff and selection of
appropriate technologies to meet system goals, plan technology insertions, and
possibly establish research agendas. While we use the term "document," we
anticipate that this product will take many shapes, including a Web-based, paper-
based, or CD-ROM based reference.

With the release of this document we are seeking comment and feedback from

http://www.sei.cmu.edu/str/about/background_body.html (1 of 4)7/28/2008 11:27:01 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/about/background_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Background

the software community. We will use this feedback as we plan an ongoing effort
to expand and evolve this document to include additional software technology
descriptions. The Feedback Section provides vehicles by which readers can
contribute to the further development of this effort.

Goal

The document is intended to be a guide to specific software technologies of
interest to those building or maintaining systems, especially those in command,
control, and/or communications applications. The document has many goals:

● to provide common ground by which contractors, commercial companies,
researchers, government program offices, and software maintenance
organizations may assess technologies

● to serve as Cliff's Notes for specific software technologies; to encapsulate
a large amount of information so that the reader can rapidly read the
basics and make a preliminary decision on whether further research is
warranted

● to achieve objectivity, balance,2 and a quantitative focus, bringing out
both shortcomings as well as advantages, and provide insight into areas
such as costs, risks, quality, ease of use, security, and alternatives

● to layer information so that readers can find subordinate technology
descriptions (where they exist) to learn more about the topic(s) of specific
interest, and to provide references to sources of more detailed technical
information, to include usage and experience

Limitations/Caveats

While the document provides balanced coverage of a wide scope of
technologies, there are certain constraints on the content of the document:

● Coverage, accuracy and evolution. Given the number of software
technologies and the time available for this first release, this document
covers a relatively small set of technologies. As such, there are many
topics that have not been addressed; we plan to address these in
subsequent versions. This document is, by nature, a snapshot that is
based on what is known at the time of release. We have diligently worked
to make the document as accurate as possible. Each technology
description is rated as to its completeness. Subsequent versions will
include corrections and updates based on community feedback.

● Not prescriptive. This document is not prescriptive; it does not make
recommendations, establish priorities, or dictate a specific path/

approach.3 The reader must make decisions about whether a technology
is appropriate for a specific engineering and programmatic context
depending on the planned intended use, its maturity, other technologies
that will be used, the specific time frame envisioned, and funding

http://www.sei.cmu.edu/str/about/background_body.html (2 of 4)7/28/2008 11:27:01 AM

Background

constraints.

For example, a specific technology may not be applicable to a particular
program because the need is current and evaluations indicate that the
technology is immature under certain circumstances. However, given a
program that initiates in 3-5 years, the same technology may be an
appropriate choice assuming that the areas of immaturity will be corrected
by then (and, if necessary, directed action to ensure the maturation or to
remedy deficiencies).

● Not a product reference. This document is not a survey or catalog of
products. There are many reasons for this, including the rapid
proliferation of products, the need to continually assess product
capabilities, questions of perceived endorsement, and the fact that
products are almost always a collection of technologies. It is up to the
reader to decide which products are appropriate for their context. DataPro
and Auerbach would likely be better sources of product-specific
information.

● Not an endorsement. Inclusion or exclusion of a topic in this document
does not constitute an endorsement of any type, or selection as any sort
of "best technical practice." Judgments such as these must be made by
the readers based on their contexts; our goal is to provide the balanced
information to enable those judgments.

● Not a focused analysis of specific technical areas. Various sources such
as Ovum, Ltd. and The Standish Group offer reports on a subscription or
one-time basis on topics such as workflow, open systems, and software
project failure analyses, and may also produce specialized analyses and
reporting on a consulting basis.

Footnotes

1 This spectrum of technologies includes past, present, under-used, and
emerging technologies.

2 As an example of balanced coverage, let's briefly look at information hiding of
object-oriented inheritance, which reduces the amount of information a software
developer must understand. Substantial evidence exists that such object-
oriented technologies significantly increase productivity in the early stages of
software development; however, there is also growing recognition that these
same technologies may also encourage larger and less efficient
implementations, extend development schedules beyond the "90% complete"
point, undermine maintainability, and preclude error free implementations.

3 Similar to a roadmap for highways, the review prescribes neither the
destination nor the most appropriate route. Instead, it identifies a variety of
alternative routes that are available, gives an indication of their condition, and
describes where they may lead. Specific DoD applications must chart their own
route through the technological advances.

http://www.sei.cmu.edu/str/about/background_body.html (3 of 4)7/28/2008 11:27:01 AM

Background

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/about/background_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/about/background_body.html (4 of 4)7/28/2008 11:27:01 AM

http://www.sei.cmu.edu/about/disclaimer.html

Target Audiences

Software
Technology
Roadmap

Background &
Overview

Background

Target
Audiences

Sponsors &
Contributors

Technology
Descriptions

Taxonomies

Glossary &
Indexes

Target Audiences

We envisioned that this document would be relevant to many audiences. The
audiences and a description of how each audience can use this document are
shown in the table below.

User Job Roles/Tasks Document Capabilities/
Value

PEO/Executive

Pentagon Action Officer

Acquisition oversight,
funding advocacy

Motivate introduction of
new/commercial
technologies

Policy issues

Overview/introductory info

Baseline reference
document

Cliff's Notes approach --
provides high-level, 4-6
page quick study

Tradeoff information

System Program
Manager (SPM) and
Technical Staff

(Includes FFRDCs
(MITRE, etc.) and may
include government
laboratories)

Writes Request for
Proposal (RFP) or some
form of solicitation based
on user requirements

Reviews proposals and
selects developers

Manages development and/
or maintenance work

All of previous category,
plus:

Taxonomies to aid in
identifying alternatives

Back pointers to high-
level, related technologies

Criteria and guidance for
decision-making

Tech transfer/insertion
guidelines

Selected high-value
references to more
technical information, to
include usage and

http://www.sei.cmu.edu/str/about/audiences.html (1 of 3)7/28/2008 11:27:02 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/about/audiences.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Target Audiences

experience data

Generally the sort of
analysis and survey
information that would not
be accomplished under
normal project
circumstances

Developer (to include
research and
development (R&D)
activity)

Performs advanced
development, prototyping,
and technology
investigation focused on
risk reduction and securing
competitive advantage

Concerned about transition
and insertion issues

Writes a proposal in
response to solicitations

Performs engineering
development and provides
initial operational system

Same as previous category.

Maintainer Maintains operational
system until the end of the
life cycle

Responds to user
requirements for
corrections or
enhancements

Concerned about inserting
new technologies and
migrating to different
approaches

Same as previous category.

User Communicates operational
needs

End customer for
operational system

Communicates alternatives
and risks, and provides
perspective of what
technology can
(reasonably) provide

http://www.sei.cmu.edu/str/about/audiences.html (2 of 3)7/28/2008 11:27:02 AM

Target Audiences

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/about/audiences.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/about/audiences.html (3 of 3)7/28/2008 11:27:02 AM

http://www.sei.cmu.edu/about/disclaimer.html

Sponsors and Contributors

Software
Technology
Roadmap

Background &
Overview

Background

Target
Audiences

Sponsors &
Contributors

Technology
Descriptions

Taxonomies

Glossary &
Indexes

Sponsors and Contributors

Original Sponsors:

● Ms. Darleen Druyun
Principal Deputy Assistant Secretary of the Air Force for Acquisition (SAF/
AQ)

● Mr. John Willison
Chief, Software Architecture and Technology Division
CECOM Software Engineering Center
Ft. Monmouth, NJ

Original Contributors:

● Air Force Office of Scientific Research
● E-Systems, Inc.
● GTE Government Systems
● Kaman Sciences Corporation
● Lockheed Martin
● Loral (Lockheed Martin)
● Don O'Neill, Independent Consultant
● Peterson AFB
● Air Force Rome Laboratory
● TRW, Inc.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/about/sponsors.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/about/sponsors.html7/28/2008 11:27:03 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/about/sponsors.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/about/disclaimer.html

Defining Software Technology

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Defining Software Technology

This document addresses software technology in its broadest interpretation.
Technology is the practical application of scientific knowledge in a particular
domain or in a particular manner to accomplish a task. For the purposes of this
document, software technology is defined as: the theory and practice of various
sciences (to include computer, cognitive, statistical sciences, and others) applied
to software development, operation, understanding, and maintenance.

More specifically, we view software technology as any concept, process,
method, algorithm, or tool, whose primary purpose is the development,
operation, and maintenance of software or software-intensive systems.
Technology is not just the technical artifacts, but the knowledge embedded in
those artifacts and the knowledge required for their effective use. Software
technology may include the following:

● Technology directly used in operational systems, for example: two tier/
three tier software architectures, public key digital signatures, remote
procedure calls (RPCs), rule-based intrusion detection.

● Technology used in tools that produce (or help produce) or maintain
operational systems, for example: graphical user interface (GUI) builders,
cyclomatic complexity, Ada 95 programming language, technologies for
design rationale capture.

● Process technologies that make people more effective in producing and
maintaining operational systems and tools by structuring development
approaches or enabling analysis of systems/product lines. Examples
include: Personal Software Process1 (PSP) for Module-Level
Development, Cleanroom Software Engineering, Domain Engineering
and Domain Analysis.

1 Personal Software Process and PSP are service marks of Carnegie Mellon
University

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/defining.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/defining.html7/28/2008 11:27:03 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/defining.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/about/disclaimer.html

Technology Categories

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Technology Categories

To indicate just how broad our definition of software technology is, we identify
below the various categories of entries that are found within this document. A
technology description will not explicitly identify the category into which its
subject falls, but the reader should be able to infer the category from the
information in the entry.

● Elemental Technology. An elemental technology can (in general) be
traced to a single, identifiable theory or concept related to software
development, understanding, operation, or maintenance.

● Composite Technology. A composite technology is the integration of
several elemental technologies. These component technologies each
contribute in some substantive way to the overall composite. The
component technologies may or may not have separate descriptions if
they do, this is noted in the description of the composite technology.

● Group of Technologies. The document treats technologies as a group in
three cases, depending on whether or not the technologies within the
group are further distinguished and how the technologies differ from one
another:

❍ The group as a whole has important and distinguishing
characteristics that make it worthy of consideration. But the
document doesn't distinguish among technologies within the
group, because the internal, external, or usage characteristics that
distinguish them are unknown, inaccessible, proprietary,
insignificant, or irrelevant to the purposes of the document.

❍ Sometimes information is necessary to make a decision about
whether or not to use any technology within the group, based on
common characteristics of the technology group. In such cases, it
is prudent to first consider the technologies in the aggregate
before looking at individual technologies within the group.

❍ Non-competing technologies that nevertheless contribute to the
same application area are grouped together into a tutorial that
describes how the technologies can be applied in that particular
context.

In any case, we define the group and describe common characteristics of
the group. In the case where members within the group are further
distinguished (in separate technology descriptions), we provide cross-
references to those technologies.

● Other Software Technology Topics. There are certain issues of concern

http://www.sei.cmu.edu/str/descriptions/categories.html (1 of 2)7/28/2008 11:27:04 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/categories.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Technology Categories

that don't fit into the above categories, yet they are important to software
technology. These include certain high-level concepts, such as COTS,
component based development/integration, and open systems. In
descriptions of these topics, we point to (and explain the relationship to)
related technologies.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/categories.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/categories.html (2 of 2)7/28/2008 11:27:04 AM

http://www.sei.cmu.edu/about/disclaimer.html

Template for Technology Descriptions

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Template for Technology Descriptions

The purpose of a technology description is to uniquely identify the technology, to
characterize the technology in terms of the properties of systems and measures
of software quality that it affects, and to point out tradeoffs, benefits, risks and
limitations that may arise in various situations of use. Each technology
description also provides reference(s) to literature, indications of the current
maturity of the technology, and cross references to related technologies.

Technology descriptions are not meant to be comprehensive--each description
provides the reader with enough knowledge to decide whether to investigate the
technology further, to find out where to go for more information, and to know
what questions to ask in gathering more information.

Typically, technology descriptions range in size from four to six pages,
depending on the amount of information available or the maturity of the
technology.

Each technology description has a common format and includes these major
sections:

Status

Note

Purpose and Origin

Technical Detail

Usage Considerations

Maturity

Costs and Limitations

Dependencies

Alternatives

Complementary Technologies

Index Categories

References and Information Sources

Current Author/Maintainer

External Reviewer

Modifications

http://www.sei.cmu.edu/str/descriptions/template/template.html (1 of 2)7/28/2008 11:27:05 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/template/template_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Template for Technology Descriptions

Pending

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/template/template_body.html
Last Modified: 24 July 2008

Section Explanations

Explanations of the various technology description sections are displayed in this frame.

http://www.sei.cmu.edu/str/descriptions/template/template.html (2 of 2)7/28/2008 11:27:05 AM

http://www.sei.cmu.edu/about/disclaimer.html

Ada 95

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Ada 95

Status

Complete

Purpose and Origin

Ada is a general-purpose, internationally-standardized computer programming
language developed by the U.S. Department of Defense (DoD) to help software
designers and programmers develop large, reliable applications. The Ada
language enhances portability, maintainability, flexibility, reliability, and provides
interoperability by standardization [Lawlis 96].

The Ada 95 (1995) version [AdaLRM 95] supersedes the 1983 standard Ada 83.
It corrects some shortcomings uncovered from nearly a decade of using Ada 83,
and exploits developments in software technology that were not sufficiently
mature at the time of Ada's original design. Specifically, Ada 95 provides
extensive support for object-oriented programming (OOP) (see Object-Oriented
Programming Languages), efficient real-time concurrent programming, improved
facilities for programming in the large, and increased ability to interface with
code written in other languages.

When distinguishing between the two versions of the language, the 1983 version
is referred to as Ada 83, and the revised version is referred to as Ada or Ada 95.

Technical Detail

Ada 95 consists of a core language that must be supported by all validated
compilers, and a set of specialized needs annexes that may or may not be
implemented by a specific compiler. However, if a compiler supports a special
needs annex, all features of the annex must be supported. The following is the
set of annexes [AdaLRM 95]:

Required annexes (i.e., part of core language)
A. Predefined Language Environment
B. Interface to Other Languages
J. Obsolescent Features

Optional special needs annexes

http://www.sei.cmu.edu/str/descriptions/ada95.html (1 of 7)7/28/2008 11:27:06 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/ada95_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Ada 95

C. Systems Programming
D. Real-time Programming
E. Distributed Systems
F. Information Systems
G. Numerics
H. Safety and Security

Annexes K - P are for informational purposes only and are not part of the
standard.

As in Ada 83, Ada 95 compilers are validated against established written
standards- all standard language features exist in every validated Ada compiler.
To become validated, a compiler must comply with the Ada Compiler Validation
Capability (ACVC) suite of tests [AdaIC 97a, 97b]. Because of language
standardization and required compiler validation, Ada provides an extremely
high degree of support for interoperability and portability.

Like Ada 83, the Ada 95 language is independent of any particular hardware or
operating system; the interface to any given platform is defined in a specific
"System" package. Ada 95 improves on the Ada 83 features that support
portability, which include the ability to define numerical types using system-
independent declarations and the ability to encapsulate dependencies.

By requiring specifications such as type specifications, by performing
consistency checks across separately compiled units, and by providing
exception handling facilities, Ada 95, like Ada 83, provides a high degree of
reliability when compared to other programming languages.

The Ada language was developed explicitly to support software engineering- it
supports principles of good software engineering and discourages poor practices
by prohibiting them where possible. Features supporting code clarity and
encapsulation (use of packages, use of generic packages and subprograms with
generic parameters, and private and limited private types) provide support for
maintenance and reusability. Ada 95 also provides full support for object-
oriented programming, which allows for a high level of reusability:

● encapsulation of objects and their operations
● OOP inheritance- allowing new abstractions to be built from existing ones

by inheriting their properties at either compile time or runtime
● an explicit pointer approach to polymorphism- the programmer must

decide to use pointers to represent objects [Brosgol 93]
● dynamic binding

Ada 95 also provides special features (hierarchical libraries and partitions) to
assist in the development of very large and distributed software components and
systems.

Ada 95 improves on the flexibility provided by Ada 83 for interfacing with other
programming languages by better standardizing the interface mechanism and

http://www.sei.cmu.edu/str/descriptions/ada95.html (2 of 7)7/28/2008 11:27:06 AM

Ada 95

providing an Interface to Other Languages Annex.

Ada 95 improves the specification of previous Ada features that explicitly support
concurrency and real-time processing, such as tasking, type declarations, and
low-level language features. A Real-Time Programming Annex has been added
to better specify the language definition and model for concurrency. Ada 95 has
paid careful attention to avoid runtime overhead for the new object-oriented
programming (OOP) features and incurs runtime costs commensurate with the
generality actually used. Ada 95 also provides the flexibility for the programmer
to specify the desired storage reclamation technique that is desired for the
application.

Usage Considerations

Ada 95 is essentially an upwardly-compatible extension to Ada 83 with improved
support for embedded software systems, real-time systems, computationally-
intensive systems, communication systems, and information systems [Lawlis
96]. In revising Ada 83 to Ada 95, incompatibilities were catalogued, tracked,
and assessed by the standard revision committee [Taylor 95]. These
incompatibilities have proven to be mostly of academic interest, and they have
not been a problem in practice.1

Combined with at least static code analysis or formal proofs, Ada 95, like Ada
83, is particularly appropriate for use in safety-critical systems.

The Ada Joint Program Office (AJPO) supports Ada 95 by providing an Ada 95
Adoption Handbook [AJPO 95] and an Ada 95 Transition Planning Guide [AJPO
94], and helping form Ada 95 early adoption partnerships with DoD and
commercial organizations. The Handbook helps managers understand and
assess the transition from Ada 83 to Ada 95 and the Transition Guide is
designed to assist managers in developing a transition plan tailored for individual
projects [Patton 95]. Another valuable source for Ada 95 training is a multimedia
CD-ROM titled Discovering Ada. This CD-ROM contains tutorial information,
demo programs, and video clips [AdaIC 95].

Ada 95 is the standard programming language for new DoD systems; the use of
any other language would require a waiver. Early DoD adoption partnerships
who are working Ada 95 projects include the Marine Corps Tactical Systems
Support Activity (MCTSSA), Naval Research and Development (NRAD), and the
Joint Strike Fighter (JSF) aircraft program [AdaIC 96a].

The AJPO supported the creation of an Ada 95-to-Java J-code compiler. This
means that Java programs can be created by using Ada. The compiler
generates Java "class" files just as a Java language compiler does. Ada and
Java components can even call each other [Wheeler 96]. This capability gives
Ada, like Java, extensive portability across platforms and allows Internet
programmers to take advantage of Ada 95 features unavailable in Java.

Maturity

http://www.sei.cmu.edu/str/descriptions/ada95.html (3 of 7)7/28/2008 11:27:06 AM

Ada 95

On February 15, 1995, Ada 95 became the first internationally-standardized
object-oriented programming language. As of April 1997, 51 validated compilers
were available [Compilers 97]. The current validation suite (Version 2.1) provides
the capability to validate the core language as well as the additional features in
the annexes [AdalC 97b].

Results from early projects, such as the Joint Automated Message Editing
Software (JAMES) and Airfields [AdaIC 96a], indicate that Ada 95 is upwardly-
compatible with Ada 83 and that some Ada 95 compilers are mature and stable
enough to use on fielded projects [Patton 95]. However, as of the spring of 1996,
Ada 95 tool sets and development environments were, in general, still rather
immature as compared to Ada 83 versions. As such, platform compatibility,
bindings (i.e., database, user interface, network interface) availability, and tool
support should be closely evaluated when considering Ada 95 compilers.

Costs and Limitations

Common perceptions and conventional wisdom regarding Ada 83 and Ada 95
have been shown to be incorrect or only partially correct. These perceptions
include the following:

● Ada is far too complex.
● Ada is too difficult to teach, to learn, to use.
● Ada is too expensive.
● Using Ada causes inefficiencies.
● Training in Ada is too expensive.
● Ada is old-fashioned.
● Ada is not object-oriented.
● Ada does not fit into COTS software.

Mangold examines these perceptions in some detail [Mangold 96].

Alternatives

Other programming languages to consider are Ada 83, C, C++, FORTRAN,
COBOL, Pascal, Assembly Language, LISP, Smalltalk, or Java.

Complementary Technologies

The Ada-95-to-Java J-code compiler (discussed in Usage Considerations)
enables applications for the Internet to be developed in Ada 95.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

http://www.sei.cmu.edu/str/descriptions/ada95.html (4 of 7)7/28/2008 11:27:06 AM

Ada 95

Name of technology Ada 95

Application category Programming Language (AP.1.4.2.1),
Compiler (AP.1.4.2.3)

Quality measures category Reliability (QM.2.1.2),
Maintainability (QM.3.1),
Interoperability (QM.4.1),
Portability (QM.4.2),
Scalability (QM.4.3),
Reusability (QM.4.4)

Computing reviews category Programming Languages (D.3)

References and Information Sources

[AdaLRM
95]

Ada95 Language Reference Manual, International Standard ISO/IEC
8652: 1995(E), Version 6.0 [online]. Available WWW
<URL: http://www.adahome.com/rm95/> (1995).

[AdaIC 95] AdaIC News Brief: November 3, 1995 [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/news/weekly/1995/95-
11-03.html >(1995).

[AdaIC 96a] AdaIC NEWS [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/news/> (1996).

[AdaIC 97a] Validation and Evaluation Test Suites: The Ada compiler certification
process [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/testing/> (1997).

[AdaIC 97b] Ada Compiler Validation Capability, Version 2.1 (ACVC 2.1) [online].
Available WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/compilers/acvc/95acvc/
acvc2_1> (1997).

[AJPO 94] Ada Joint Program Office. Ada 9X Transition Planning Guide: A Living
Document and Working Guide for PEOs and PMs Version 1.0. Falls
Church, VA: Ada Joint Program Office, 1994.

http://www.sei.cmu.edu/str/descriptions/ada95.html (5 of 7)7/28/2008 11:27:06 AM

http://www.adahome.com/rm95/
http://sw-eng.falls-church.va.us/AdaIC/news/weekly/1995/95-11-03.html
http://sw-eng.falls-church.va.us/AdaIC/news/weekly/1995/95-11-03.html
http://sw-eng.falls-church.va.us/AdaIC/news/
http://sw-eng.falls-church.va.us/AdaIC/compilers/
http://sw-eng.falls-church.va.us/AdaIC/compilers/acvc/95acvc/acvc2_1
http://sw-eng.falls-church.va.us/AdaIC/compilers/acvc/95acvc/acvc2_1

Ada 95

[AJPO 95] Ada Joint Program Office. Ada 95 Adoption Handbook: A Guide to
Investigating Ada 95 Adoption Version 1.1. Falls Church, VA: Ada
Joint Program Office, 1995.

[Brosgol 93] Brosgol, Benjamin. "Object-Oriented Programming in Ada 9X." Object
Magazine 2, 6 (March-April 1993): 64-65.

[Compilers 97] Ada 95 Validated Compilers List [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/cgi-bin/vcl/report95.pl> (1997).

[HBAP 96] Ada Home: The Home of the Brave Ada Programmers (HBAP) [online].
Available WWW
<URL: http://lglwww.epfl.ch:80/Ada/> (1996).

[Lawlis 96] Lawlis, Patricia K. Guidelines for Choosing a Computer Language:
Support for the Visionary Organization [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/> (1996).

[Mangold 96] Mangold, K. "Ada95-An Approach to Overcome the Software Crisis?"
4-10. Proceedings of Ada in Europe 1995. Frankfurt, Germany, October
2-6, 1995. Berlin, Germany: Springer-Verlag, 1996.

[Patton 95] Patton II, I. Lee. "Early Experiences Adopting Ada 95," 426-34.
Proceedings of TRI-Ada '95. Anaheim, CA, November 5-10, 1995. New
York, NY: Association for Computing Machinery, 1995.

[Taylor 95] Taylor, B. Ada Compatibility Guide Version 6.0 [online]. Available
WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/docs/compat-guide/
compat-guide6-0.txt> (1995).

[Tokar 96] Tokar, Joyce L. "Ada 95: The Language for the 90's and Beyond."
Object Magazine 6, 4 (June 1996): 53-56.

[Wheeler 96] Wheeler, David A. Java and Ada [online]. Available WWW
<URL: http://www.adahome.com/Tutorials/Lovelace/java.htm> (1996).

Current Author/Maintainer

Capt Gary Haines, AFMC SSSG
Cory Vondrak, TRW, Redondo Beach, CA

External Reviewers

Charles (Chuck) Engle (former AJPO director)

http://www.sei.cmu.edu/str/descriptions/ada95.html (6 of 7)7/28/2008 11:27:06 AM

http://sw-eng.falls-church.va.us/cgi-bin/vcl/report95.pl
http://lglwww.epfl.ch/Ada/
http://sw-eng.falls-church.va.us/
http://sw-eng.falls-church.va.us/AdaIC/docs/compat-guide/compat-guide6-0.txt
http://sw-eng.falls-church.va.us/AdaIC/docs/compat-guide/compat-guide6-0.txt
http://www.adahome.com/Tutorials/Lovelace/java.htm

Ada 95

John Goodenough, SEI

Modifications

2 October 97: updated URL for [Compilers 97].
20 June 97: updated URLs for [AdaIC 96a] and [AdaLRM 95].
14 April 97: updated number of validated Ada compilers and validation suite
information.
10 Jan 97 (original)

Pending

In March 1997, changes to Ada policy were directed by Mr. Emmett Page (ASD/
C31). This technology does not reflect those changes.

A revised assessment of toolset maturity (see Maturity section) is also needed.

Footnotes

1 From John Goodenough, SEI, in email to John Foreman, Re: Ada 95, August
16, 1996.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/ada95_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/ada95.html (7 of 7)7/28/2008 11:27:06 AM

http://www.sei.cmu.edu/about/disclaimer.html

Algorithm Formalization

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Algorithm Formalization

Status

Advanced

Purpose and Origin

In an effort to better understand computer algorithms, researchers in this area
began to formally characterize the properties of various classes of algorithms.
Initially, research centered on divide-and-conquer and global search algorithms.
This initial research proved that these formal algorithm characterizations, called
algorithm theories, could be used to synthesize implementations (code) for well-
defined functions. Used in program generation or synthesis systems, the
purpose of algorithm formalization is two-fold:

● The synthesis of consistent, highly CPU efficient algorithms for well-
defined functions.

● The formal characterization of algorithm theory notions [Smith 93b]. A by-
product of this formalization is the creation of a taxonomy of algorithm
theories in which relationships between algorithm theories are formally
characterized. These formal characterizations allow a developer to exploit
more effectively the structure inherent in the problem space, and thereby
allow him to derive or synthesize more efficient implementations.

To synthesize an algorithm for a problem using this technology, the essence of
the problem and its associated problem domain must be captured in a collection
of formal specifications.

Technical Detail

Algorithm synthesis is an emerging correct-by-construction methodology in
which algorithm theories are refined to satisfy the constraints represented in an
algebraic specification of the problem space [Smith 90]. These algorithm
theories represent the structure common to a class of algorithms and abstract
out concerns about the specific problem to be solved, the control strategy, the
target language and style (e.g., functional versus imperative), and the target
architecture. Because theorem provers are used to refine the algorithm theories,
the resulting synthesized algorithm is guaranteed to be consistent with the
problem specification. In other words, the synthesized algorithm is guaranteed to
find solutions to the specified problem provided such solutions exist. If multiple

http://www.sei.cmu.edu/str/descriptions/algorithm.html (1 of 5)7/28/2008 11:27:07 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/algorithm_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Algorithm Formalization

solutions are possible, an algorithm can be synthesized to return one, some, or
all of them.

Synthesis systems incorporating formal algorithm theories operate as follows.
The developer supplies a formal specification of the problem for which an
algorithm is needed, and supplies formal specifications for the operations
referenced in the problem specification (i.e., the domain theory). These
specifications must be in a prescribed format and language. Using syntactic
information drawn from the problem specification, the synthesis system selects
candidate algorithm theories from a library of such theories. The developer
selects one of these for refinement. The synthesis system then uses the
semantic information provided by the problem and domain theories and- using a
theorem prover- completes the refinement process. After the algorithm is
generated, a developer will typically apply several computer assisted
optimizations to the algorithm before compilation.

Coupling a theorem prover to the algorithm synthesis environment enables
computer management of the inherent complexity of the problem and solution
spaces, permitting computer management of complex code optimizations. For
example, a synthesized algorithm (or implementation) is modified by a user-
requested optimization only if the theorem prover is able to verify the
consistency of the resulting code. For example, simplification of conditionals,
function unfolding (inline expansion), and finite differencing are all possible.

Usage Considerations

The use of this technology encourages reuse of codified knowledge. Specifically,
once a domain theory has been developed, it can be used to help define
additional problem specifications within that domain, or it can be combined with
other domain theories to characterize larger domains. Note, however, that the
characterization of large and/or complex domains is non-trivial and may take
considerable effort. With respect to the synthesis system itself, a developer is
free to add additional algorithm theories to its library. However, the development
of such algorithm theories is complex and will require in-depth knowledge of that
class of algorithm.

Synthesizing algorithms from formal specifications involves a paradigm shift from
traditional programming practice. Because formal specifications are used,
developers must formally characterize what the operations in the problem
domain do rather than stating how they do it. In addition, maintenance is not
performed on the synthesized code. Instead, the problem specification is
modified to reflect the new requirement(s), and an implementation is rederived.

Synthesis of algorithms from formal specifications is independent of the target
programming language. However, the synthesis environments themselves may
need to be modified to support particular target languages, or code translators
may be needed to translate the code generated by the synthesis environment to
the desired target language.

Algorithms for non-real time, well-defined deterministic functions- such as sorting
or complex scheduling- can be synthesized using this technology. However,

http://www.sei.cmu.edu/str/descriptions/algorithm.html (2 of 5)7/28/2008 11:27:07 AM

Algorithm Formalization

additional work is required to determine whether this technology can be
extended with notions state and nondeterminism.

Maturity

This technique, along with an algorithm synthesis prototype environment called
Kestrel Interactive Development System (KIDS), was developed around 1986
[Smith 86, Smith 91]. Although it initially supported divide-and-conquer and
global search algorithm theories, KIDS has been extended with more powerful
algorithm theories and with more sophisticated constraint propagation
mechanisms. KIDS has been used to synthesize a transportation scheduling
algorithm used by US Transportation Command; this scheduling algorithm is
able to schedule 10,000 movement requests in approximately one minute,
versus hours for competitive scheduling algorithms [Smith 93c]. Ongoing
research in this area includes a formalization of local search and formalizations
of complex scheduling algorithms. Proof-of-concept scheduling algorithms have
been synthesized for the nuclear power-plant domain in which

● scheduled activities can have complex interactions
● timing constraints are represented by earliest start/finish times

This technology is also being extended to address the synthesis of parallel
algorithms [Smith 93b].

Costs and Limitations

Like all software development efforts, specification inconsistency may result in
implementations that do not meet users' needs. However, the formal nature of
problem specifications permits semi-automated investigation of problem
specification properties. Adaptation of this technology requires knowledge of
discrete mathematics at the level of first order logic and experience in
developing formal specifications. Knowledge of constraint propagation, category
theory, and resolution-based theorem proving is also required. In addition,
formalization of various problem domains may be difficult; to effectively use this
technology, special training may be required. However, there are currently no
commercially-available, regularly-scheduled courses offered on this subject.

Dependencies

Constraint propagation, resolution-based theorem proving, finite differencing
technology (used in verifiably correct optimizations), algebraic specification
techniques, and specification construction techniques are enablers for this
technology.

Alternatives

Other approaches to developing demonstrably correct algorithm
implementations are based on formal verification or deductive synthesis.
Software generation systems can be used to select and specialize an algorithm

http://www.sei.cmu.edu/str/descriptions/algorithm.html (3 of 5)7/28/2008 11:27:07 AM

Algorithm Formalization

implementation from a library of implementations, to assemble an algorithm for a
collection of reusable code fragments, or to generate algorithm implementation
stubs (i.e., they can generate code for some parts of an algorithm using syntactic
rather than semantic information), but generally such implementations are not be
guaranteed to be consistent with the problem specification.

Complementary Technologies

Category-theoretic specification construction methodologies are useful for
developing and refining algorithm, domain, and problem theories. In addition,
various domain analysis technologies can be used to investigate the structure of
the problem domain.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Algorithm Formalization

Application category Select or Develop Algorithms (AP.1.3.4)

Quality measures category Consistency (QM.1.3.2),
Provably Correct (QM.1.3.4),
Throughput (QM.2.2.3)

Computing reviews category Algorithms (I.1.2),
Automatic Programming (D.1.2),
Numerical Algorithms and Problems (F.2.1),
Nonumerical Algorithms and Problems (F.2.2),
Specifying and Verifying and Reasoning about
Programs (F.3.1)

References and Information Sources

[Gomes
96]

Gomes, Carla P.; Smith, Douglas; & Westfold, Stephen. "Synthesis
of Schedulers for Planned Shutdowns of Power Plants," 12-20.
Proceedings of the Eleventh Knowledge-Based Software
Engineering Conference. Syracuse, NY, September 25-28, 1996.
Los Alamitos, CA: IEEE Computer Society Press, 1996.

[Smith 86] Smith, Douglas R. "Top-Down Synthesis of Divide-and-Conquer
Algorithms," 35-61. Readings in Artificial Intelligence and Software
Engineering. Palo Alto, CA: Morgan Kaufmann, 1986.

http://www.sei.cmu.edu/str/descriptions/algorithm.html (4 of 5)7/28/2008 11:27:07 AM

Algorithm Formalization

[Smith 90] Smith, Douglas R. & Lowry, Michael R. "Algorithm Theories and
Design Tactics." Science of Computer Programming 14, 2-3 (1990):
305-321.

[Smith 91] Smith, Douglas R. "KIDS-A Knowledge-Based Software
Development System," 483-514. Automating Software Design.
Menlo Park, CA: AAAI Press, 1991.

[Smith
93a]

Smith, Douglas R. Classification Approach to Design (KES.
U.93.4). Palo Alto, CA: Kestrel Institute, 1993.

[Smith
93b]

Smith, Douglas R. "Derivation of Parallel Sorting Algorithms," 55-
69. Parallel Algorithm Derivation and Program Transformation.
New York, NY: Kluwer Academic Publishers, 1993.

[Smith
93c]

Smith, Douglas R. "Transformational Approach to Transportation
Scheduling," 60-68. Proceedings of the Eighth Knowledge-Based
Software Engineering Conference. Chicago, IL, September 20-23,
1993. Los Alamitos, CA: IEEE Computer Society Press, 1993.

Current Author/Maintainer

Mark Gerken, Air Force Rome Laboratory

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/algorithm_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/algorithm.html (5 of 5)7/28/2008 11:27:07 AM

http://www.sei.cmu.edu/about/disclaimer.html

Application Programming Interface

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Application Programming Interface

Status

Advanced

Purpose and Origin

Application Programming Interface (API) is an older technology that facilitates
exchanging messages or data between two or more different software
applications. API is the virtual interface between two interworking software
functions, such as a word processor and a spreadsheet. This technology has
been expanded from simple subroutine calls to include features that provide for
interoperability and system modifiability in support of the requirement for data
sharing between multiple applications. An API is the software that is used to
support system-level integration of multiple commercial-off-the-shelf (COTS)
software products or newly-developed software into existing or new applications.
APIs are also a type of Middleware that provide for data sharing across different
platforms; this is an important feature when developing new or upgrading
existing distributed systems. This technology is a way to achieve the total cross-
platform consistency that is a goal of open systems (see COTS and Open
Systems-An Overview) and standards [Krechmer 92].

Technical Detail

An API is a set of rules for writing function or subroutine calls that access
functions in a library. Programs that use these rules or functions in their API calls
can communicate with any others that use the API, regardless of the others'
specifics [Hines 96]. APIs work with a wide spectrum of application dialogues (i.
e., interprogram communication schemes) to facilitate information exchange.
These include database access, client/server, peer-to-peer, real-time, event-
driven, store and forward, and transaction processing. APIs combine error
recovery, data translation, security, queuing, and naming with an easy-to-learn
interface that comprises simple but powerful actions/commands (verbs). To
invoke an API, a program calls a SEND-type function, specifying parameters for
destination name, pointers to the data, and return confirmation options. The API
takes the data and does all the communications-specific work transparent to the
application.

There are four types of APIs that are enablers of data sharing between different
software applications on single or distributed platforms:

http://www.sei.cmu.edu/str/descriptions/api.html (1 of 5)7/28/2008 11:27:08 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/api_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Application Programming Interface

● Remote Procedure Calls (RPCs)
● Standard Query Language (SQL)
● file transfer
● message delivery

Using RPCs, programs communicate via procedures (or tasks) that act on
shared data buffers. SQL is a non-procedural data access language that allows
data sharing between applications by access into a common database. File
transfer allows for data sharing by sending formatted files between applications.
Message delivery provides data sharing by direct interprogram communications
via small formatted messages between loosely- or tightly-coupled applications.
Current standards that apply to APIs include the ANSI standard SQL API. There
are ongoing efforts to define standards for the other types.

Usage Considerations

APIs can be developed for all computing platforms and operating systems or
purchased for most platforms and operating systems. All four API types can be
used both on homogeneous and multi-platform applications. However, because
of the added complexity required to share data across multiple platforms, RPC,
SQL or file transfer APIs are better used to facilitate communication between
different applications on homogenous platform systems. These APIs
communicate data in different formats (e.g., shared data buffers, database
structures, and file constructs). Each data format requires different network
commands and parameters to communicate the data properly and can cause
many different types of errors. Therefore, in addition to the knowledge required
to perform the data sharing tasks, these types of APIs must account for
hundreds of network parameters and hundreds of possible error conditions that
each application must understand if it is to deliver robust interprogram
communications. A message delivery API, in contrast, will offer a smaller subset
of commands, network parameters, and error conditions because this API deals
with only one format (messages). Because of this reduced complexity, message
delivery APIs are a better choice when applications require data sharing across
multiple platforms.

Maturity

Many examples of data sharing between different applications have been
successfully implemented:

● Covia Technologies, in early 1983, supplied the Communication
Integrator (CI), which was the enabler technology for the Apollo airline
reservation system used by a consortium of United, British Air, Lufthansa,
and other international airlines [King 95].

● DECMessageQ is part of the DECnet infrastructure and has been
available since the early 1980s.

● Creative Systems Interface's (CSI) Application to Application Interface
(AAI) is a full featured API that is suitable for both client-server and peer-
to-peer applications.

● Horizon Strategies' Message Express was initially developed for LU6.2

http://www.sei.cmu.edu/str/descriptions/api.html (2 of 5)7/28/2008 11:27:08 AM

Application Programming Interface

(IBM generic System Network Architecture protocol) host and VAX/VMS
communications. In a typical Message Express manufacturing
application, remote plants with VAX, DOS/VSE, and AS/400 machines
conduct work-order scheduling and inventory assessments via peer-to-
peer messaging.

Costs and Limitations

APIs may "exist" in many forms; the potential user should comprehend the
implications of each. APIs may be

● a bundled part of commercial software packages
● separately-licensed COTS software package(s) (license costs)
● uniquely-developed by a project using the internal capabilities/features of

the applications that must communicate

In the last case, which should generally be the exception, the development staff
will incur analysis and engineering costs to understand the internal features of
the software applications, in addition to the cost to develop and maintain the
unique API. In all cases, there are training costs associated with learning how to
use the APIs as part of the development and maintenance activity. Additional
costs are associated with developing and using APIs to communicate across
multiple platforms. As already described, network communications add
complexity to the development or use of the APIs. The kinds of costs associated
with network applications include additional programming costs, training costs,
and licenses for each platform.

Complementary Technologies

APIs can be used in conjunction with the Common Object Request Broker
Architecture, Component Object Model (COM), DCOM, and Related
Capabilities, Distributed Computing Environment, Two Tier Software
Architectures, and Three Tier Software Architectures.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Application Programming Interface

Application category Application Program Interfaces (AP.2.7)

Quality measures category Maintainability (QM.3.1)
Interoperability (QM.4.1)

http://www.sei.cmu.edu/str/descriptions/api.html (3 of 5)7/28/2008 11:27:08 AM

Application Programming Interface

Computing reviews category Distributed Systems (C.2.4)
Software Engineering Tools and Techniques
(D.2.2)
Database Management Languages (H.2.3)

References and Information Sources

[Bernstein 96] Bernstein, Philip A. "Middleware: A Model for Distributed
Services." Communications of the ACM 39, 2 (February 1996):
86-97.

[Hines 96] Hines, John R. "Software Engineering." IEEE Spectrum
(January 1996): 60-64.

[King 95] King, Steven S. "Message Delivery APIs: The Message is the
Medium." Data Communications 21, 6 (April 1995): 85-90.

[Krechmer
92]

Krechmer, K. "Interface APIs for Wide Area Networks."
Business Communications Review 22, 11 (November 1992): 72-
4.

Current Author/Maintainer

Mike Bray, Lockheed-Martin Ground Systems (michael.w.bray@den.mmc.com)

External Reviewers

Paul Clements, SEI
John Kereschen, Lockheed Martin Command and Control Systems

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/api_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

http://www.sei.cmu.edu/str/descriptions/api.html (4 of 5)7/28/2008 11:27:08 AM

mailto:michael.w.bray@den.mmc.com
http://www.sei.cmu.edu/about/disclaimer.html

Application Programming Interface

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/api.html (5 of 5)7/28/2008 11:27:08 AM

Architecture Description Languages

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Architecture Description Languages

Status

Complete

Purpose and Origin

When describing a computer software system, software engineers often talk
about the architecture of the system, where an architecture is generally
considered to consist of components and the connectors (interactions) between
them.1 Although architectural descriptions are playing an increasingly important
role in the ability of software engineers to describe and understand software
systems, these abstract descriptions are often informal and ad hoc.2 As a result

● Architectural designs are often poorly understood and not amenable to
formal analysis or simulation.

● Architectural design decisions are based more on default than on solid
engineering principles.

● Architectural constraints assumed in the initial design are not enforced as
the system evolves.

● There are few tools to help the architectural designers with their tasks
[Garlan 93].

In an effort to address these problems, formal languages for representing and
reasoning about software architecture have been developed. These languages,
called architecture description languages (ADLs), seek to increase the
understandability and reusability of architectural designs, and enable greater
degrees of analysis.

Technical Detail

In contrast to Module Interconnection Languages (MILS), which only describe
the structure of an implemented system, ADLs are used to define and model
system architecture prior to system implementation. Further, ADLs typically
address much more than system structure. In addition to identifying the
components and connectors of a system, ADLs typically address:

● Component behavioral specification. Unlike MILs, ADLs are concerned
with component functionality. ADLs typically provide support for
specifying both functional and non-functional characteristics of

http://www.sei.cmu.edu/str/descriptions/adl.html (1 of 8)7/28/2008 11:27:12 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/adl_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Architecture Description Languages

components. (Non-functional requirements include those associated with
safety, security, reliability, and performance.) Depending on the ADL,
timing constraints, properties of component inputs and outputs, and data
accuracy may all be specified.

● Component protocol specification. Some ADLs, such as Wright [Garlan
94a] and Rapide [Luckham 95], support the specification of relatively
complex component communication protocols. Other ADLs, such as
UniCon [Shaw 95], allow the type of a component to be specified (e.g.,
filter, process, etc.) which in turn restricts the type of connector that can
be used with it.

● Connector specification. ADLs contain structures for specifying properties
of connectors, where connectors are used to define interactions between
components. In Rapide, connector specifications take the form of partially-
ordered event sequences, while in Wright, connector specifications are
expressed using Hoare's Communicating Sequential Processes (CSP)
language [Hoare 85].

As an example, consider the component shown in Figure 1. This component
defines two data types, two operations (op), and an input and an output
communication port. The component also includes specifications constraining
the behavior of its two operations.

Figure 1: Component

A protocol specification for this component, written in CSP, defines how it
interacts with its environment. Specifically, component Simple will accept a data
value x of type in_type on its input port, and, if the data value is valid, will output f
(x) on its output port. If the data value is not valid, Simple will output an error
message on its output port. Note that component Simple is a specification, not
an implementation. Implementations of ADL components and connectors are
expressed in traditional programming languages such as Ada (see Ada 83 and
Ada 95) or C. Facilities for associating implementations with ADL entities vary
between ADLs.

http://www.sei.cmu.edu/str/descriptions/adl.html (2 of 8)7/28/2008 11:27:12 AM

Architecture Description Languages

Usage Considerations

ADLs were developed to address a need that arose from programming in the
large; they are well-suited for representing the architecture of a system or family
of systems. Because of this emphasis, several changes to current system
development practices may occur:

● Training. ADLs are formal, compilable languages that support one or
more architectural styles; developers will need training to understand and
use ADL technology and architectural concepts/styles effectively (e.g., the
use of dataflow, layered, or blackboard architectural styles).

● Change/emphasis in life-cycle phases. The paradigm currently used for
system development and maintenance may be affected. Specifically,
architectural design and analysis will precede code development; results
of analysis may be used to alter system architecture. As such, a growing
role for ADLs is expected in evaluating competing proposed systems
during acquisitions. An ADL specification should provide a good basis for
programming activities [Shaw 95].

● Documentation. Because the structure of a software system can be
explicitly represented in an ADL specification, separate documentation
describing software structure is not necessary. This implies that if ADLs
are used to define system structure, the architectural documentation of a
given system will not become out of date.3 Additionally, ADLs document
system properties in a formal and rigorous way. These formal
characterizations can be used to analyze system properties statically and
dynamically. For example, dynamic simulation of Rapide [Luckham 95]
specifications can be analyzed by automated tools to identify such things
as communication bottlenecks and constraint violations. Further, these
formal characterizations provide information that can be used to guide
reuse.

● Expanding scope of architecture. ADLs are not limited to describing the
software architecture; application to system architecture (to include
hardware, software, and people) is also a significant opportunity.

Maturity

Several ADLs have been defined and implemented that support a variety of
architectural styles, including

● Aesop, which supports the specification and analysis of architectural
styles (formal characterizations of common architectures such as pipe
and filters, and client-server) [Garlan 94b].

● Rapide, which uses event posets to specify component interfaces and
component interaction [Luckham 95].

● Wright, which supports the specification and analysis of communication
protocols [Garlan 94a].

● MetaH, which was developed for the real-time avionics domain [Vestal
96].

● LILEAnna, which is designed for use with Ada and generalizes Ada's
notion of generics [Tracz 93].

http://www.sei.cmu.edu/str/descriptions/adl.html (3 of 8)7/28/2008 11:27:12 AM

Architecture Description Languages

● UniCon, which addresses packaging and functional issues associated
with components [Shaw 95].

Further information about these and other languages used to describe software
architectures can be found in the Software Architecture Technology Guide and
Architectural Description Languages [SATG 96, SEI 96].

Because ADLs are an emerging technology, there is little evidence in the
published literature of successful commercial application. However, Rapide and
UniCon have been used on various problems,4 and MetaH appears to be in use
in a commercial setting [Vestal 96]. ADLs often have graphical tools that are
similar to CASE tools.

Costs and Limitations

The lack of a common semantic model coupled with differing design goals for
various ADLs complicates the ability to share tool suites between them.
Researchers are addressing this problem; an ADL called ACME is being
developed with the goal that it will serve as an architecture interchange
language.5 Some ADLs, such as MetaH, are domain-specific.

In addition, support for asynchronous versus synchronous communication
protocols varies between ADLs, as does the ability to express complex
component interactions.

Dependencies

Simulation technology is required by those ADLs supporting event-based
protocol specification.

Alternatives

The alternatives to ADLs include Module Interconnection Languages (which only
represent the defacto structure of a system), object-oriented CASE tools, and
various ad-hoc techniques for representing and reasoning about system
architecture.

Another alternative is the use of VHSIC Hardware Description Language (VHDL)
tools. While VHDL is often thought of exclusively as a hardware description
language, its modularization and communication protocol modeling capabilities
are very similar to the ones under development for use in ADLs.

Complementary Technologies

Behavioral specification technologies and their associated theorem proving
environments are used by several ADLs to provide capabilities to define
component behavior. In addition, formal logics and techniques for representing
relationships between them are being used to define mappings between
architectures within an ADL and to define mappings between ADLs.

http://www.sei.cmu.edu/str/descriptions/adl.html (4 of 8)7/28/2008 11:27:12 AM

Architecture Description Languages

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Architecture Description Languages

Application category Architectural Design (AP.1.3.1),
Compiler (AP.1.4.2.3),
Plan and Perform Integration (AP.1.4.4)

Quality measures category Correctness (QM.1.3),
Structuredness (QM.3.2.3),
Reusability (QM.4.4)

Computing reviews category Software Engineering Tools and Techniques
(D.2.2),
Organization and Design (D.4.7),
Performance (D.4.8),
Systems Programs and Utilities (D.4.9)

References and Information Sources

[Garlan 93] Garlan, David & Shaw, Mary. "An Introduction to Software
Architecture," 1-39. Advances in Software Engineering and
Knowledge Engineering Volume 2. New York, NY: World
Scientific Press, 1993.

[Garlan 94a] Garlan, D. & Allen, R. "Formalizing Architectural Connection,"
71-80. Proceedings of the 16th International Conference on
Software Engineering. Sorrento, Italy, May 16-21, 1994. Los
Alamitos, CA: IEEE Computer Society Press, 1994.

[Garlan 94b] Garlan, D.; Allen, R.; & Ockerbloom, J. "Exploiting Style in
Architectural Design Environments." SIGSOFT Software
Engineering Notes 19, 5 (December 1994): 175-188.

[Luckham
95]

Luckham, David C., et al. "Specification and Analysis of System
Architecture Using Rapide." IEEE Transactions on Software
Engineering 21, 6 (April 1995): 336-355.

[Hoare 85] Hoare, C.A.R. Communicating Sequential Processes. Englewood
Cliffs, NJ: Prentice Hall International, 1985.

http://www.sei.cmu.edu/str/descriptions/adl.html (5 of 8)7/28/2008 11:27:12 AM

Architecture Description Languages

[Paulisch 94] Paulisch, Frances. "Software Architecture and Reuse- An Inherent
Conflict?" 214. Proceedings of the 3rd International Conference
on Software Reuse. Rio de Janeiro, Brazil, November 1-4, 1994.
Los Alamitos, CA: IEEE Computer Society Press, 1994.

[Perry 92] Perry, D.E. & Wolf, A.L. "Foundations for the Study of Software
Architectures."SIGSOFT Software Engineering Notes 17,4
(October 1992): 40-52.

[SATG 96] Software Architecture Technology Guide [online]. Available
WWW <URL: http://www-ast.tds-gn.lmco.com/arch/guide.html>
(1996).

[SEI 96] Architectural Description Languages [online]. Available WWW
<URL: http://www.sei.cmu.edu/architecture/adl.html> (1996).

[Shaw 95] Shaw, Mary, et al. "Abstractions for Software Architecture and
Tools to Support Them." IEEE Transactions on Software
Engineering 21, 6 (April 1995): 314-335.

[Shaw 96] Shaw, M. & Garlan, D. Perspective on an Emerging Discipline:
Software Architecture. Englewood Cliffs, NJ: Prentice Hall, 1996.

[STARS 96] Scenarios for Analyzing Architecture Description Languages
Version 2.0 [online]. Originally available WWW
<URL: http://www.asset.com/WSRD/abstracts/
ABSTRACT_1183.html> (1996).

[Tracz 93] Tracz, W. "LILEANNA: a Parameterized Programming
Language," 66-78. Proceedings of the Second International
Workshop on Software Reuse. Lucca, Italy, March 24-26, 1993.
Los Alamitos, CA: IEEE Computer Society Press, 1993.

[Vestal 93] Vestal, Steve. A Cursory Overview and Comparison of Four
Architecture Description Languages [online]. Originally available
FTP
<URL: ftp://ftp.htc.honeywell.com/pub/dssa/papers/four_adl.ps>
(1996).

[Vestal 96] Vestal, Steve. Languages and Tools for Embedded Software
Architectures [online]. Available WWW
<URL: http://www.htc.honeywell.com/projects/dssa/dssa_tools.
html> (1996).

Current Author/Maintainer

Mark Gerken, Air Force Rome Laboratory

External Reviewers

Paul Clements, SEI
Paul Kogut, Lockheed Martin, Paoli, PA
Will Tracz, Lockheed Martin Federal Systems, Owego, NY

http://www.sei.cmu.edu/str/descriptions/adl.html (6 of 8)7/28/2008 11:27:12 AM

http://www-ast.tds-gn.lmco.com/arch/guide.html
http://www.sei.cmu.edu/architecture/adl.html
http://www.htc.honeywell.com/projects/dssa/dssa_tools.html
http://www.htc.honeywell.com/projects/dssa/dssa_tools.html

Architecture Description Languages

Modifications

10 Jan 97 (original)

Footnotes

1 While definitions of architecture, component, and connector vary among
researchers, this definition of architecture serves as a baseline for this
technology description. A generally accepted definition describing the difference
between a "design" and an "architecture" is that while a design explicitly
addresses functional requirements, an architecture explicitly addresses
functional and non-functional requirements such as reusability, maintainability,
portability, interoperability, testability, efficiency, and fault-tolerance [Paulisch
94].

2 Source: Garlan, David, et al. "ACME: An Architecture Interchange Language."
Submitted for publication.

3 However, one can easily imagine a case where an ADL is used to document
the architecture, but then the project moves to the implementation phase and the
ADL is forgotten. The code or low-level design migrates, but the architecture is
lost. This is often referred to as architectural drift [Perry 92].

4 For example, Rapide has been used to specify/ analyze the architecture model
of the Sparc Version 9 64-bit instruction set, a standard published by Sparc
International. Models of the extensions for the Ultra Sparc have also been done;
they are used extensively in benchmarking Rapide simulation algorithms.
Further information is available via the World Wide Web at http://anna.stanford.
edu/rapide/rapide.html.

5 Source: Garlan, David, et al. "ACME: An Architecture Interchange Language."
Submitted for publication.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/adl_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections

http://www.sei.cmu.edu/str/descriptions/adl.html (7 of 8)7/28/2008 11:27:12 AM

http://anna.stanford.edu/rapide/rapide.html
http://anna.stanford.edu/rapide/rapide.html
http://www.sei.cmu.edu/about/disclaimer.html

Architecture Description Languages

● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/adl.html (8 of 8)7/28/2008 11:27:12 AM

Argument-Based Design Rationale Capture Methods for Requirements Tracing

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Argument-Based Design Rationale Capture Methods for
Requirements Tracing

Status

Advanced

Note

We recommend Requirements Tracing--An Overview as prerequisite reading for
this technology description.

Purpose and Origin

A design rationale is a representation of the reasoning behind the design of an
artifact. The purpose of argument-based design rationale capturing methods is
to track

● the discussions and deliberations that occur during initial requirements
analysis

● the reasons behind design decisions
● the changes in the system over the course of its life, whether they are

changes in requirements, design, or code (i.e., any software artifact)
● the reasons for and impact of the changes on the system

Replaying the history of design decisions facilitates the understanding of the
evolution of the system, identifies decision points in the design phase where
alternative decisions could lead to different solutions, and identifies dead-end
solution paths. The captured knowledge should enhance the evolvability of the
system.

The study of argument-based design rationale capture originated during the late
1950s and early 1960s with D. Englebart, who developed a conceptual
framework called Humans Using Language, Artifacts, and Methodology in which
they are Trained (H-LAM/T) and with Stephen Toulmin and his work concerning
the representational form for arguments [Shum 94].

Technical Detail

There are two general approaches to argument-based design rationale capture,

http://www.sei.cmu.edu/str/descriptions/argument.html (1 of 5)7/28/2008 11:27:13 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/argument_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Argument-Based Design Rationale Capture Methods for Requirements Tracing

both of which are based upon the entity-relationship paradigm:

1. The Issue Based Information Systems (IBIS) that deals with issues,
positions, and arguments for which the emphasis is on recording the
argumentation process for a single design [Ramesh 92].

2. The Questions, Options, and Criteria (QOC) notation [Shum 94], for which
assessments are relationships between options, and criteria and
arguments are used to conduct debate about the status of the entities
and relationships.

Decision Representation Language (DRL) combines and extends the two
approaches to provide support for computational services like dependency
management, precedence management, and plausibility management. All of the
approaches provide mechanisms for a breadth-first analytic understanding of
issues, thus setting the context for concrete refinement of the design.

All of the information gathered using the above mentioned methods/languages is
generally called process knowledge. The process knowledge is cross-referenced
to the requirements created during the requirements engineering phase. The
entities and relationships provide for the structuring of design problems, and they
provide a consistent mechanism for decision making and tracking and
communication among team members.

Laboratory and small-scale field experiments have been conducted to determine
the utility and effectiveness of design rationale capturing methods. Potential
benefits include the following:

● Revision becomes a natural process.
● Design rationale capture methods can help to keep the design meetings

on track and help maintain a shared awareness of the meeting's process.
● The design rationale record can help identify interrelated issues that need

to be resolved. Related arguments enable team members to prepare for
the meeting and lead to a better solution.

● The methods can help originators of ideas understand how they are
understood by the rest of the team. Note: More analysis is required before
the utility of the methods for communicating understandings is fully
demonstrated.

The records can be a valuable resource when it becomes necessary to
reanalyze a previous decision. Note: There is no data on how frequently the
revisitation is necessary, therefore, the benefits may invalidate the effort
necessary to capture the information.

Potential pitfalls include the following:

● Care must be taken to avoid prolonged reflective processes and the
extensive analysis of high-level or peripheral issues.

● There may be inconsistencies in categorizing the design rationale
information in the database because one person's assumptions may be
another person's rationale and yet another person's decision.

● Because of the nature of the semiformal language, the reader may need

http://www.sei.cmu.edu/str/descriptions/argument.html (2 of 5)7/28/2008 11:27:13 AM

Argument-Based Design Rationale Capture Methods for Requirements Tracing

to be familiar with the design to understand the design rationale as
represented.

Usage Considerations

The use of this technology requires the development of a shared, consistent,
and coherent requirements traceability policy by a project team. Each of the
team members must provide commitment to the policy and procedures. A
procedure for overall coordination must be developed. To date, these
procedures are project-dependent and there is no consistent policy. It will require
effort to generate and maintain the entities and relationships in the design
rationale database for a given system.

Maturity

To date, there is at least one commercially-available tool to support the IBIS
notation. The vendor also provides training and support for their tool. Proprietary
tools to support the IBIS method are being used on government projects (e.g., a
database exists with over 100,000 requirements under management) [Ramesh
92]. Tools to support the other methods are in various prototype stages.

Costs and Limitations

Argument-based design rationale capture methods and supporting tools require
additional time and effort throughout the software life cycle. Individuals must
generate and maintain the entity relationship diagrams for any and all of the
methods. Training is essential to make effective use of the methods.

Dependencies

This technology makes use of entity-relationship modeling as the basis for the
methods.

Alternatives

There are several alternative approaches to requirements traceability methods.
Examples include: Process Knowledge Method, an extension of the argument-
based approach that includes a formal representation to provide two way
traceability between requirements and artifacts and facilities for temporal
reasoning (i.e., mechanisms to use the captured knowledge), and Feature-
Based Design Rationale Capture Method for Requirements Tracing , an
approach that is centered around the distinctive features of a system.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

http://www.sei.cmu.edu/str/descriptions/argument.html (3 of 5)7/28/2008 11:27:13 AM

Argument-Based Design Rationale Capture Methods for Requirements Tracing

Name of technology Argument-Based Design Rationale Capture
Methods for Requirements Tracing

Application category Requirements Tracing (AP.1.2.3)

Quality measures category Completeness (QM.1.3.1)
Consistency (QM.1.3.2)
Traceability (QM.1.3.3)
Effectiveness (QM.1.1)
Reusability (QM.4.4)
Understandability (QM.3.2)
Maintainability (QM.3.1)

Computing Reviews Category Software Engineering Tools and Techniques
(D.2.2)
Software Engineering Design (D.2.10)
Project and People Management (K.6.1)

References and Information Sources

[Gotel 95] Gotel, Orlena. Contribution Structures for Requirements
Traceability. London, England: Imperial College, Department of
Computing, 1995.

[Ramesh
92]

Ramesh, Balasubramaniam & Dhar, Vasant. "Supporting Systems
Development by Capturing Deliberations During Requirements
Engineering." IEEE Transactions on Software Engineering 18, 6
(June 1992): 498-510.

[Ramesh
95]

Ramesh, Bala; Stubbs, Lt Curtis; & Edwards, Michael. "Lessons
Learned from Implementing Requirements Traceability."
Crosstalk, Journal of Defense Software Engineering 8, 4 (April
1995): 11-15.

[Shum 94] Shum, Buckingham Simon & Hammond, Nick. "Argumentation-
Based Design Rationale: What Use at What Cost?" International
Journal of Human-Computer Studies 40, 4 (April 1994): 603-52.

Current Author/Maintainer

Liz Kean, Air Force Rome Laboratory

Modifications

10 Jan 97 (original)

http://www.sei.cmu.edu/str/descriptions/argument.html (4 of 5)7/28/2008 11:27:13 AM

Argument-Based Design Rationale Capture Methods for Requirements Tracing

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/argument_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/argument.html (5 of 5)7/28/2008 11:27:13 AM

http://www.sei.cmu.edu/about/disclaimer.html

Maintenance of Operational Systems--An Overview

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Maintenance of Operational Systems--An Overview

Status

Complete

Note

This description provides background information for technologies for optimizing maintenance
environments. We recommend Cyclomatic Complexity; Halstead Complexity Measures;
Maintainability Index Technique for Measuring Program Maintainability; and Function Point
Analysis as concurrent reading, as they contain information about specific technologies.

Purpose and Origin

Technologies specific to the maintenance of software evolved (and are still evolving) out of
development-oriented technologies. As large systems have proliferated and aged, the special
needs of the operational environment have begun to emerge. Maintenance is defined here as
the modification of a software product after delivery to correct faults, improve performance or
other attributes, or to adapt the product to a changed environment [IEEE 83]. Historically, the
software lifecycle has usually focused on development. However, so much of a system's cost is
incurred during its operational lifetime that maintenance issues have become more important
and, arguably, this should be reflected in development practices. Systems are required to last
longer than originally planned; inevitably, the percentage of costs going to maintenance has
been steadily climbing. Hewlett-Packard estimates that 60% to 80% of its R&D personnel are
involved in maintaining existing software, and that 40% to 60% of production costs were directly
related to maintenance [Coleman 94]. There was a rule of thumb that eighty percent of a
Department of Defense (DoD) system's cost is in maintenance; older Cheyenne Mountain
Complex systems may have surpassed ninety percent. Yet software development practices still
do not put much emphasis on making the product highly maintainable.

Cost and risk of maintenance of older systems are further exacerbated by a shortage of
suitable maintenance skills; analysts and programmers are not trained to deal with these
systems. Industry wide, it is claimed that 75%-80% of all operational software was written
without the discipline of structured programming [Coleman 95]. Only a minuscule fraction of
current operational systems were built using the object-oriented techniques taught today.

The purpose of this description is to provide a framework or a contextual reference for some of
the maintenance and reengineering technologies described in this document.

Technical Detail

http://www.sei.cmu.edu/str/descriptions/mos.html (1 of 9)7/28/2008 11:27:14 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/mos_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Maintenance of Operational Systems--An Overview

The operational system lifecycle. The operational environment has its own lifecycle that,
while connected to the development lifecycle, has specific and unique characteristics and
needs. As shown in Figure 15, a system's total lifecycle is defined as having four major phases:

● the development or pre-delivery phase
● the early operational phase
● the mature operational phase
● the evolution/replacement phase

Each of the phases has typical characteristics and problems. The operational phases are most
of the lifecycle and cost. The narrative following describes each phase, and identifies specific
technologies in (or planned for) this document that can be applied to correct or improve the
situation. In almost every case, taking the proper action in a given phase can eliminate, or
greatly reduce, problems in a later phase- at much less cost.

Figure 15: Total System Life Cycle

Terminology. To set a baseline for the descriptions of these phases, the following definitions
are used:

Reengineering: rebuilding a piece of software to suit some new purpose (to work on another
platform, to switch to another language, to make it more maintainable, etc.); often preceded by
reverse engineering. Examination and alteration of a subject system to reconstitute it in a new
form. Any activity that improves one's understanding of software, or prepares or improves the

http://www.sei.cmu.edu/str/descriptions/mos.html (2 of 9)7/28/2008 11:27:14 AM

Maintenance of Operational Systems--An Overview

software itself for increased maintainability, reusability, or evolvability.

Restructuring: transformation of a program from one representation to another at the same
relative abstraction level, usually to simplify or clarify it in some way (e.g., remove GOTOs,
increase modularity), while preserving external behavior.

Reverse engineering: the process of analyzing a system's code, documentation, and behavior
to identify its current components and their dependencies to extract and create system
abstractions and design information. The subject system is not altered; however, additional
knowledge about the system is produced. Redocumenting and design recovery are techniques
associated with reverse engineering.

Software complexity: some measure of the mental effort required to understand a piece of
software.

Software maintainability: some measure of the ease and/or risk of making a change to a piece
of software. The measured complexity of the software is often used in quantifying
maintainability.

Translation: conversion of a program from one language to another, often as a companion
action to restructuring the program.

Phase 1: The development or pre-delivery phase, when the system is not yet operational.
Most of the effort in this phase goes into making Version One of the system function. But if total
lifecycle costs are to be minimized, planning and preparation for maintenance during the
development phase are essential. Most currently operational systems did not receive this
attention during development. Several areas should be addressed:

● Requirements traceability to code. Requirements are the foundation of a system, and
one of the most common faults of an operational system is that the relationship between
its requirements and its code cannot be determined. Recovering this information for a
system after it goes operational is a costly and time-consuming task. See Requirements
Tracing, Feature-Based Design Rationale Capture Method for Requirements Tracing,
and Argument-Based Design Rationale Capture Methods for Requirements Tracing for
assistance in creating initial mappings from requirements to code.

● Documentation and its usefulness in maintenance. The ostensible purpose of
documentation is to aid in understanding what the system does, and (for the
maintenance programmer) how the system does it. There is at least anecdotal evidence
that

❍ Classical specification-type documentation is not a good primary source of
information for the maintenance programmer looking for a problem's origin,
especially since the documentation is frequently inconsistent with the code.

❍ The most useful maintenance information is derived directly and automatically
from the code; examples include structure charts, program flow diagrams, and
cross-reference lists. This suggests that tools that create and maintain these
documentation forms should be used during development of the code, and
delivered with it.

● The complexity of the software. If the software is too complex to understand when it is
first developed, it will only become more complex and brittle as it is changed. Measuring
complexity during code development is useful for checking code condition, helps in
quantifying testing costs, and aids in forecasting future maintenance costs (see
Cyclomatic Complexity, Halstead Complexity Measures, and Maintainability Index

http://www.sei.cmu.edu/str/descriptions/mos.html (3 of 9)7/28/2008 11:27:14 AM

Maintenance of Operational Systems--An Overview

Technique for Measuring Program Maintainability).
● The maintainability of the software. This is perhaps the key issue for the maintainer. The

ability to measure a system's maintainability directly affects the ability to predict future
costs and risks. Maintainability Index Technique for Measuring Program Maintainability
describes a practical approach to such a measurement, applicable throughout the
lifecycle.

Phase 2: The early operational phase, when the delivered system is being maintained and
changed to meet new needs and fix problems. Typically the tools and techniques used for
maintenance are those that were used to develop the system. In this phase, the following
issues are critical:

● Complexity and maintainability must be measured and controlled in this phase if the
major problems of Phase 3 are to be avoided. Ideally, this a continuation of the same
effort that began in Phase 1, and it depends on the same tools and techniques (see
Cyclomatic Complexity, Halstead Complexity Measures, and Maintainability Index
Technique for Measuring Program Maintainability). In a preventative maintenance
regime, use of these types of measures will help establish guidelines about how much
complexity and/or deterioration of maintainability is tolerable. If a critical module
becomes too complex under the guidelines, it should be considered for rework before it
becomes a problem. Early detection of problems, such as risk due to increasing
complexity of a module, is far cheaper than waiting until a serious problem arises.

● A formal release-based maintenance process that suits the environment must be
established. This process should always be subject to inspection, and should be revised
when it does not meet the need.

● The gathering of cost data must be part of the maintenance process if lifecycle costs are
to be understood and controlled. The cost of each change (e.g., person-hours, computer-
hours) should be known down to a suitable granularity such as phase within the release
(e.g., design, code and unit test, integration testing). Without this detailed cost
information, it is very hard to estimate future workload or the cost of a proposed change.

Phase 3: Mature operational phase, in which the system still meets the users' primary needs
but is showing signs of age. For example

● The incidence of bugs caused by changes or "day-one errors" (problems that existed at
initial code delivery) is rising, and the documentation, especially higher-level
specification material, is not trustworthy. Most analyses of changes to the software must
be done by investigating the code itself.

● Code "entropy" and complexity are increasing and, even by subjective measures, its
maintainability is decreasing.

● New requirements increasingly uncover limitations that were designed into the system.
● Because of employee turnover, the programming staff may no longer be intimately

familiar with the code, which increases both the cost of a change and the code's
entropy.

● A change may have a ripple effect: Because the true nature of the code is not well
known, coupling across modules has increased and made it more likely that a change in
one area will affect another area. It may be appropriate to restructure or reengineer
selected parts of the system to lessen this problem.

● Testing has become more time-consuming and/or risky because as code complexity
increases, test path coverage also increases. It may be appropriate to consider more
sophisticated test approaches (see Preventive Maintenance).

● The platform is obsolete: The hardware is not supported by the manufacturer and parts
are not readily available; the COTS software is not supported through new releases (or

http://www.sei.cmu.edu/str/descriptions/mos.html (4 of 9)7/28/2008 11:27:14 AM

Maintenance of Operational Systems--An Overview

the new releases will not work with the application, and it is too risky to make the
application changes needed to align with the COTS software).

At this point, the code has not been rewritten en masse or reverse engineered to recover
design, but the risk and cost of evolution by modification of the system have increased
significantly. The system has become brittle with age. It may be appropriate to assess the
system's condition. Sittenauer describes a quick methodology for gauging the need for
reengineering, and the entire approach for measuring maintainability (see Maintainability Index
Technique for Measuring Program Maintainability) allows continuous or spot assessment of the
system's maintainability [Sittenauer 92].

Phase 4: Evolution/Replacement Phase, in which the system is approaching or has reached
insupportability. The software is no longer maintainable. It has become so "entropic" or brittle
that the cost and/or risk of significant change is too high, and/or the host hardware/software
environment is obsolete. Even if none of these is true, the cost of implementing a new
requirement is not tolerable because it takes too long under the maintenance environment. It is
time to consider reengineering (see Cleanroom Software Engineering and Graphical User
Interface Builders).

Usage Considerations

Software maintainability factors. The characteristics influencing or determining a system's
maintainability have been extensively studied, enumerated, and organized. One thorough study
is described in Oman; such characteristics were analyzed and a simplified maintainability
taxonomy was constructed [Oman 91]. Maintainability Index Technique for Measuring Program
Maintainability describes an approach to measuring and controlling code maintainability that
was founded on several years of work and analysis and includes analysis of commercial
software maintenance. References to other maintainability research results also appear in that
technology description.

Preventive maintenance approaches. The approaches listed below are a few of the ways
current technology can help to enhance system maintainability.

● Complexity analysis. Before attempting to reach a destination, it is essential to know
where you are. For a software system, a good first step is measuring the complexity of
the component modules (see Cyclomatic Complexity and Halstead Complexity
Measures). Maintainability Index Technique for Measuring Program Maintainability
describes a method of assessing maintainability of code using those complexity
measures. Test path coverage can also be determined from complexity measures,
which can help in optimizing system testing (see Test generation and optimization).

● Functionality analysis. Function Point Analysis describes the uses and limitations of
function point analysis (also known as functional size measurement) in measuring
software. By measuring a program's functionality, one can arrive at some estimate of its
value in a system, which is of use when making decisions about rewriting the program or
reengineering the system. Measures of functionality can also guide decisions about
where to put testing effort (see Test generation and optimization).

● Reverse engineering / design recovery. Over time, a system's code diverges from the
documentation; this is a well-known tendency of operational systems. Another
phenomenon that is frequently underestimated or ignored is that (regardless of the
divergence effect) the information required to make a given change is often found only in
the code. Several approaches are possible here. Various tools offer the ability to

http://www.sei.cmu.edu/str/descriptions/mos.html (5 of 9)7/28/2008 11:27:14 AM

Maintenance of Operational Systems--An Overview

construct program flow diagrams (PFDs) from code. More sophisticated techniques,
often classified as program understanding, are emerging. These technologies are
implemented as tools that act as agents for the human analyst to assist in gathering
information about a program's function at higher levels of abstraction than a program
flow diagram (e.g., retask a satellite).

● Piecewise reengineering. If the system's known lifetime is sufficiently short, and if the
evolutionary changes needed are sufficiently bounded, the system may benefit from a
piecewise reengineering approach:

❍ Brittle, high-risk modules that are likely to need changes are identified and
reengineered to make them more maintainable. Techniques such as wrappers,
an emerging technology, are expected to aid here.

❍ For the sake of prudence, other risky modules are "locked," so that a prospective
change to them can be made only after thoroughly assessing the risks involved.

❍ For database systems, it may be possible to retrofit a modern relational or object-
oriented database to the system; Common Object Request Broker Architecture
and Graphic Tools for Legacy Database Migration describe technologies of
possible use here. Piecewise reengineering can generally be done at a lower
cost than complete reengineering of the system. If it is the right choice, it delays
the inevitable obsolescence. The downsides of piecewise reengineering include
the following:

❍ Platform obsolescence is not reversed. Risks arising from the platform's software
are unchanged; if the original database or operating system has risks, the
application using them will also.

❍ Unforeseen requirements changes still carry high risk if they affect the old parts
of the system.

❍ Performance may suffer because of the interface structures added to splice
reengineered functions to old ones.

● Translation/restructuring/modularizing. Translation and/or restructuring of code are often
of interest when migrating software to a new platform. Frequently the new environment
will not support the old language or dialect. Restructuring/modularizing, or rebuilding the
code to reduce complexity, can be done simply to improve the code's maintainability, but
code to be translated is often restructured first so that the result will be less complex and
more easily understood. There are several commercial tools that do one or more of
these operations, and energetic research to achieve more automated approaches is
being done. Welker cites evidence that translation does little or nothing to enhance
maintainability [Welker 95]. Most often, it simply continues the existing problem in a
different syntactical form; the mechanical forms output by translators decrease
understandability, which is a key component of maintainability. None of these
technologies is a cure-all, and none of them should be applied without first assessing the
quality of the output and the amount of programmer resources required.

Test generation and optimization. Mission criticality of many DoD systems drives the
maintenance activity to test very thoroughly. Boehm reported integration testing activities
consuming only 16-34% of project totals [Boehm 81], but other evidence is available to show
that commercial systems testing activity can take half of a development effort's resources
[Alberts 76, DeMillo 87, Myers 79]. Recent composite post-release reviews of operational
Cheyenne Mountain Complex system releases show that testing consumed 60-70% of the total
release effort.1 Any technology that can improve testing efficiency will have high leverage on
the system's life-cycle costs. Technologies that can possibly help include: automatic test case
generation; generation of test and analysis tools; redundant test case elimination; test data
generation by chaining; techniques for software regression testing; and techniques for
statistical test plan generation and coverage analysis.

http://www.sei.cmu.edu/str/descriptions/mos.html (6 of 9)7/28/2008 11:27:14 AM

Maintenance of Operational Systems--An Overview

Index Categories

This technology is classified under the following categories. Select a category for a list of
related topics.

Name of technology Maintenance of Operational Systems--An Overview

Application category Requirements Tracing (AP.1.2.3)
Cost Estimation (AP.1.3.7)
Test (AP.1.4.3)
System Testing (AP.1.5.3.1)
Regression Testing (AP.1.5.3.4)
Reapply Software Lifecycle (AP.1.9.3)
Reverse Engineering (AP.1.9.4)
Reengineering (AP.1.9.5)

Quality measures category Maintainability (QM.3.1)

Computing reviews category Software Engineering Distribution and Maintenance (D.2.7)
Software Engineering Metrics (D.2.8)
Software Engineering Management (D.2.9)

References and Information Sources

[Alberts 76] Alberts, D. "The Economics of Software Quality Assurance." National
Computer Conference. New York, NY, June 7-10, 1976. Montvale, NJ:
American Federation of Information Processing Societies Press, 1976.

[Boehm 81] Boehm, Barry W. Software Engineering Economics. Englewood Cliffs, NJ:
Prentice-Hall, 1981.

[Coleman 94] Coleman, Don, et al. "Using Metrics to Evaluate Software System
Maintainability." Computer 27, 8 (August 1994): 44-49.

[Coleman 95] Coleman, Don; Lowther, Bruce; & Oman, Paul. "The Application of Software
Maintainability Models in Industrial Software Systems." Journal of Systems
Software 29, 1 (April 1995): 3-16.

[DeMillo 87] DeMillo, R., et al. Software Testing and Evaluation. Menlo Park, CA: Benjamin/
Cummings, 1987.

[IEEE 83] IEEE Standard Glossary of Software Engineering Terminology. New York, NY:
Institute of Electrical and Electronic Engineers, 1983.

[Myers 79] Myers, G. The Art of Software Testing. New York, NY: John Wiley and Sons,
1979.

http://www.sei.cmu.edu/str/descriptions/mos.html (7 of 9)7/28/2008 11:27:14 AM

Maintenance of Operational Systems--An Overview

[Oman 91] Oman, P.; Hagermeister, J.; & Ash, D. A Definition and Taxonomy for Software
Maintainability (91-08-TR). Moscow, ID: Software Engineering Test
Laboratory, University of Idaho, 1991.

[Sittenauer
92]

Sittenauer, Chris & Olsem, Mike. "Time to Reengineer?" Crosstalk, Journal of
Defense Software Engineering 32 (March 1992): 7-10.

[Welker 95] Welker, Kurt D. & Oman, Paul W. "Software Maintainability Metrics Models in
Practice." Crosstalk, Journal of Defense Software Engineering 8, 11 (November/
December 1995): 19-23.

Current Author/Maintainer

Edmond VanDoren, Kaman Sciences, Colorado Springs

External Reviewers

Brian Gallagher, SEI
Ed Morris, SEI
Dennis Smith, SEI

Modifications

10 Jan 97 (original)

Footnotes

1 Source: Kaman Sciences Corp. Minutes of the 96-1 Composite Post-Release Review
(CPRR), Combined CSS/CSSR and ATAMS Post-Release Review and Software Engineering
Post-Release Review KSWENG Memo # 96-03, 26 July, 1996.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the
U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/mos_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms

http://www.sei.cmu.edu/str/descriptions/mos.html (8 of 9)7/28/2008 11:27:14 AM

http://www.sei.cmu.edu/about/disclaimer.html

Maintenance of Operational Systems--An Overview

● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/mos.html (9 of 9)7/28/2008 11:27:14 AM

Message-Oriented Middleware

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Message-Oriented Middleware

Status

Advanced

Note

We recommend Middleware as prerequisite reading for this technology
description.

Purpose and Origin

Message-oriented middleware (MOM) is a client/server infrastructure that
increases the interoperability, portability, and flexibility of an application by
allowing the application to be distributed over multiple heterogeneous platforms.
It reduces the complexity of developing applications that span multiple operating
systems and network protocols by insulating the application developer from the
details of the various operating system and network interfaces- Application
Programming Interfaces (APIs) that extend across diverse platforms and
networks are typically provided by the MOM [Rao 95].

Technical Detail

Message-oriented middleware, as shown in Figure 22 [Steinke 95], is software
that resides in both portions of a client/server architecture and typically supports
asynchronous calls between the client and server applications. Message queues
provide temporary storage when the destination program is busy or not
connected. MOM reduces the involvement of application developers with the
complexity of the master-slave nature of the client/server mechanism.

http://www.sei.cmu.edu/str/descriptions/momt.html (1 of 5)7/28/2008 11:27:15 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/momt_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Message-Oriented Middleware

Figure 22: Message-Oriented Middleware

MOM increases the flexibility of an architecture by enabling applications to
exchange messages with other programs without having to know what platform
or processor the other application resides on within the network. The
aforementioned messages can contain formatted data, requests for action, or
both. Nominally, MOM systems provide a message queue between
interoperating processes, so if the destination process is busy, the message is
held in a temporary storage location until it can be processed. MOM is typically
asynchronous and peer-to-peer, but most implementations support synchronous
message passing as well.

Usage Considerations

MOM is most appropriate for event-driven applications. When an event occurs,
the client application hands off to the messaging middleware application the
responsibility of notifying a server that some action needs to be taken. MOM is
also well-suited for object-oriented systems because it furnishes a conceptual
mechanism for peer-to-peer communications between objects. MOM insulates
developers from connectivity concerns- the application developers write to APIs
that handle the complexity of the specific interfaces.

Asynchronous and synchronous mechanisms each have strengths and
weaknesses that should be considered when designing any specific application.
The asynchronous mechanism of MOM, unlike Remote Procedure Call (RPC) ,
which uses a a synchronous, blocking mechanism, does not guard against
overloading a network. As such, a negative aspect of MOM is that a client
process can continue to transfer data to a server that is not keeping pace.
Message-oriented middleware's use of message queues, however, tends to be
more flexible than RPC-based systems, because most implementations of MOM
can default to synchronous and fall back to asynchronous communication if a
server becomes unavailable [Steinke 95].

Maturity

Implementations of MOM first became available in the mid-to-late 1980s. Many
MOM implementations currently exist that support a variety of protocols and
operating systems. Many implementations support multiple protocols and
operating systems simultaneously.

http://www.sei.cmu.edu/str/descriptions/momt.html (2 of 5)7/28/2008 11:27:15 AM

Message-Oriented Middleware

Some vendors provide tool sets to help extend existing interprocess
communication across a heterogeneous network.

Costs and Limitations

MOM is typically implemented as a proprietary product, which means MOM
implementations are nominally incompatible with other MOM implementations.
Using a single implementation of a MOM in a system will most likely result in a
dependence on the MOM vendor for maintenance support and future
enhancements. This could have a highly negative impact on a system's
flexibility, maintainability, portability, and interoperability.

The message-oriented middleware software (kernel) must run on every platform
of a network. The impact of this varies and depends on the characteristics of the
system in which the MOM will be used:

● Not all MOM implementations support all operating systems and
protocols. The flexibility to choose a MOM implementation may be
dependent on the chosen application platform or network protocols
supported, or vice versa.

● Local resources and CPU cycles must be used to support the MOM
kernels on each platform. The performance impact of the middleware
implementation must be considered; this could possibly require the user
to acquire greater local resources and processing power.

● The administrative and maintenance burden would increase significantly
for a network manager with a large distributed system, especially in a
mostly heterogeneous system.

● A MOM implementation may cost more if multiple kernels are required for
a heterogeneous system, especially when a system is maintaining
kernels for old platforms and new platforms simultaneously.

Alternatives

Other infrastructure technologies that allow the distribution of processing across
multiple processors and platforms are

● Object Request Broker (ORB)
● Distributed Computing Environment (DCE)
● Remote Procedure Call (RPC)
● Transaction Processing Monitor Technology
● Three Tier Software Architectures

Complementary Technologies

MOM can be effectively combined with remote procedure call (RPC) technology-
RPC can be used for synchronous support by a MOM.

Index Categories

http://www.sei.cmu.edu/str/descriptions/momt.html (3 of 5)7/28/2008 11:27:15 AM

Message-Oriented Middleware

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Message-Oriented Middleware

Application category Client/Server (AP.2.1.2.1)
Client/Server Communication (AP.2.2.1)

Quality measures category Maintainability (QM.3.1)
Interoperability (QM.4.1)
Portability (QM.4.2)

Computing reviews category Distributed Systems (C.2.4)
Network Architecture and Design (C.2.1)

References and Information Sources

[Rao 95] Rao, B.R. "Making the Most of Middleware." Data
Communications International 24, 12 (September 1995): 89-96.

[Steinke
95]

Steinke, Steve. "Middleware Meets the Network." LAN: The
Network Solutions Magazine 10, 13 (December 1995): 56.

Current Author/Maintainer

Cory Vondrak, TRW, Redondo Beach, CA

External Reviewers

Ed Morris, SEI

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/momt_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/momt.html (4 of 5)7/28/2008 11:27:15 AM

http://www.sei.cmu.edu/about/disclaimer.html

Message-Oriented Middleware

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/momt.html (5 of 5)7/28/2008 11:27:15 AM

Middleware

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Middleware

Status

Advanced

Purpose and Origin

Middleware is connectivity software that consists of a set of enabling services
that allow multiple processes running on one or more machines to interact
across a network. Middleware is essential to migrating mainframe applications to
client/server applications and to providing for communication across
heterogeneous platforms. This technology has evolved during the 1990s to
provide for interoperability in support of the move to client/server architectures
(see Client/Server Software Architectures). The most widely-publicized
middleware initiatives are the Open Software Foundation's Distributed
Computing Environment (DCE) , Object Management Group's Common Object
Request Broker Architecture (CORBA), and Microsoft's COM/DCOM (see
Component Object Model (COM), DCOM, and Related Capabilities) [Eckerson
95].

Technical Detail

As outlined in Figure 17, middleware services are sets of distributed software
that exist between the application and the operating system and network
services on a system node in the network.

http://www.sei.cmu.edu/str/descriptions/middleware.html (1 of 5)7/28/2008 11:27:16 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/middleware_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Middleware

Figure 17: Use of Middleware [Bernstein 96]

Middleware services provide a more functional set of Application Programming
Interfaces (API) than the operating system and network services to allow an
application to

● locate transparently across the network, providing interaction with another
application or service

● be independent from network services
● be reliable and available
● scale up in capacity without losing function [Schreiber 95]

Middleware can take on the following different forms:

● Transaction processing (TP) monitors (see Transaction Processing
Monitor Technology), which provide tools and an environment for
developing and deploying distributed applications.

● Remote Procedure Call (RPCs), which enable the logic of an application
to be distributed across the network. Program logic on remote systems
can be executed as simply as calling a local routine.

● Message-Oriented Middleware (MOM), which provides program-to-
program data exchange, enabling the creation of distributed applications.
MOM is analogous to email in the sense it is asynchronous and requires
the recipients of messages to interpret their meaning and to take
appropriate action.

● Object Request Brokers (ORBs) , which enable the objects that comprise
an application to be distributed and shared across heterogeneous
networks.

Usage Considerations

The main purpose of middleware services is to help solve many application
connectivity and interoperability problems. However, middleware services are
not a panacea:

http://www.sei.cmu.edu/str/descriptions/middleware.html (2 of 5)7/28/2008 11:27:16 AM

Middleware

● There is a gap between principles and practice. Many popular middleware
services use proprietary implementations (making applications dependent
on a single vendor's product).

● The sheer number of middleware services is a barrier to using them. To
keep their computing environment manageably simple, developers have
to select a small number of services that meet their needs for functionality
and platform coverage.

● While middleware services raise the level of abstraction of programming
distributed applications, they still leave the application developer with
hard design choices. For example, the developer must still decide what
functionality to put on the client and server sides of a distributed
application [Bernstein 96].

The key to overcoming these three problems is to fully understand both the
application problem and the value of middleware services that can enable the
distributed application. To determine the types of middleware services required,
the developer must identify the functions required, which fall into one of three
classes:

1. Distributed system services, which include critical communications,
program-to-program, and data management services. This type of service
includes RPCs, MOMs and ORBs.

2. Application enabling services, which give applications access to
distributed services and the underlying network. This type of services
includes transaction monitors (see Transaction Processing Monitor
Technology) and database services such as Structured Query Language
(SQL).

3. Middleware management services, which enable applications and system
functions to be continuously monitored to ensure optimum performance of
the distributed environment [Schreiber 95].

Maturity

A significant number of middleware services and vendors exist. Middleware
applications will continue to grow with the installation of more heterogeneous
networks. An example of middleware in use is the Delta Airlines Cargo Handling
System, which uses middleware technology to link over 40,000 terminals in 32
countries with UNIX services and IBM mainframes. By 1999, middleware sales
are expected to exceed $6 billion [Client 95].

Costs and Limitations

The costs of using middleware technology (i.e., license fees) in system
development are entirely dependent on the required operating systems and the
types of platforms. Middleware product implementations are unique to the
vendor. This results in a dependence on the vendor for maintenance support
and future enhancements. This reliance could have a negative effect on a
system's flexibility and maintainability. However, when evaluated against the
cost of developing a unique middleware solution, the system developer and
maintainer may view the potential negative effect as acceptable.

http://www.sei.cmu.edu/str/descriptions/middleware.html (3 of 5)7/28/2008 11:27:16 AM

Middleware

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Middleware

Application category Client/Server (AP.2.1.2.1)
Client/Server Communication (AP.2.2.1)

Quality measures category Interoperability (QM.4.1)

Computing reviews category Distributed Systems (C.2.4)
Network Architecture and Design (C.2.1)
Database Management Languages (D.3.2)

References and Information Sources

[Bernstein
96]

Bernstein, Philip A. "Middleware: A Model for Distributed
Services." Communications of the ACM 39, 2 (February 1996):
86-97.

[Client 95] "Middleware Can Mask the Complexity of your Distributed
Environment." Client/Server Economics Letter 2, 6 (June 1995):
1-5.

[Eckerson 95] Eckerson, Wayne W. "Three Tier Client/Server Architecture:
Achieving Scalability, Performance, and Efficiency in Client
Server Applications." Open Information Systems 10, 1 (January
1995): 3(20).

[Schreiber
95]

Schreiber, Richard. "Middleware Demystified." Datamation 41,
6 (April 1, 1995): 41-45.

Current Author/Maintainer

Mike Bray, Lockheed-Martin Ground Systems

Modifications

25 June 97: modified/updated OLE/COM reference to COM/DCOM
10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

http://www.sei.cmu.edu/str/descriptions/middleware.html (4 of 5)7/28/2008 11:27:16 AM

Middleware

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/middleware_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/middleware.html (5 of 5)7/28/2008 11:27:16 AM

http://www.sei.cmu.edu/about/disclaimer.html

Model-Based Verification (MBV) for Software

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Model-Based Verification (MBV) for Software

Status

Draft

Purpose and Origin

Model-Based Verification (MBV) is a systematic approach for detecting defects
(errors) in software requirements, designs, or code [Gluch 98]. The approach
incorporates the use of mathematical models to provide a disciplined and logical
analysis practice rather than a "proof" of correctness strategy. MBV involves
creating essential models of system behavior and analyzing these models
against formal representations of expected properties.

Essential models are simplified formal representations that capture the essence
of a system rather than providing an exhaustive, detailed description of it. By
selecting a system's critical (important or risky) parts and appropriately
abstracted perspectives, a reviewer using model-based techniques can focus
the analysis on the critical and technically difficult aspects of the system. Driven
by the discipline and rigor required in the creation of a formal model, simply
building the model uncovers errors.

Once the formal model is built, it can be checked using automated model
checking tools. This analysis reveals potential defects while formulating claims
about the system's expected behavior. Model checking has been shown to
uncover even the most difficult to identify errors&emdash;those that result from
the complexity associated with multiple interacting and interdependent
components. These include embedded and highly distributed applications.

Technical Detail

MBV consists of a set of engineering practices for identifying and guiding the
correction of defects in software artifacts. These practices are founded upon
formal modeling and analysis techniques. As shown in Figure 1, MBV practices
can be divided into two distinct categories of activities:

1. Project level (team) activities

2. Engineering (individual) activities

http://www.sei.cmu.edu/str/descriptions/mbv.html (1 of 7)7/28/2008 11:27:17 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/mbv_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Model-Based Verification (MBV) for Software

Figure 1. Model-Based Engineering Activities

Project level activities involve both programmatic and technical decisions and
engage multiple members of the project team in important decisions. These
decisions relate to defining the scope (how much of the system is to be modeled
and analyzed), formalism (what techniques are to be employed), and
perspective (what aspects of the system are to be considered) involved in the
effort.

The bulk of the engineering activities in MBV are principally individual. Each
engineer builds and analyzes models and compiles defects independently. While
building MBV models, the systematic framework, attention to detail, and
discipline demanded by the modeling techniques can lead to the identification of
defects. During the analysis activities, automated model checking techniques are
used to investigate the system's complexities and behavior and to identify
elusive logic errors. While the individual engineer has principal responsibility for
MBV activities, it is often valuable to collaborate with other experts. This is
especially true during the analysis phase where additional domain expertise can
help to focus the effort. Throughout the process, engineers compile the identified
defects and the results of their analyses.

Usage Considerations

MBV is a pragmatic application of formal methods that focuses on error (defect)
identification rather than formalized specification or proofs. This approach
capitalizes on the advantages provided by formal methodologies without
incurring the overhead costs normally associated with them.

It is expected that the MBV technology and practices will increase the
effectiveness of verification and test activities and will result in higher quality
software at a lower cost.

MBV will allow a practitioner to:

● Detect errors early. Since it can be used for requirements and
preliminary design analysis of a system development, MBV offers the
potential to detect errors early in the design process before they

http://www.sei.cmu.edu/str/descriptions/mbv.html (2 of 7)7/28/2008 11:27:17 AM

Model-Based Verification (MBV) for Software

propagate into the design or code.
● Detect subtle errors. Especially promising, is the potential for the early

detection of subtle and potentially costly errors (defects) that are not
identified even in extensive testing. Often these errors are not recognized
until the software is in the field.

● Effectively handle complexity. MBV technology addresses system
complexity that is difficult for humans to verify even through extensive
individual review of the problem.

● Identify basic errors. The large size and complexity of software systems
complicates verification by significantly increasing the amount of
mundane checking that is needed (e.g., that there is consistent naming
and use; that all the terms are defined) These editing-like activities can be
effectively and efficiently accomplished through MBV automated checking.

● Develop partial and targeted analyses. The MBV approach can be
applied to all or part of the system. This enables its efficient use in
complex systems where the analysis can be targeted to only the critical
areas of system.

● Apply in all phases of development. The modeling checking technique
that is part of the MBV approach has been used for error detection in
requirements, design, and code. It can be used as the foundation for
testing by helping to define test strategies, test cases, and critical areas
that require focused or more extensive testing.

Maturity

A number of published studies have cited successful implementation of the MBV
approach for model checking for digital hardware and complex protocol systems.
Some examples include:

● IEEE standard Futurebus+ cache coherence protocol&emdash;
Although development began four years earlier and validation efforts had
been conducted, model checking identified a number of previously
undetected errors [Clarke 95].

● High Speed Communications IC Chip&emdash;During field tests of a
complex high-speed communications IC chip, errors in the form of
duplicated and lost data were observed. Model checking was able to help
identify the cause of this error very quickly. Using simulation or other
conventional techniques would have been impractical because it would
have required an extraordinarily amount of time and resources [Fujita 96].

● Power PC &emdash; Model checking was employed to diagnose the
cause of a design error found during hardware testing of the PowerPC
620 microprocessor. This error eluded detection despite extensive
simulation and standard verification. Model checking techniques could
have detected the error early in the design phase [Raimi 97].

The specific techniques and engineering practices of applying MBV to software
verification have yet to be fully explored and documented. A number of barriers
to MBV adoption have been identified including the lack of tool support,
expertise in organizations, good training materials, and process support for
formal modeling and analysis.

http://www.sei.cmu.edu/str/descriptions/mbv.html (3 of 7)7/28/2008 11:27:17 AM

Model-Based Verification (MBV) for Software

In order to address some of these issues, the Software Engineering Institute
(SEI) has created a process framework for MBV practice. This process
framework identifies a number of key tasks and artifacts. Additionally, the SEI is
working on a series of technical notes that can be used by MBV practitioners.
Each technical note is focused on a particular MBV task, providing guidelines
and techniques for one aspect of the MBV practice. Currently, the technical
notes that are planned address abstraction in building models, generating
expected properties, generating formal claims, and interpreting the results of
analysis.

Costs and Limitations

There are some limitations and barriers that determine how and when MBV can
be effectively applied:

● Domains: Although MBV can in theory be applied to any software
system, the technique is more productive in systems that involve real-time
constraints, concurrency, distribution, or complex interactions among
components.

● Process maturity: In order to be effective, MBV requires product artifacts
that can easily be converted into models. For example, if MBV is being
applied to a requirements specification, the requirements should be
stated with a level of detail and rigor sufficient to create meaningful,
reasonably complex models. In general, MBV will work better in mature
organizations that produce sufficiently detailed and rigorous documents.

● Training and expertise: Although MBV does not require the
mathematical background necessary to apply heavy formal methods, it
does require some basic knowledge of formalisms and formal notations.
This will hold true until more commercial tools simplify and automate MBV
practices. Even more important than formal methods training is a
practitioner's knowledge of the system under consideration.

Alternatives

Traditional formal methods are an alternative to MBV for critical systems.
However, they are generally more expensive and require more expertise than
MBV. On the other hand, traditional formal methods can be used to help prove
the correctness of software whereas MBV can only increase the confidence in
the system correctness.

Complementary Technologies

MBV can be included as part of a peer review team process [Software
Inspections]. The specific activities of the MBV reviewer(s) are coordinated with
those of the traditional review team. As part of a review team, an individual MBV
reviewer's principal responsibility is much the same as an individual reviewer in a
conventional inspection&emdash;identify defects in the artifact under review
[Gluch 99].

MBV can potentially be applied in the context of Cleanroom Software

http://www.sei.cmu.edu/str/descriptions/mbv.html (4 of 7)7/28/2008 11:27:17 AM

Model-Based Verification (MBV) for Software

Engineering. The focus of Cleanroom involves moving from traditional, craft-
based software development practices to rigorous, engineering-based practices.
Cleanroom software engineering yields software that is correct by
mathematically sound design, and software that is certified by statistically-valid
testing. Reduced cycle times result from an incremental development strategy
and the avoidance of rework.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Model-Based Verification (MBV) for Software

Application category Requirements Engineering (AP.1.2.2)
System Analysis & Optimization (AP.1.3.6)
System Testing (AP.1.5.3.1)

Quality measures category Correctness (QM.1.3)
Availability/Robustness (QM.2.1.1)
Accuracy (QM.2.1.2.1)
Safety (QM.2.1.3)
Real-time Responsiveness/Latency (QM.2.2.2)

Computing reviews category Program Verification (D.2.4)
Requirements/Specifications (D.2.1)

References and Information Sources

[Clarke 86] Clarke, E.; Emerson, E.A.; & Sistla, A.P. "Automatic
Verification of Finite State Concurrent Systems Using Temporal
Logic Specifications," ACM Transcripts on Program Language
Systems 8, 2 (1986): 244-263.

[Clarke 95] Clarke, Edmund M., et al. "Verification of the Futurebus+ Cache
Coherence Protocol." Formal Methods in System Design 6, 2
(March 1995): 217-232.

[Fujita 96] Fujita, M. "Debugging a Communications Chip." IEEE Spectrum
33, 6 (June 1996): 64.

http://www.sei.cmu.edu/str/descriptions/mbv.html (5 of 7)7/28/2008 11:27:17 AM

Model-Based Verification (MBV) for Software

[Gluch 98] Gluch, D. & Weinstock, C. Model-Based Verification: A
Technology for Dependable System Upgrade (CMU/SEI-98-TR-
009, ADA 354756). Pittsburgh, Pa.: Software Engineering
Institute, Carnegie Mellon University, 1998. Available WWW:
<http://www.sei.cmu.edu/publications/documents/
98.reports/98tr009/98tr009abstract.html>

[Gluch 99] Gluch, D. & Brockway, J. An Introduction to Software
Engineering Practices Using Model-Based Verification (CMU/
SEI-99-TR-005, ESC-TR-99-005). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, 1999.
Available WWW: <http://www.sei.cmu.edu/publications/
documents/
99.reports/99tr005/99tr005abstract.html>

[Harel 87] Harel, D. "Statecharts: A Visual Formalism for Complex
Systems." Science of Computer Programming 8, 3 (June 1987):
231-274.

[Holt 99] Holt, A. "Formal Verification With Natural Language
Specifications: Guidelines, Experiments And Lessons So Far."
South African Computer Journal 24 (November 1999): 253-257.

[McMillan 92] McMillan, K.L. Symbolic Model Checking: An Approach to the
State Explosion Problem (CMU-CS-92-131). Pittsburgh, Pa.:
Computer Science Department, Carnegie Mellon University,
1992.

[Raimi 97] Raimi, R. & Lear, J. "Analyzing a PowerPCTM 620
Microprocessor Silicon Failure Using Model Checking," 964-
973. Proceedings of the International Test Conference 1997,
Washington, D.C., November 1-6, 1997.

Current Author/Maintainer

Chuck Weinstock, Software Engineering Institute

Modifications

20 Mar 2001: Original

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

http://www.sei.cmu.edu/str/descriptions/mbv.html (6 of 7)7/28/2008 11:27:17 AM

http://www.sei.cmu.edu/publications/documents/98.reports/98tr009/98tr009abstract.html
http://www.sei.cmu.edu/publications/documents/98.reports/98tr009/98tr009abstract.html
http://www.sei.cmu.edu/publications/documents/99.reports/99tr005/99tr005abstract.html
http://www.sei.cmu.edu/publications/documents/99.reports/99tr005/99tr005abstract.html
http://www.sei.cmu.edu/publications/documents/99.reports/99tr005/99tr005abstract.html

Model-Based Verification (MBV) for Software

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/mbv_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/mbv.html (7 of 7)7/28/2008 11:27:17 AM

http://www.sei.cmu.edu/about/disclaimer.html

Module Interconnection Languages

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Module Interconnection Languages

Status

Complete

Purpose and Origin

As software system size and complexity increase, the task of integrating
independently-developed subsystems becomes increasingly difficult. In the
1970s, manual integration was augmented with various levels of automated
support, including support from module interconnection languages (MILs). The
first MIL, MIL75, was described by DeRemer and Kron [DeRemer 76], who
argued with integrators and developers about the differences between
programming in the small, for which typical languages are suitable, and
programming in the large, for which a MIL is required for knitting modules
together [Prieto-Diaz 86]. MILs provide formal grammar constructs for identifying
software system modules and for defining the interconnection specifications
required to assemble a complete program [Prieto-Diaz 86]. MILs increase the
understandability of large systems in that they formally describe the structure of
a software system; they consolidate design and module assembly in a single
language. MILs can also improve the maintainability of a large system in that
they can be used to prohibit maintainers from accidentally changing the
architectural design of a system, and they can be integrated into a larger
development environment in which changes in the MIL specification of a system
are automatically reflected at the code level and vice versa.

Technical Detail

A MIL identifies the system modules and states how they fit together to
implement the system's function; MILs are not concerned with what the system
does, how the major parts of the system are embedded in the organization, or
how the individual modules implement their functions [Prieto-Diaz 86]. A MIL
specification of a system constitutes a written description of the system design.
A MIL specification can be used to

● Enforce system integrity and inter-modular compatibility.
● Support incremental modification. Modules can be independently

compiled and linked; full recompilation of a modified system is not
needed.

● Enforce version control. Different versions (implementations) of a module

http://www.sei.cmu.edu/str/descriptions/mil.html (1 of 7)7/28/2008 11:27:18 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/mil_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Module Interconnection Languages

can be identified and used in the construction of a software system. This
idea has been generalized to allow different versions of subsystems to be
defined in terms of different versions of modules. Thus MILs can be used
to describe families of modules and systems [Tichy 79, Cooprider 79].

For example, consider the simplified MIL specification shown in Figure 24 and its
associated graphical representation shown in Figure 25. The hypothetical MIL
used in Figure 24 contains structures for identifying the modules of interest (in
this case the modules are ABC, Z, and YBC); structures for identifying required
and provided data; provided functions; and structures for identifying module and
function versions. The module ABC defined in the figure consists of two parts, a
function XA and a module YBC; the structure of each of these entities is also
defined. Note that function XA has three versions, a Pascal, an Ada, and a
FORTRAN version. These three versions would be written and compiled using
their respective language development environments. A compilation system for
this hypothetical MIL would process the specification given in Figure 24 to check
that all required resources (such as x and z) are provided, and to check data
type compatibility between required and provided resources. Provided these
checks passed, the MIL compilation system, in conjunction with outside (user or
environmental) inputs such as version availability and language choices, would
select, compile (if necessary), and link the system. Incremental compilation is
supported; for example, if the implementations for function XA change, the MIL
compilation system will analyze the system structure and recompile and relink
only those portions of the overall system affected by that change.

Figure 24: MIL Specification of a Simple Module

http://www.sei.cmu.edu/str/descriptions/mil.html (2 of 7)7/28/2008 11:27:18 AM

Module Interconnection Languages

Figure 25: Graphical Representation

MILs do not attempt to do the following [Prieto-Diaz 86]:

● Load compiled images. This function is left to a separate facility within the
development environment.

● Define system function. A MIL defines only the structure, not the function,
of a system.

● Provide type specifications. A MIL is concerned with showing or
identifying the separate paths of communication between modules.
Syntactic checks along these communications paths may be performed
by a MIL, but because MILs are independent of the language chosen to
implement the modules they reference, such type checking will be limited
to simple syntactic- not semantic- compatibility.

● Define embedded link-edit instructions.

Recently, MILs have been extended with notions of communication protocols
[Garlan 94] and with constructs for defining semantic properties of system
function. These extended MILs are referred to as Architecture Description
Languages (ADLs).

Usage Considerations

MILs were developed to address the need for automated integration support
when programming in the large; they are well-suited for representing the
structure of a system or family of systems, and are typically used for project
management and support. When adopting the use of MILs, an organization will
need to consider the effect on its current system development and maintenance
philosophy.

Because the structure of a software system can be explicitly represented in a
MIL specification, separate documentation describing software structure may be
unnecessary. This implies that if MILs are used to define the structure, then the
architectural documentation of a given system will not become outdated.

Although some support is provided for ensuring data type compatibility, MILs

http://www.sei.cmu.edu/str/descriptions/mil.html (3 of 7)7/28/2008 11:27:18 AM

Module Interconnection Languages

typically lack the structures required to define or enforce protocol compatibility
between modules, and the structures necessary to enforce semantic
compatibility.

Maturity

The MESA system at Xerox PARC was developed during 1975 and has been
used extensively within Xerox [Geschke 77, Mitchell 79, Prieto-Diaz 86]. Other
MILs have been proposed, defined, and implemented, but most of these appear
to have been within a research context. For example, MIL concepts have been
used to help design and build software reuse systems such as Goguen's library
interconnection language (LIL) that was extended by Tracz for use with
parameterized Ada components [Tracz 93]. Zand, et al., describe a system
called ROPCO that can be used to "facilitate the selection and integration of
reusable modules" [Zand 93].

At the time of publication, however, there are no tools supporting MILs and little
research in this area.1 Recent MIL-based research has shifted focus and now
centers around the themes of software reuse and architecture description
languages (ADLs). Architecture Description Languages can be viewed as
extended MILs in that ADLs augment the structural information of a MIL with
information about communication protocols [Garlan 94] and system behavior.

Costs and Limitations

MILs are formal compilable languages. Developers will need training to
understand and use a MIL effectively. Training in architectural concepts may
also be required.

The lack of a formal semantic for defining module function has at least the
following implications:

● Limited inter-module consistency checking. MIL-based consistency
checking is limited to simple type checking and- if supported- simple
protocol checking.

● Limited consistency checking among module versions. MILs lack the
facilities to ensure that different versions of a module satisfy a common
specification, and may potentially lead to inconsistent versions within a
family.

● Limited type checking. If mixing languages with a system, a developer
may need to augment standard MIL tools with more sophisticated type
checking utilities. For example, data types may be represented differently
in C than in Ada, but the simple type checking found in a typical MIL will
not flag unconverted value passing between languages.

Dependencies

Incremental compilers and linkers are required by most MILs.

http://www.sei.cmu.edu/str/descriptions/mil.html (4 of 7)7/28/2008 11:27:18 AM

Module Interconnection Languages

Alternatives

Alternatives to MILs include documenting the structure of a system externally,
such as in an interface control document or a structure chart. Architecture
Description Languages (ADLs) can also be used to define the structure of a
system, and are believed to be the current direction for this technology area.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Module Interconnection Languages

Application category Architectural Design (AP.1.3.1)
Compiler (AP.1.4.2.3)
Plan and Perform Integration (AP.1.4.4)

Quality measures category Correctness (QM.1.3)
Structuredness (QM.3.2.3)
Reusability (QM.4.4)

Computing reviews category Software Engineering Tools and Techniques
(D.2.2)
Organization and Design (D.4.7)
Performance (D.4.8)
Systems Programs and Utilities (D.4.9)

References and Information Sources

[Cooprider 79] Cooprider, Lee W. The Representation of Families of Software
Systems (CMU-CS-79-116). Pittsburgh, PA: Computer Science
Department, Carnegie Mellon University, 1979.

[DeRemer 76] DeRemer, F. & Kron, H. "Programming-in-the-Large Versus
Programming-in-the-Small." IEEE Transactions on Software
Engineering SE-2, 2 (June 1976): 321-327.

[Garlan 94] Garlan, David & Allen, Robert. "Formalizing Architectural
Connection," 71-80. Proceedings of the 16th International
Conference on Software Engineering. Sorrento, Italy, May 16-
21, 1994. Los Alamitos, CA: IEEE Computer Society Press,
1994.

http://www.sei.cmu.edu/str/descriptions/mil.html (5 of 7)7/28/2008 11:27:18 AM

Module Interconnection Languages

[Geschke 77] Geschke, C.; Morris, J.; & Satterthwaite, E. "Early Experience
with MESA." Communications of the ACM 20, 8 (August
1977): 540-553.

[Mitchell 79] Mitchell, J.; Maybury, W.; & Sweet, R. MESA Language
Manual (CSL-79-3). Palo Alto, CA: Xerox Palo Alto Research
Center, April 1979.

[Prieto-Diaz
86]

Prieto-Diaz, Ruben & Neighbors, James. "Module
Interconnection Languages." Journal of Systems and Software
6, 4 (1986): 307-334.

[Tichy 79] Tichy, W. F. "Software Development Control Based on
Module Interconnection," 29-41. Proceedings of the 4th
International Conference on Software Engineering. Munich,
Germany, September 17-19, 1979. New York, NY: IEEE
Computer Society Press, 1979.

[Tracz 93] Tracz, W. "LILEANNA: a Parameterized Programming
Language," 66-78. Proceedings of the Second International
Workshop on Software Reuse. Lucca, Italy, March 24-26, 1993.
Los Alamitos, CA: IEEE Computer Society Press, 1993.

[Zand 93] Zand, M., et al. "An Interconnection Language for Reuse at the
Template/Module Level." Journal of Systems and Software 23,
1 (October 1993): 9-26.

Current Author/Maintainer

Mark Gerken, Air Force Rome Laboratory

External Reviewers

Will Tracz, Lockheed Martin Federal Systems, Owego, NY

Modifications

10 Jan 97 (original)

Footnotes

1 Source: Will Tracz in Re: External Review - MILS, email to Bob Rosenstein
(1996).

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/mil_body.html

http://www.sei.cmu.edu/str/descriptions/mil.html (6 of 7)7/28/2008 11:27:18 AM

http://www.sei.cmu.edu/about/disclaimer.html

Module Interconnection Languages

Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/mil.html (7 of 7)7/28/2008 11:27:18 AM

Multi-Level Secure Database Management Schemes

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Multi-Level Secure Database Management Schemes

Status

Advanced

Note

We recommend Computer System Security--An Overview as prerequisite reading for this
technology description.

Purpose and Origin

Conventional database management systems (DBMS) do not recognize different security levels of
the data they store and retrieve. They treat all data at the same security level. Multi-level secure
(MLS) DBMS schemes provide a means of maintaining a collection of data with mixed security
levels. The access mechanisms allow users or programs with different levels of security clearance
to store and obtain only the data appropriate to their level.

Technical Detail

As shown in Figure 20, multi-level secure DBMS architecture schemes are categorized into two
general types:

● the Trusted Subject architecture
● the Woods Hole architectures

http://www.sei.cmu.edu/str/descriptions/mlsdms.html (1 of 6)7/28/2008 11:27:20 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/mlsdms_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Multi-Level Secure Database Management Schemes

Figure 20: MLS DBMS Schemes

The Woods Hole architectures are named after an Air Force-sponsored study on multi-level data
management security that was conducted at Woods Hole, Massachusetts.

The Trusted Subject architecture is a scheme that contains a trusted DBMS and operating system
(see Trusted Operating Systems). The DBMS is custom-developed with all the required security
policy (the security rules that must be enforced) developed in the DBMS itself. The DBMS uses the
associated trusted operating system to make actual disk data accesses. This is the traditional way
of developing MLS DBMS capabilities and can achieve high mandatory assurance for a particular
security policy at the sacrifice of some DBMS functionality [Abrams 95]. This scheme results in a
special purpose DBMS and operating system that requires a large amount of trusted code to be
developed and verified along with the normal DBMS features.Trusted code provides security
functionality and has been designed and developed using a rigorous process, tested, and protected
from tampering in a manner that ensures the Designated Approving Authority (DAA) that it performs
the security functions correctly. The DAA is the security official with the authority to say a system is
secure and is permitted to be used. A benefit of the trusted subject architecture is that the DBMS
has access to all levels of data at the same time, which minimizes retrieval and update processing.
This scheme also can handle a wide range of sensitivity labels and supports complex access
control. A sensitivity label identifies the classification level (e.g., confidential, secret) and a set of
categories or compartments that apply to the data associated with the label.

The Woods Hole architectures assume that an untrusted (usually commercial-off-the-shelf (COTS))
DBMS is used to access data and that trusted code is developed around that DBMS to provide an
overall secure DBMS system. The three different Woods Hole architectures address three different
ways to wrap code around the untrusted DBMS.

The Integrity Lock architecture scheme places a trusted front end filter between the users and the
DBMS. The filter provides security for the MLS. When data is added to the database, the trusted

http://www.sei.cmu.edu/str/descriptions/mlsdms.html (2 of 6)7/28/2008 11:27:20 AM

Multi-Level Secure Database Management Schemes

front end filter adds an encrypted integrity lock to each unit of data added to the database. The lock
is viewed by the DBMS as just another element in the unit stored by the DBMS. The encrypted lock
is used to assure that the retrieved data has not been tampered with and contains the security label
of the data. When data is retrieved, the filter decrypts the lock to determine if the data can be
returned to the requester. The filter is designed and trusted to keep users separate and to store and
provide data appropriate to the user. A benefit of this scheme is that an untrusted COTS DBMS can
perform most indexed data storage and retrieval.

The Kernalized architecture scheme uses a trusted operating system and multiple copies of the
DBMS; each is associated with a trusted front end. The trusted front end-DBMS pair is associated
with a particular security level. Between the DBMS and the database, a portion of the trusted
operating system keeps the data separated by security level. Each trusted front end is trusted to
supply requests to the proper DBMS. The database is separated by security level. The trusted
operating system separates the data when it is added to the database by a DBMS and combines
the data when it is retrieved (if allowed by the security rules it enforces for the requesting DBMS).
The high DBMS gets data combined from the high and low segments of the database. The low
DBMS can only get data from the low segment of the database. A benefit of this scheme is that
access control and separation of data at different classification levels is performed by a trusted
operating system rather than the DBMS. Data at different security levels is isolated in the database,
which allows for higher level assurance. Users interact with a DBMS at the user's single-session
level.

The Distributed architecture scheme uses multiple copies of the trusted front end and DBMS, each
associated with its own database storage. In this architecture scheme, low data is replicated in the
high database. When data is retrieved, the DBMS retrieves it only from its own database. A benefit
of this architecture is that data is physically separated into separate hardware databases. Since
separate replicated databases are used for each security level, the front end does not need to
decompose user query data to different DBMSs.

Castano and Abrams provide thorough discussions of these alternative architecture schemes and
their merits [Castano 95, Abrams 95].

Usage Considerations

This technology is most likely to be used when relational databases must be accessed by users
with different security clearances. This is typical of Command and Control systems. The different
architectures suit different needs. The Trusted Subject architecture is best for applications where
the trusted operating system and the hardware used in the architecture already provide an assured,
trusted path between applications and the DBMS [Castano 95]. The Integrity Lock architecture
provides the ability to label data down to the row (or record) level, the ability to implement a wide
range of categories, and is easiest to validate [Castano 95]. The Kernalized architecture scheme is
suited to MLS DBMS systems with more simple table structures because it is economical and
easier to implement for simple structures [Castano 95]. The Distributed architecture is best suited
for DBMSs where physical separation of data by security level is required [Abrams 95].

Maturity

The four different architectures have different maturity characteristics. As of August 1996, an R&D
A11 system and six commercial2 DBMSs have been implemented using the Trusted Subject
architecture scheme for different assurance levels and security policies. One R&D system and one
commercial DBMS have been implemented using the Integrity Lock architecture scheme. One R&D
system and one commercial DBMS have been implemented using the Kernalized architecture
scheme [Castano 95]. The Distributed architecture scheme has only been used in prototype

http://www.sei.cmu.edu/str/descriptions/mlsdms.html (3 of 6)7/28/2008 11:27:20 AM

Multi-Level Secure Database Management Schemes

systems because of the high performance cost of the replicater, although one commercial DBMS
claims to have this feature [Abrams 95]. This DBMS however, has not been evaluated by the
National Computer Security Center (NCSC) [TPEP 96].

Costs and Limitations

Each of the different MLS architecture schemes has different costs and limitations. The Trusted
Subject architecture scheme has a closely linked DBMS and Operating System that must be proven
trusted together. This makes it hardest to validate and gives it the highest accreditation cost
compared to the other schemes. The Integrity Lock architecture scheme requires that a Crypto Key
management system is implemented and supported in operation. The Kernalized architecture
requires a DBMS for each security level, which makes it expensive as more than two or three levels
are considered. The Distributed architecture requires a different hardware platform for each security
level and the data replicater provides a heavy processor and I/O load for high access data.

Dependencies

The MLS architecture schemes have individual dependencies. The Trusted Subject scheme is
dependent on trusted schemes for a related DBMS and operating system. The Integrity Lock
scheme is dependent on cryptographic technologies to provide the integrity lock. The Kernalized
architecture scheme depends on Trusted Operating Systems technologies. The Distributed
architecture scheme is dependent on efficient automatic data replication techniques.

Alternatives

The alternative to these technologies is to use a single-level DBMS and use manual review of
retrieved data or have every user cleared for the data in the database. That may not be feasible in a
Command and Control system.

Index Categories

This technology is classified under the following categories. Select a category for a list of related
topics.

Name of technology Multi-Level Secure Database Management Schemes

Application category Data Management Security (AP.2.4.2)

Quality measures category Security (QM.2.1.5)

Computing reviews category Operating Systems Security & Protection (D.4.6)
Security & Protection (K.6.5)
Computer-Communications Network Security and Protection (C.2.0)

References and Information Sources

http://www.sei.cmu.edu/str/descriptions/mlsdms.html (4 of 6)7/28/2008 11:27:20 AM

Multi-Level Secure Database Management Schemes

[Abrams 95] Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J. Information Security An
Integrated Collection of Essays. Los Alamitos, CA: IEEE Computer Society Press,
1995.

[Castano
95]

Castano, Silvana, et al. Database Security. New York, NY: ACM Press, 1995.

[DoD 85] Department of Defense (DoD) Trusted Computer System Evaluation Criteria
(TCSEC) (DoD 5200.28-STD 1985). Fort Meade, MD: Department of Defense, 1985.
Also available WWW
<URL: http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html> (1985).

[TPEP 96] Trusted Product Evaluation Program Evaluated Product List [online]. Available
WWW
<URL: http://www.radium.ncsc.mil/tpep/index.html> (1996).

Current Author/Maintainer

Tom Mills, Lockheed Martin

Modifications

10 Jan 97 (original)

Footnotes

1 An A1 system is one that meets the highest (most stringent) set of requirements in the
Department of Defense Trusted Computer Systems Evaluation Criteria (the Orange Book) [DoD
85]. See Trusted Operating Systems for a further description of the classes of trusted operating
systems.

2 A commercial DBMS does not imply a general-purpose DBMS. It means that it can be packaged
and sold to other people. If a MLS DBMS has been developed to provide specific security functions
that customers need, and the customer is willing to be restricted to that set of functions and use the
same hardware and support software, then it can be sold as a product. It is then a commercial
DBMS. The six commercial DBMSs that have been implemented with the Trusted Subject
architecture are all different from each other, as they have been developed with different security
policies for different hardware and software environments.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the U.S.
Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/mlsdms_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

http://www.sei.cmu.edu/str/descriptions/mlsdms.html (5 of 6)7/28/2008 11:27:20 AM

http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html
http://www.radium.ncsc.mil/tpep/index.html
http://www.sei.cmu.edu/about/disclaimer.html

Multi-Level Secure Database Management Schemes

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/mlsdms.html (6 of 6)7/28/2008 11:27:20 AM

Black-box Modernization of Information Systems

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Black-box Modernization of Information Systems

Status

Draft

Note

We recommend Maintenance of Operational Systems--An Overview as prerequisite reading
for this technology description.

Purpose and Origin

The criticality of enterprise information systems (EISs) in today's businesses requires
organizations to manage system evolution as business practices change and new
information technologies providing competitive advantage become available. EIS evolution
becomes more difficult with time as systems are repeatedly modified and become
increasingly outdated. Managing the evolution of outdated systems requires periodically
modernizing these legacy systems to support evolving business practices and to incorporate
modern information technologies.

System evolution is a broad term that covers a continuum, ranging from adding a field in a
database to completely re-implementing a system. These system evolution activities can be
divided into three categories [Weiderman 97]: maintenance, modernization, and
replacement. Figure 1 illustrates how different evolution activities are applied at different
phases of the operational system lifecycle. The dotted line represents growing business
needs while the solid line represents the functionality provided by the information system.
Repeated system maintenance supports the business needs sufficiently for a time, but as
the system becomes increasingly outdated, maintenance falls behind the business needs. A
modernization effort is then required that represents a greater effort, both in time and
functionality, than the maintenance activity. Finally, when the old system can no longer be
evolved, it must be replaced.

http://www.sei.cmu.edu/str/descriptions/blackbox.html (1 of 8)7/28/2008 11:27:21 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/blackbox_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Black-box Modernization of Information Systems

Figure 1 Information System Lifecycle

This description focuses on one phase in the life of a system: modernization. Modernization
involves more extensive changes than maintenance, but conserves a significant portion of
the existing system. These changes often include system restructuring, important functional
enhancements, or new software attributes. Modernization is used when a legacy system
requires more pervasive changes than previously possible during maintenance, but still
embodies business value that must be preserved.

Technical Detail

System modernization can be classified by the level of system understanding required to
support the modernization effort [Weiderman 97]. Modernization that requires knowledge of
the internals of a legacy system is called white-box modernization, while modernization that
only requires knowledge of the external interfaces of a legacy system is called black-box
modernization. We concentrate on black-box (or non-intrusive) modernization techniques
because they provide a useful way to leverage the existing investment in the legacy systems
with limited effort.

Black-box modernization technologies possess various goals, strengths, and weaknesses.
However, all are based on a similar approach consisting of wrapping the interface exported
by the legacy system with a new, more homogeneous and usable interface. Wrapping, or
encapsulation, is a technique to remove mismatches between the interface exported by a
software artifact and the interfaces required by current integration practices [Weiderman 97].
Enumerated below are several of the most extended, non-intrusive modernization
techniques in the market.

Screen scraping

A common technique for user interface (UI) modernization is screen scraping. Screen
scraping [Carr 98], as shown in Figure 2, consists of wrapping old, text-based interfaces with
new graphical interfaces. The old interface is often a set of text screens running in a
terminal. In contrast, the new interface can be a PC-based, graphical user interface (GUI),
or even a hypertext markup language (HTML) light client running in a Web browser. This
technique can be extended easily, enabling one new UI to wrap a number of legacy
systems. The new graphical interface communicates with the old one using a specialized
commercial tool.

http://www.sei.cmu.edu/str/descriptions/blackbox.html (2 of 8)7/28/2008 11:27:21 AM

Black-box Modernization of Information Systems

Figure 2 Legacy System Wrapping Using Screen Scraping

XML Wrapping

The Extensible Markup Language (XML™) is a broadly adopted format for structured
documents and data on the Web. XML is a simple and flexible text format derived from
standard generalized markup language (SGML) (ISO 8879) and developed by the World
Wide Web Consortium® (W3C). XML is expanding from its origin in document processing
and becoming a solution for data integration [Karpinski 98].

The keystone in the XML wrapping architecture is the XML server (Figure 3). The XML
server acts as the contact point between the corporate infrastructure and the rest of the
world. The XML server communicates by various means with the internal infrastructures
including Enterprise Resource Planning (ERP) systems, databases, Electronic Data
Interchange (EDIs), and other legacy systems. The XML server also interoperates with
external organization by exchanging XML messages. There is an active market of solutions
for non-intrusive integration of legacy infrastructures into XML servers. In addition, most
commercial XML servers support multiple communication protocols enabling cost-effective
integration with common legacy applications.

http://www.sei.cmu.edu/str/descriptions/blackbox.html (3 of 8)7/28/2008 11:27:21 AM

Black-box Modernization of Information Systems

Figure 3 XML Integration

CGI integration

The Common Gateway Interface (CGI) is a standard for interfacing external applications
with information servers, such as HTTP or Web servers. Legacy integration using the CGI
[Shklar] [Eichman 95] is often used to provide fast Web access to existing assets including
mainframes and transaction monitors. As in screen scraping, a new graphical user interface
(in this case always HTML pages) is created, but instead of wrapping the old user interface,
the new GUI communicates directly with the core business logic or data of the legacy
system.

A typical CGI access configuration is shown in Figure 4. A Web server, powered with a CGI
extension to access legacy systems, invokes a function in the legacy system and generates
HTML pages to be served to remote browsers. Although not depicted in the figure, CGI is
used to access legacy data in addition to the logic.

Figure 4 Legacy System Wrapping Using CGI Extensions

Object-Oriented Wrapping

Objects have been used to implement complex software systems successfully. Object-
oriented (OO) systems can be designed and implemented in a way that closely resembles
the business processes they model [Phoenix Group]. Additionally, the use of abstraction,
encapsulation, inheritance, and other object-oriented techniques make object-oriented
systems easier to understand.

The conceptual model of object-oriented wrapping is deceptively simple: individual
applications are represented as objects; common services are represented as objects; and
business data is represented as objects. In reality, object-oriented wrapping is far from
simple and involves several tasks including code analysis, decomposition, and abstraction
of the OO model. The project ERCOLE (Encapsulation, Reengineering, and Coexistence of
Object with Legacy) describes an exemplifying process to wrap legacy applications with OO
systems [De Lucia 97].

Usage Considerations

http://www.sei.cmu.edu/str/descriptions/blackbox.html (4 of 8)7/28/2008 11:27:21 AM

Black-box Modernization of Information Systems

We have presented several techniques to support legacy system modernization. It would be
naive to affirm any of these techniques as superior to the others. Each presented technique
has strengths, weaknesses, and tradeoffs between cost, flexibility, and other variables.
Table 1 summarizes the discussions of each presented technique.

Artifact
Modernized

Target Strengths Weaknesses

Screen
Scraping

Text-based
user interface

Graphical or
web-based
user interface

● Cost
● Time to

market
● Internet

support

● Flexibility
● Limited impact

on maintainability

XML
Wrapping

Proprietary
access
protocol

XML server

● Flexibility
● Tool support

(future)
● B2B

● Tool support
(present)

● Evolving
technology

CGI
Integration

Mainframe
Data or TM
services

HTML pages
● Cost
● Internet

support

● Flexibility
● Applicability

OO
Wrapping

Any
Enterprise
Resource

OO Model ● Flexibility ● Cost

Table 1 Comparison of Integration Techniques

Maturity

Screen scraping, CGI Integration and OO wrapping are mature technologies widely used
and with multiple fielded systems. XML wrapping is newer and consequently less mature.
However, XML technology is gaining momentum as XML vocabularies emerge in specific
business domains such as finance, supply chains and e-commerce. In addition, a growing
number of commercial enterprise application solutions are embracing XML.

Dependencies

Screen scraping, XML wrapping, CGI Integration and OO wrapping require some sort of
middleware to connect the wrapper with the legacy system and the wrapper with the user
entities. In the case of OO wrapping this middleware is often an Object Request Broker like
the Common Object Request Broker Architecture (CORBA), or the Component Object
Model (COM).

http://www.sei.cmu.edu/str/descriptions/blackbox.html (5 of 8)7/28/2008 11:27:21 AM

Black-box Modernization of Information Systems

Alternatives

In some occasions, black-box modernization is not viable. This can be the case, for
example, when the legacy interface is so cryptic that it cannot be understood without a
previous examination of the legacy system internals. In those cases we need a more
pervasive, white-box approach. White-box modernization requires an initial reverse
engineering process to gain an understanding of the internal system operation. After the
code is analyzed and understood, white-box modernization often includes some system or
code restructuring.

Replacement (AKA big bang approach or cold turkey) [Bisdal 97] is appropriate for legacy
systems that cannot keep pace with business needs and for which any kind of
modernization is not possible or cost effective. Replacement is normally used with systems
that are undocumented, outdated, or not extensible.

Complementary Technologies

Screen scraping can benefit by using Graphical User Interface Builders to generate the new
graphical screens.

When deciding between modernization and system replacement the Maintainability Index
Technique can provide insight into how fragile the system has become after repeated
modifications.

Index Categories

This technology is classified under the following categories. Select a category for a list of
related topics.

Name of technology Black-box Modernization of Information Systems

Application category Adaptive Maintenance (AP.1.9.3.2)
Perfective Maintenance (AP 1.9.3.3)

Quality measures category Maintainability (QM.3.1)
Interoperability (QM.4.1)
Reusability (QM.4.4)

Computing reviews category Software Engineering Distribution and Maintenance (D.2.7)
Software Engineering Management (D.2.9)

References and Information Sources

http://www.sei.cmu.edu/str/descriptions/blackbox.html (6 of 8)7/28/2008 11:27:21 AM

Black-box Modernization of Information Systems

[Bisdal 97] Bisdal, Jesus; Lawless, Deirdre; Wu, Bing; Grimson, Jane; Wade, Vincent;
Richardson, Ray; & O'Sullivan, D. An Overview of Legacy Information
System Migration, Proceedings of the 4th Asian-Pacific Software Engineering
and International Computer Science Conference (APSEC 97, ICSC 97), 1997.

[Carr 98] Carr, David F. Web-Enabling Legacy Data When Resources Are Tight.
Internet World. August 10 1998.

[Comella-Dorda 00] Comella-Dorda, Santiago; Wallnau, Kurt; Seacord, Robert C.; Robert, John.
Survey of Legacy System Modernization Approaches, A (CMU/SEI-00-TR-
003). Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon
University [online]. Available WWW: URL: http://www.sei.cmu.edu/
publications/documents/
00.reports/00tn003.html (2000).

[De Lucia 97] De Lucia, A.; Di Lucca, G.A.; Fasolino, A.R.; Guerra, P.; & Petruzzelli, S.
Migrating Legacy Systems towards Object-Oriented Platforms, International
Conference of Software Maintenance (ICSM97), 1997.

[Eichman 95] David Eichmann. Application Architectures for Web-Based Data Access
[online]. Available WWW: URL: http://www.cs.rutgers.edu/~shklar/www4/
eichmann.html

[Karpinski 98] Karpinski, Richard. Databases, Tools Push XML Into Enterprise. Internet
Week Online. Available WWW URL: http://www.internetwk.com/news1198/
news111698-3.htm (November 1998).

[Phoenix Group 97] Phoenix Group. Legacy Systems Wrapping with Objects [online]. Available
WWW URL: http://www.phxgrp.com/jodewp.htm.

[Shklar] Shklar, Leon. Web Access to Legacy Data [online]. Available WWW: URL:
http://athos.rutgers.edu/~shklar/web-legacy/summary.html.

[Weiderman 97] Weiderman, Nelson; Northrop, Linda; Smith, Dennis; Tilley, Scott; &
Wallnau, Kurt; Implications of Distributed Object Technology for
Reengineering (CMU/SEI-97-TR-005 ADA326945). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, [online]. Available WWW
URL: http://www.sei.cmu.edu/publications/documents/
97.reports/97tr005/97tr005abstract.html (1997).

Current Author/Maintainer

Santiago Comella-Dorda, SEI

http://www.sei.cmu.edu/str/descriptions/blackbox.html (7 of 8)7/28/2008 11:27:21 AM

http://www.sei.cmu.edu/publications/documents/00.reports/00tn003.html
http://www.sei.cmu.edu/publications/documents/00.reports/00tn003.html
http://www.sei.cmu.edu/publications/documents/00.reports/00tn003.html
http://www.cs.rutgers.edu/~shklar/www4/eichmann.html
http://www.cs.rutgers.edu/~shklar/www4/eichmann.html
http://www.internetwk.com/news1198/news111698-3.htm
http://www.internetwk.com/news1198/news111698-3.htm
http://www.phxgrp.com/jodewp.htm
http://athos.rutgers.edu/~shklar/web-legacy/summary.html
http://www.sei.cmu.edu/publications/documents/97.reports/97tr005/97tr005abstract.html
http://www.sei.cmu.edu/publications/documents/97.reports/97tr005/97tr005abstract.html
http://www.sei.cmu.edu/publications/documents/97.reports/97tr005/97tr005abstract.html

Black-box Modernization of Information Systems

External Reviewers

Robert C. Seacord, SEI

Modifications

20 Mar 2001: Original

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by
the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/blackbox_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/blackbox.html (8 of 8)7/28/2008 11:27:21 AM

http://www.sei.cmu.edu/about/disclaimer.html

Capability Maturity Model Integration (CMMI)

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Capability Maturity Model Integration (CMMI)

Status

Complete

Purpose and Origin

The purpose of Capability Maturity Model (CMM®) IntegrationSM is to provide
guidance for improving an organization's processes and its ability to manage the
development, acquisition, and maintenance of products and services. CMM
Integration places proven practices into a structure that helps an organization
assess its organizational maturity and process area capability, establish priorities
for improvement, and guide the implementation of these improvements.

CMM Integration was conceived to sort out the problem of using multiple
Capability Maturity Models (CMMs). Three source models&emdash;(1)
Capability Maturity Model for Software (SW-CMM) v2.0 draft C, (2) Electronic
Industries Alliance/Interim Standard (EIA/IS) 731, and (3) Integrated Product
Development Capability Maturity Model (IPD-CMM) v0.98&emdash;were
combined into a single model to be used in enterprise-wide process
improvement and integration activities.

A common framework to support the future integration of other discipline-specific
CMMI models was developed. In addition, all CMMI products were developed to
be consistent and compatible with the International Organization for
Standardization/International Electrotechnical Commission (ISO/IEC) 15504
technical report for software process assessment.

Like other CMMs, CMMI models provide guidance for organizations to use when
they develop or revise their processes. CMMI models are not processes or
process descriptions. The actual processes used in an organization depend on
many factors, including application domain(s) and organization structure and
size.

The companion assessment method developed thus far for CMMI models is the
Standard CMMI Assessment Method for Process Improvement (SCAMPI). This
method is based on the CMM-Based Appraisal for Internal Process Improvement
(CBA IPI) V1.1 assessment method and the Electronic Industries Alliance/
Interim Standard (EIA/IS) 731.2 Appraisal Method. SCAMPI satisfies the
Assessment Requirements for CMMI (ARC) V1.0.

http://www.sei.cmu.edu/str/descriptions/cmmi.html (1 of 7)7/28/2008 11:27:22 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/cmmi_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Capability Maturity Model Integration (CMMI)

The SCAMPI method is a diagnostic tool that supports, enables, and
encourages an organization's commitment to process improvement. The method
helps an organization gain insight into its process area capability and
organizational maturity by identifying strengths and weaknesses of its current
processes relative to one or more of the CMMI models, including the Capability
Maturity Model&emdash;Integrated for Systems Engineering and Software
Engineering (CMMI-SE/SW).

Technical Detail

The phrase "CMM Integration" refers to a concept that has translated into a
group of products called the CMMI Product Suite. This product suite consists of
the CMMI Framework, CMMI models, an assessment method, and training
materials.

Each CMMI model, because it is developed within the CMMI Framework and
therefore has the architectural requirements of the framework, is designed to be
used in concert with other CMMI models. Each model consists of required,
expected, and informational elements that aid those pursuing process
improvement in their organization.

An organization may choose to approach process improvement from either a
process area capability perspective or an organizational maturity perspective.
This decision influences the organization's choice of model representation they
will use. The continuous representation supports the process area capability
approach; whereas the staged representation supports the organizational
maturity approach. The differences between these representations are mainly
architectural (i.e., how the practices are organized and which are selected for
emphasis). However, these differences imply advantages to using one
representation over another depending on the organization's approach to
process improvement.

Each CMMI model consists of an overview section, process areas, and
appendixes. Organizations using a model for process improvement will primarily
use the contents of the process areas to guide their improvement efforts. Each
process area is a group of related best practices organized into elements such
as the purpose, introductory notes, specific goals, generic goals, specific
practices, generic practices, subpractices, work products, generic practice
elaborations, and discipline amplifications.

The assessment method currently available for use with CMMI models is the
Standard CMMI Assessment Method for Process Improvement (SCAMPI).
Although SCAMPI is the only assessment method currently available, the intent
is to support development of several different assessment methods that differ in
cost, time to execute, and rigor. All assessment methods must conform to
appropriate clauses of the most current Assessment Requirements for CMMI
(ARC). To help ensure useful and credible results are obtained from SCAMPI
assessments, a certification and authorization process has been developed for
SCAMPI lead assessors.

CMMI training courses are also available. Introductory courses for the CMMI

http://www.sei.cmu.edu/str/descriptions/cmmi.html (2 of 7)7/28/2008 11:27:22 AM

Capability Maturity Model Integration (CMMI)

model (either staged or continuous representation), an Intermediate Concepts of
CMMI course, SCAMPI Lead Assessor Training, and a SCAMPI Lead Assessor
Upgrade Training are currently available

Usage Considerations

There are two basic transition scenarios to the CMMI Product Suite. The first
assumes an organization has begun its improvement efforts using either the
Software CMM or the EIA/IS 731. The second scenario assumes that an
organization has not used either the SW-CMM or EIA/IS 731 reference model for
its improvement efforts, or that there have been no improvement efforts to date.

Those organizations that fall into scenario one may need to decide the best
timing for transition to preserve the value of their existing plans toward, for
example, a particular maturity level achievement. Organizations may also wish
to consider the versatility offered by the continuous and staged representations
in planning their long-term process improvement strategy. If the costs of total
transition appear high, an interim strategy might be to augment the current plan
with selected process areas having greatest business value. In any case, the
current improvement effort will not be wasted, as the content of the CMMI
models was carefully selected and derived from that of the Software CMM and
EIA/IS 731.

Those organizations that fall into scenario two may have process improvement
efforts under other quality initiatives such as ISO 9000 or Malcolm Baldrige.
Such organizations can leverage their process improvement infrastructure and
investment to more rapidly adopt the CMMI Product Suite. They also gain a
reference model of effective practices that can be applied&emdash;across the
value chain&emdash;to enhance the development of software-intensive products
and associated services.

These organizations may wish to begin by considering whether approaching
improvement is better served by emphasizing process area capability or
organizational maturity. Each approach is complementary. A focus on process
area capability allows the building of organizational maturity, and a focus on
organizational maturity allows concentration on particular process area
capabilities. Neither is mutually exclusive, but the choice will determine which
representation of the model (continuous or staged) will best fit the needs of the
organization for training and assessment.

Once a representation is chosen, planning can begin with an improvement
strategy such as the IDEAL (initiating, diagnosing, establishing, acting, learning)
model. Given sufficient senior management sponsorship, establishing a specific,
technically competent group to guide and coordinate process improvement
efforts has proven to be a best practice.

Regardless of scenario, training is a key element in the ability of any
organization to adopt CMMI and is therefore a key part of the CMMI Product
Suite. While an initial set of courses is provided by the SEI and its transition
partners, organizations may wish to supplement these courses with internal
instruction. This approach allows the focus of organizational attention to be

http://www.sei.cmu.edu/str/descriptions/cmmi.html (3 of 7)7/28/2008 11:27:22 AM

Capability Maturity Model Integration (CMMI)

placed on the areas marked for greater attention due to their linkage to the
product development value chain.

Maturity

CMMI is established technology evolved to a new level that enables the
continued growth and expansion of the CMM technology to multiple disciplines.
The CMMI Product Suite is new, Version 1.0 was released in August 2000.
Integrated Product and Process Development (IPPD) was added in October
2000. Acquisition has been added to the CMMI Product Suite in draft form and is
currently under public review. In late 2001, an updated version of the
management, software engineering, systems engineering, and IPPD
components of the model will be available as Version 1.1.

The model is in excellent condition for its intended role as a tool to stimulate
enterprise-wide process improvement. Nevertheless, there remains a need to
use such process tools to benchmark process area capability and organizational
maturity. Refinements from actual use will be made to the model, just as
refinements were made to the Software CMM when it was introduced. Thus,
CMMI long-term plans include updates to the model that are designed to capture
needed improvements to ensure that CMMI models continue to provide a rich
usable set of best practices that can be the basis for accurate and reliable
process assessments.

Costs and Limitations

Successful process improvement initiatives must be driven by the business
objectives of the organization. Thus, process improvement objectives are
derived from the business objectives. Process improvement objectives identify
the processes and their outcomes that the organization wishes to improve.

Process improvement is a significant undertaking that requires senior-level
management sponsorship and a firm commitment of resources to be successful.
Further, it is a long-term commitment for the organization that cannot be
approached and accomplished quickly.

The costs vary depending on the organization and its goals. However, the
support of process improvement requires some additions to the organizational
structure, such as an engineering process group.

Complementary Technologies

Complementary process improvement technologies include process
improvement reference models such as SW-CMM, EIA/IS 731, IPD-CMM, and
other CMMs (e.g., FAA-iCMM, SA-CMM, People CMM) as well as systems
engineering and software engineering standards such as ISO 9000, ISO 12207,
ISO 15504, and ISO 15288. The IDEAL (initiating, diagnosing, establishing,
acting, learning) model is another related technology that characterizes process
improvement as a sequence of life cycle activities beginning with obtaining
senior management commitment and continuing through leveraging what has

http://www.sei.cmu.edu/str/descriptions/cmmi.html (4 of 7)7/28/2008 11:27:22 AM

Capability Maturity Model Integration (CMMI)

been learned from deployed improvements to feed into a new cycle of process
improvement. IDEAL enables organizations to use a variety of reference models
for improvement.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Capability Maturity Model Integration (CMMI)

Application category Used to Support Operational Systems (AP.1)

Quality measures category Need Satisfaction Measures (QM.1)
Performance Measures (QM.2)
Maintenance Measures (QM.3)
Adaptive Measures (QM.4)
Organizational Measures (QM.5)

Computing reviews category Software Management (K.6.3)

References and Information Sources

CMMI Product Development Team. CMMI -SE/SW, V1.0 Capability Maturity
Model&endash;Integrated for Systems Engineering/Software Engineering,
Version 1.0 Staged Representation (CMU/SEI-2000-TR-018). Pittsburgh, Pa.:
Software Engineering Institute, Carnegie Mellon University, Available WWW
<URL: http://www.sei.cmu.edu/publications/documents/00.reports/00tr018.html >
August 2000.

CMMI Product Development Team. CMMI -SE/SW, V1.0 Capability Maturity
Model&endash;Integrated for Systems Engineering/Software Engineering,
Version 1.0 Continuous Representation (CMU/SEI-2000-TR-019). Pittsburgh,
Pa.: Software Engineering Institute, Carnegie Mellon University, Available WWW
<URL: http://www.sei.cmu.edu/publications/documents/00.reports/00tr019.html >
August 2000.

CMMI Product Development Team. Assessment Requirements for CMMI (ARC):
Method Description (CMU/SEI-2000-TR-011). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, Available WWW <URL: http://
www.sei.cmu.edu/publications/documents/00.reports/00tr011.html > August
2000.

CMMI Product Development Team. Standard CMMI Assessment Method for
Process Improvement (SCAMPI) Method Description, Version 1.0 (CMU/SEI-

http://www.sei.cmu.edu/str/descriptions/cmmi.html (5 of 7)7/28/2008 11:27:22 AM

http://www.sei.cmu.edu/publications/documents/00.reports/00tr018.html
http://www.sei.cmu.edu/publications/documents/00.reports/00tr019.html
http://www.sei.cmu.edu/publications/documents/00.reports/00tr011.html
http://www.sei.cmu.edu/publications/documents/00.reports/00tr011.html

Capability Maturity Model Integration (CMMI)

2000-TR-009). Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon
University, Available WWW <URL: http://www.sei.cmu.edu/publications/
documents/00.reports/00tr009.html > October 2000.

CMMI Official Web Site. Available WWW <URL: http://www.sei.cmu.edu/cmmi/>,
August, 2000.

Dunaway, D. & Masters, S. CMM-Based Appraisal for Internal Process
Improvement (CBA IPI): Method Description (CMU/SEI-96-TR-007). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University, April 1996.

Electronic Industries Association. Systems Engineering Capability Model (EIA/IS-
731). Washington, D.C.: Electronic Industries Association, 1998. Available
WWW <URL: http://geia.org/sstc/G47/page6.htm >

Paulk, M. C., Weber, C. V., Curtis, B., & Chrissis, M. B. The Capability Maturity
Model: Guidelines for Improving the Software Process, (SEI series in software
engineering.) Addison-Wesley Publishing Company, Inc. 1995.

Software Engineering Institute. Software CMM, Version 2 (Draft C). Available
WWW <URL: http://www.sei.cmu.edu/cmm/draft-c/c.html>, Oct. 22, 1997.

Software Engineering Institute. CMMI A-Specification, Version 1.4 Available
WWW <URL: http://www.sei.cmu.edu/cmmi/org-docs/aspec1.4.html >, April 19,
1999.

Current Author/Maintainer

Sandy Shrum, SEI
Mike Konrad, SEI

External Reviewers

Dennis Ahern, Northrop Grumman
Mike Phillips, SEI
Bill Peterson, SEI

Modifications

20 Mar 2001: Update
10 Oct 2000: Original

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use

http://www.sei.cmu.edu/str/descriptions/cmmi.html (6 of 7)7/28/2008 11:27:22 AM

http://www.sei.cmu.edu/publications/documents/00.reports/00tr009.html
http://www.sei.cmu.edu/publications/documents/00.reports/00tr009.html
http://www.sei.cmu.edu/cmmi/
http://geia.org/sstc/G47/page6.htm
http://www.sei.cmu.edu/cmm/draft-c/c.html
http://www.sei.cmu.edu/cmmi/org-docs/aspec1.4.html
http://www.sei.cmu.edu/about/disclaimer.html

Capability Maturity Model Integration (CMMI)

URL: http://www.sei.cmu.edu/str/descriptions/cmmi_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/cmmi.html (7 of 7)7/28/2008 11:27:22 AM

Cleanroom Software Engineering

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Cleanroom Software Engineering

Status

Complete

Purpose and Origin

Cleanroom software engineering is an engineering and managerial process for
the development of high-quality software with certified reliability. Cleanroom was
originally developed by Dr. Harlan Mills [Linger 94, Mills 87]. The name
"Cleanroom" was taken from the electronics industry, where a physical clean
room exists to prevent introduction of defects during hardware fabrication.
Cleanroom software engineering reflects the same emphasis on defect
prevention rather than defect removal, as well as certification of reliability for the
intended environment of use.

Technical Detail

The focus of Cleanroom involves moving from traditional, craft-based software
development practices to rigorous, engineering-based practices. Cleanroom
software engineering yields software that is correct by mathematically sound
design, and software that is certified by statistically-valid testing. Reduced cycle
time results from an incremental development strategy and the avoidance of
rework.

It is well-documented that significant differences in cost are associated with
errors found at different stages of the software life cycle. By detecting errors as
early as possible, Cleanroom reduces the cost of errors during development and
the incidence of failures during operation; thus the overall life cycle cost of
software developed under Cleanroom can be expected to be far lower than
industry average.

The following ideas form the foundation for Cleanroom-based development:

● Incremental development under statistical quality control (SQC).
Incremental development as practiced in Cleanroom provides a basis for
statistical quality control of the development process. Each increment is a
complete iteration of the process, and measures of performance in each

http://www.sei.cmu.edu/str/descriptions/cleanroom.html (1 of 7)7/28/2008 11:27:23 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/cleanroom_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Cleanroom Software Engineering

increment (feedback) are compared with preestablished standards to
determine whether or not the process is "in control." If quality standards
are not met, testing of the increment ceases and developers return to the
design stage.

● Software development based on mathematical principles. In Cleanroom
development, a key principle is that a computer program is an expression
of a mathematical function. The Box Structure Method is used for
specification and design, and functional verification is used to confirm that
the design is a correct implementation of the specification. Therefore, the
specification must define that function before design and functional
verification can begin. Verification of program correctness is performed
through team review based on correctness questions. There is no
execution of code prior to its submission for independent testing.

● Software testing based on statistical principles. In Cleanroom, software
testing is viewed as a statistical experiment. A representative subset of all
possible uses of the software is generated, and performance of the
subset is used as a basis for conclusions about general operational
performance. In other words, a "sample" is used to draw conclusions
about a "population." Under a testing protocol that is faithful to the
principles of applied statistics, a scientifically valid statement can be
made about the expected operational performance of the software in
terms of reliability and confidence.

Benefits of Cleanroom include significant improvements in correctness,
reliability, and understandability. These benefits usually translate into a reduction
in field-experienced product failures, reduced cycle time, ease of maintenance,
and longer product life.

Usage Considerations

Cleanroom has been documented to be very effective in new development and
reengineering (whole system or major subunits) contexts. The following
discussion highlights areas where Cleanroom affects or differs from more
conventional practice:

● Team-based development. A Cleanroom project team is small, typically
six to eight persons, and works in a disciplined fashion to ensure the
intellectual control of work in progress. Cleanroom teamwork involves
peer review of individual work, but does not supplant individual creativity.
Once the system architecture has been established and the interfaces
between subunits have been defined, individuals typically work alone on a
given system component. Individual designs are working drafts that are
then reviewed by the team. In a large project, multiple small teams may
be formed, with one for the development of each subsystem, thus
enabling concurrent engineering after the top-level architecture has been
established.

● Time allocation across life cycle phases. Because one of the major
objectives of Cleanroom is to prevent errors from occurring, the amount of
time spent in the design phase of a Cleanroom development is likely to be
greater than the amount of time traditionally devoted to design.

http://www.sei.cmu.edu/str/descriptions/cleanroom.html (2 of 7)7/28/2008 11:27:23 AM

Cleanroom Software Engineering

Cleanroom, however, is not a more time-consuming development
methodology, but its greater emphasis on design and verification often
yields that concern. Management understanding and acceptance of this
essential point- that quality will be achieved by design rather than through
testing- must be reflected in the development schedule. Design and
verification will require the greatest portion of the schedule. Testing may
begin later and be allocated less time than is ordinarily the case. In large
Cleanroom projects, where historical data has enabled comparison of
traditional and Cleanroom development schedules, the Cleanroom
schedule has equaled or improved upon the usual development time.

● Existing organizational practices. Cleanroom does not preclude using
other software engineering techniques as long as they are not
incompatible with Cleanroom principles. Implementation of the Cleanroom
method can take place in a gradual manner. A pilot project can provide an
opportunity to "tune" Cleanroom practices to the local culture, and the
new practices can be introduced as pilot results to build confidence
among software staff.

Maturity

Initial Cleanroom use within IBM occurred in the mid to late 80s, and project use
continues to this day. Defense demonstration projects began approximately
1992. Cleanroom has been used on a variety of commercial and defense
projects for which reliability was critically important. Some representative
examples include the following:

● IBM COBOL/SF product, which has required only a small fraction of its
maintenance budget during its operating history [Hausler 94].

● Ericsson OS-32 operating system project, which had a 70% improvement
in development productivity, a 100% improvement in testing productivity,
and a testing error rate of 1.0 errors per KLOC (represents all errors
found in all testing) [Hausler 94].

● USAF Space Command and Control Architectural Infrastructure (SCAI)
STARS 1 Demonstration Project at Peterson Air Force Base in Colorado
Springs, CO. In this project, Cleanroom was combined with the TRW
(spiral) Ada Process Model and some generated and reused code to
produce software at a rate of $30-40 per line of code versus industry
averages of $130 per line for software of similar complexity and
development timeframe (the size of the application is greater than 300
KLOC) [STARSSCAI 95].

● US Army Cleanroom project in the Tank-automotive and Armaments
Command at the U.S. Army Picatinny Arsenal. After seven project
increments (approximately 90K lines of code), a 4.2:1 productivity
increase and a 20:1 return on investment has been documented [Sherer
96a, Sherer 96b]. This project experienced an overall testing error rate
(represents all errors found in all testing) of 0.5 errors/KLOC.

In 1995-1996, tools supporting various aspects of the Cleanroom process
became commercially available.

http://www.sei.cmu.edu/str/descriptions/cleanroom.html (3 of 7)7/28/2008 11:27:23 AM

Cleanroom Software Engineering

Costs and Limitations

Using Cleanroom to accomplish piecemeal, isolated changes to a system not
developed using Cleanroom is not considered an effective use of this
technology. Training is required and commercially available. Available courses
range from overviews to a detailed focus on particular aspects of Cleanroom.
For some training classes, it is most productive if software managers and
technical staff take the training together. Managers need a thorough
understanding of Cleanroom imperatives, and a core group of practitioners
needs sufficient orientation in Cleanroom practices to be able to adapt the
process to the local environment (this includes establishing a local design
language, local verification standards, etc.).

Complementary Technologies

Cleanroom and object-oriented methods. A study/analysis of Cleanroom and
three major object-oriented methods: Booch, Objectory, and Shlaer-Mellor (see
Object-Oriented Analysis), found that combining object-oriented methods (known
for their focus on reusability) with Cleanroom (with its emphasis on rigor,
formalisms, and reliability) can define a process capable of producing results
that are not only reusable, but also predictable and of high quality. Thus object-
oriented methods can be used for front-end domain analysis and Cleanroom can
be used for life-cycle application engineering [Ett 96].

Cleanroom and the Capability Maturity Model (CMM). A cleanroom
Reference Model [Linger 96b] (a set of Cleanroom Processes for software
management, specification, design, and certification) and a detailed mapping of
Cleanroom to the CMM for Software [Linger 96a] have been created. The
mapping shows that Cleanroom and the CMM [Paulk 93] are fully compatible
and mutually reinforcing.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Cleanroom Software Engineering

Application category Detailed Design (AP.1.3.5),
Component Testing (AP.1.4.3.5),
System Testing (AP.1.5.3.1),
Performance Testing (AP.1.5.3.5),
Reengineering (AP.1.9.5)

http://www.sei.cmu.edu/str/descriptions/cleanroom.html (4 of 7)7/28/2008 11:27:23 AM

Cleanroom Software Engineering

Quality measures category Correctness (QM.1.3),
Reliability (QM.2.1.2),
Understandability (QM.3.2),
Availability (QM.2.1.1),
Maintainability (QM.3.1)

Computing reviews category Software Engineering Design (D.2.10)

References and Information Sources

[Cleanroom 96] Cleanroom Tutorial [online]. Available WWW
<URL: http://source.asset.com/stars/loral/cleanroom/tutorial/
cleanroom.html> (1996).

[Ett 96] Ett, William & Trammell, Carmen. A Guide to Integration of Object-
Oriented Methods and Cleanroom Software Engineering [online].
Originally available WWW
<URL: http://www.asset.com/stars/loral/cleanroom/oo/guidhome.
htm> (1996).

[Hausler 94] Hausler, P. A.; Linger, R. C.; & Trammel, C. J. "Adopting
Cleanroom Software Engineering with a Phased Approach." IBM
Systems Journal 33, 1 (1994): 89-109.

[Linger 94] Linger, R.C. "Cleanroom Process Model." IEEE Software 11, 2
(March 1994): 50-58.

[Linger 96a] Linger, R.C.; Paulk, M.C.; & Trammel, C.J. Cleanroom Software
Engineering Implementation of the CMM for Software (CMU/SEI-
96-TR-023). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1996.

[Linger 96b] Linger, R.C. & Trammel, C.J. Cleanroom Software Engineering
Reference Model (CMU/SEI-96-TR-022). Pittsburgh, PA: Carnegie
Mellon University, Software Engineering Institute, 1996.

[Mills 87] Mills, H.; Dyer, M.; & Linger, R. "Cleanroom Software
Engineering." IEEE Software 4, 5 (September 1987): 19-25.

[Paulk 93] Paulk, M.; Curtis B.; Chrissis, M.; & Weber, C. Capability Maturity
Model for Software Version 1.1 (CMU/SEI-96-TR-24,
ADA263403). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1993.

http://www.sei.cmu.edu/str/descriptions/cleanroom.html (5 of 7)7/28/2008 11:27:23 AM

http://source.asset.com/stars/loral/cleanroom/tutorial/cleanroom.html
http://source.asset.com/stars/loral/cleanroom/tutorial/cleanroom.html

Cleanroom Software Engineering

[Sherer 96a] Sherer, S. W. Cleanroom Software Engineering- the Picatinny
Experience [online]. Available WWW
<URL: http://software.pica.army.mil/cleanroom/cseweb.html>
(1996).

[Sherer 96b] Sherer, S.W.; Kouchakdjian, A.; & Arnold, P.G. "Experience Using
Cleanroom Software Engineering." IEEE Software 13, 3 (May
1996): 69-76.

[STARSSCAI
95]

Air Force/STARS Demonstration Project Home Page [online].
Available WWW
<URL: http://www.asset.com/stars/afdemo/home.html> (1995).

Current Author/Maintainer

John Foreman, SEI

External Reviewers

Wayne Sherer, US Army Picatinny Arsenal
Dave Ceely, Lockheed Martin, Gaithersburg, MD
Dr. Jesse Poore, President, Software Engineering Technologies (SET)
Rick Linger, SEI

Modifications

27 Oct 97: updated URL for [Ett 96]
20 Jun 97: updated URL for [Ett 96]
10 Jan 97: original

Footnotes

1 STARS: Software Technology for Adaptable Reliable Systems

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/cleanroom_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

http://www.sei.cmu.edu/str/descriptions/cleanroom.html (6 of 7)7/28/2008 11:27:23 AM

http://software.pica.army.mil/cleanroom/cseweb.html
http://www.asset.com/stars/afdemo/home.html
http://www.sei.cmu.edu/about/disclaimer.html

Cleanroom Software Engineering

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/cleanroom.html (7 of 7)7/28/2008 11:27:23 AM

Client/Server Software Architectures--An Overview

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Client/Server Software Architectures--An Overview

Status

Advanced

Purpose and Origin

The term client/server was first used in the 1980s in reference to personal
computers (PCs) on a network. The actual client/server model started gaining
acceptance in the late 1980s. The client/server software architecture is a
versatile, message-based and modular infrastructure that is intended to improve
usability, flexibility, interoperability, and scalability as compared to centralized,
mainframe, time sharing computing.

A client is defined as a requester of services and a server is defined as the
provider of services. A single machine can be both a client and a server
depending on the software configuration. For details on client/server software
architectures see Schussel and Edelstein [Schussel 96, Edelstein 94].

This technology description provides a summary of some common client/server
architectures and, for completeness, also summarizes mainframe and file
sharing architectures. Detailed descriptions for many of the individual
architectures are provided elsewhere in the document.

Technical Detail

Mainframe architecture (not a client/server architecture). With mainframe
software architectures all intelligence is within the central host computer. Users
interact with the host through a terminal that captures keystrokes and sends that
information to the host. Mainframe software architectures are not tied to a
hardware platform. User interaction can be done using PCs and UNIX
workstations. A limitation of mainframe software architectures is that they do not
easily support graphical user interfaces (see Graphical User Interface Builders)
or access to multiple databases from geographically dispersed sites. In the last
few years, mainframes have found a new use as a server in distributed client/
server architectures (see Client/Server Software Architectures) [Edelstein 94].

File sharing architecture (not a client/server architecture). The original PC
networks were based on file sharing architectures, where the server downloads
files from the shared location to the desktop environment. The requested user

http://www.sei.cmu.edu/str/descriptions/clientserver.html (1 of 7)7/28/2008 11:27:24 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/clientserver_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Client/Server Software Architectures--An Overview

job is then run (including logic and data) in the desktop environment. File sharing
architectures work if shared usage is low, update contention is low, and the
volume of data to be transferred is low. In the 1990s, PC LAN (local area
network) computing changed because the capacity of the file sharing was
strained as the number of online user grew (it can only satisfy about 12 users
simultaneously) and graphical user interfaces (GUIs) became popular (making
mainframe and terminal displays appear out of date). PCs are now being used in
client/server architectures [Schussel 96, Edelstein 94].

Client/server architecture. As a result of the limitations of file sharing
architectures, the client/server architecture emerged. This approach introduced a
database server to replace the file server. Using a relational database
management system (DBMS), user queries could be answered directly. The
client/server architecture reduced network traffic by providing a query response
rather than total file transfer. It improves multi-user updating through a GUI front
end to a shared database. In client/server architectures, Remote Procedure
Calls (RPCs) or standard query language (SQL) statements are typically used to
communicate between the client and server [Schussel 96, Edelstein 94].

The remainder of this write-up provides examples of client/server architectures.

Two tier architectures. With two tier client/server architectures (see Two Tier
Software Architectures), the user system interface is usually located in the user's
desktop environment and the database management services are usually in a
server that is a more powerful machine that services many clients. Processing
management is split between the user system interface environment and the
database management server environment. The database management server
provides stored procedures and triggers. There are a number of software
vendors that provide tools to simplify development of applications for the two tier
client/server architecture [Schussel 96, Edelstein 94].

The two tier client/server architecture is a good solution for distributed computing
when work groups are defined as a dozen to 100 people interacting on a LAN
simultaneously. It does have a number of limitations. When the number of users
exceeds 100, performance begins to deteriorate. This limitation is a result of the
server maintaining a connection via "keep-alive" messages with each client,
even when no work is being done. A second limitation of the two tier architecture
is that implementation of processing management services using vendor
proprietary database procedures restricts flexibility and choice of DBMS for
applications. Finally, current implementations of the two tier architecture provide
limited flexibility in moving (repartitioning) program functionality from one server
to another without manually regenerating procedural code. [Schussel 96,
Edelstein 94].

Three tier architectures. The three tier architecture (see Three Tier Software
Architectures) (also referred to as the multi-tier architecture) emerged to
overcome the limitations of the two tier architecture. In the three tier architecture,
a middle tier was added between the user system interface client environment
and the database management server environment. There are a variety of ways
of implementing this middle tier, such as transaction processing monitors,
message servers, or application servers. The middle tier can perform queuing,

http://www.sei.cmu.edu/str/descriptions/clientserver.html (2 of 7)7/28/2008 11:27:24 AM

Client/Server Software Architectures--An Overview

application execution, and database staging. For example, if the middle tier
provides queuing, the client can deliver its request to the middle layer and
disengage because the middle tier will access the data and return the answer to
the client. In addition the middle layer adds scheduling and prioritization for work
in progress. The three tier client/server architecture has been shown to improve
performance for groups with a large number of users (in the thousands) and
improves flexibility when compared to the two tier approach. Flexibility in
partitioning can be a simple as "dragging and dropping" application code
modules onto different computers in some three tier architectures. A limitation
with three tier architectures is that the development environment is reportedly
more difficult to use than the visually-oriented development of two tier
applications [Schussel 96, Edelstein 94]. Recently, mainframes have found a
new use as servers in three tier architectures (see Mainframe Server Software
Architectures).

Three tier architecture with transaction processing monitor technology.
The most basic type of three tier architecture has a middle layer consisting of
Transaction Processing (TP) monitor technology (see Transaction Processing
Monitor Technology). The TP monitor technology is a type of message queuing,
transaction scheduling, and prioritization service where the client connects to the
TP monitor (middle tier) instead of the database server. The transaction is
accepted by the monitor, which queues it and then takes responsibility for
managing it to completion, thus freeing up the client. When the capability is
provided by third party middleware vendors it is referred to as "TP Heavy"
because it can service thousands of users. When it is embedded in the DBMS
(and could be considered a two tier architecture), it is referred to as "TP Lite"
because experience has shown performance degradation when over 100 clients
are connected. TP monitor technology also provides

● the ability to update multiple different DBMSs in a single transaction
● connectivity to a variety of data sources including flat files, non-relational

DBMS, and the mainframe
● the ability to attach priorities to transactions
● robust security

Using a three tier client/server architecture with TP monitor technology results in
an environment that is considerably more scalable than a two tier architecture
with direct client to server connection. For systems with thousands of users, TP
monitor technology (not embedded in the DBMS) has been reported as one of
the most effective solutions. A limitation to TP monitor technology is that the
implementation code is usually written in a lower level language (such as
COBOL), and not yet widely available in the popular visual toolsets [Schussel
96].

Three tier with message server. Messaging is another way to implement three
tier architectures. Messages are prioritized and processed asynchronously.
Messages consist of headers that contain priority information, and the address
and identification number. The message server connects to the relational DBMS
and other data sources. The difference between TP monitor technology and
message server is that the message server architecture focuses on intelligent
messages, whereas the TP Monitor environment has the intelligence in the
monitor, and treats transactions as dumb data packets. Messaging systems are

http://www.sei.cmu.edu/str/descriptions/clientserver.html (3 of 7)7/28/2008 11:27:24 AM

Client/Server Software Architectures--An Overview

good solutions for wireless infrastructures [Schussel 96].

Three tier with an application server. The three tier application server
architecture allocates the main body of an application to run on a shared host
rather than in the user system interface client environment. The application
server does not drive the GUIs; rather it shares business logic, computations,
and a data retrieval engine. Advantages are that with less software on the client
there is less security to worry about, applications are more scalable, and support
and installation costs are less on a single server than maintaining each on a
desktop client [Schussel 96]. The application server design should be used when
security, scalability, and cost are major considerations [Schussel 96].

Three tier with an ORB architecture. Currently industry is working on
developing standards to improve interoperability and determine what the
common Object Request Broker (ORB) will be. Developing client/server systems
using technologies that support distributed objects holds great pomise, as these
technologies support interoperability across languages and platforms, as well as
enhancing maintainability and adaptability of the system. There are currently two
prominent distributed object technologies:

● Common Object Request Broker Architecture (CORBA)
● COM/DCOM (see Component Object Model (COM), DCOM, and Related

Capabilities).

Industry is working on standards to improve interoperability between CORBA
and COM/DCOM. The Object Management Group (OMG) has developed a
mapping between CORBA and COM/DCOM that is supported by several
products [OMG 96].

Distributed/collaborative enterprise architecture. The distributed/
collaborative enterprise architecture emerged in 1993 (see Distributed/
Collaborative Enterprise Architectures). This software architecture is based on
Object Request Broker (ORB) technology, but goes further than the Common
Object Request Broker Architecture (CORBA) by using shared, reusable
business models (not just objects) on an enterprise-wide scale. The benefit of
this architectural approach is that standardized business object models and
distributed object computing are combined to give an organization flexibility to
improve effectiveness organizationally, operationally, and technologically. An
enterprise is defined here as a system comprised of multiple business systems
or subsystems. Distributed/collaborative enterprise architectures are limited by a
lack of commercially-available object orientation analysis and design method
tools that focus on applications [Shelton 93, Adler 95].

Usage Considerations

Client/server architectures are being used throughout industry and the military.
They provide a versatile infrastructure that supports insertion of new technology
more readily than earlier software designs.

http://www.sei.cmu.edu/str/descriptions/clientserver.html (4 of 7)7/28/2008 11:27:24 AM

Client/Server Software Architectures--An Overview

Maturity

Client/server software architectures have been in use since the late 1980s. See
individual technology descriptions for more detail.

Costs and Limitations

There a number of tradeoffs that must be made to select the appropriate client/
server architecture. These include business strategic planning, and potential
growth on the number of users, cost, and the homogeneity of the current and
future computational environment.

Dependencies

If a distributed object approach is employed, then the CORBA and/or COM/
DCOM technologies should be considered (see Common Object Request Broker
Architecture and Component Object Model (COM), DCOM, and Related
Capabilities).

Alternatives

Alternatives to client/server architectures would be mainframe or file sharing
architectures.

Complementary Technologies

Complementary technologies for client/server architectures are computer-aided
software engineering (CASE) tools because they facilitate client/server
architectural development, and open systems (see COTS and Open Systems--
An Overview) because they facilitate the development of architectures that
improve scalability and flexibility.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Client/Server Software Architectures

Application category Software Architecture Models (AP.2.1.1)

http://www.sei.cmu.edu/str/descriptions/clientserver.html (5 of 7)7/28/2008 11:27:24 AM

Client/Server Software Architectures--An Overview

Quality measures category Usability (QM.2.3)
Scalability (QM.4.3)
Maintainability (QM.3.1)
Interoperability (QM.4.1)

References and Information Sources

[Adler 95] Adler, R. M. "Distributed Coordination Models for Client/Sever
Computing." Computer 28, 4 (April 1995): 14-22.

[Dickman 95] Dickman, A. "Two-Tier Versus Three-Tier Apps."
Informationweek 553 (November 13, 1995): 74-80.

[Edelstein 94] Edelstein, Herb. "Unraveling Client/Server Architecture."
DBMS 7, 5 (May 1994): 34(7).

[Gallaugher
96]

Gallaugher, J. & Ramanathan, S. "Choosing a Client/Server
Architecture. A Comparison of Two-Tier and Three-Tier
Systems." Information Systems Management Magazine 13, 2
(Spring 1996): 7-13.

[Louis 95] Louis [online]. Available WWW
<URL: http://www.softis.is> (1995).

[Newell 95] Newell, D.; Jones, O.; & Machura, M. "Interoperable Object
Models for Large Scale Distributed Systems," 30-31.
Proceedings. International Seminar on Client/Server
Computing. La Hulpe, Belgium, October 30-31, 1995. London,
England: IEE, 1995.

[OMG 96] Object Management Group home page [online]. Available
WWW
<URL: http://www.omg.org> (1996).

[Schussel 96] Schussel, George. Client/Server Past, Present, and Future
[online]. Available WWW
<URL: http://www.dciexpo.com/geos/> (1995).

[Shelton 93] Shelton, Robert E. "The Distributed Enterprise (Shared,
Reusable Business Models the Next Step in Distributed Object
Computing)." Distributed Computing Monitor 8, 10 (October
1993): 1.

Current Author/Maintainer

Darleen Sadoski, GTE

External Reviewers

Frank Rogers, GTE

http://www.sei.cmu.edu/str/descriptions/clientserver.html (6 of 7)7/28/2008 11:27:24 AM

http://www.softis.is/
http://www.omg.org/
http://www.dciexpo.com/geos/

Client/Server Software Architectures--An Overview

Modifications

2 August 97: added reference [OMG 96]
25 June 97: Ed Morris (SEI) updated paragraphs containing information about
COM/DCOM
10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/clientserver_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/clientserver.html (7 of 7)7/28/2008 11:27:24 AM

http://www.sei.cmu.edu/about/disclaimer.html

Common Management Information Protocol

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Common Management Information Protocol

Status

Advanced

Note

We recommend Network Management--An Overview as prerequisite reading for
this technology description.

Purpose and Origin

Common Management Information Protocol (CMIP) is an Open Systems
Interconnection (OSI)1 -based network management protocol that supports
information exchange between network management applications and
management agents. CMIP is part of the X.700 (CCITT2 number for the OSI
Management Framework, also designated as ISO/IEC 7498-43) OSI series of
management standards. Its design is similar to the Simple Network Management
Protocol (SNMP). CMIP was developed and funded by government and
corporations to replace and makeup for the deficiencies in SNMP, thus
improving the capabilities of network management systems.

Technical Detail

CMIP is a well designed protocol that defines how network management
information is exchanged between network management applications and
management agents. It uses an ISO reliable connection-oriented transport
mechanism and has built in security that supports access control, authorization
and security logs. The management information is exchanged between the
network management application and management agents thru managed
objects. Managed objects are a characteristic of a managed device that can be
monitored, modified or controlled and can be used to perform tasks. The network
management application can initiate transactions with management agents using
the following operations:

● ACTION - Request an action to occur as defined by the managed object.
● CANCEL_GET - Cancel an outstanding GET request.
● CREATE - Create an instance of a managed object.
● DELETE - Delete an instance of a managed object.

http://www.sei.cmu.edu/str/descriptions/cmip.html (1 of 5)7/28/2008 11:27:25 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/cmip_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Common Management Information Protocol

● GET - Request the value of a managed object instance.
● SET - Set the value of a managed object instance.

A management agent can initiate a transaction with the network management
application using the EVENT_REPORT operation. This operation can be used to
send notifications or alarms to the network management application based upon
predetermined conditions set by the network management application using the
ACTION operation.

CMIP does not specify the functionality of the network management application,
it only defines the information exchange mechanism of the managed objects and
not how the information is to be used or interpreted.

The major advantages of CMIP over SNMP are [Vallillee 96]:

● CMIP variables not only relay information, but also can be used to
perform tasks. This is impossible under SNMP.

● CMIP is a safer system as it has built in security that supports
authorization, access control, and security logs.

● CMIP provides powerful capabilities that allow management applications
to accomplish more with a single request.

● CMIP provides better reporting of unusual network conditions

The CMIP specification for TCP/IP networks is called CMOT (CMIP Over TCP)
and the version for IEEE 802 LAN's is called CMOL (CMIP Over LLC) [Stallings
93].

Usage Considerations

CMIP is widely used in the telecommunication domain and telecommunication
devices typically support CMIP. The International Telecommunication Union
(ITU)4 endorses CMIP as the protocol for the management of devices in the
Telecommunication Management Network (TMN)5 standard.

The CMIP protocol is designed to run on the ISO protocol stack [Stallings 93].
However, the technology standard used today in most LAN environments is TCP/
IP and most LAN devices only support SNMP. Implementations of CMOT are
extremely scarce.

CMIP requires a large amount of system resources, this has resulted in very few
implementations. Additionally, CMIP is very complex thus making it difficult to
program; therefore skilled personnel with specialized training may be required to
deploy, maintain and operate a CMIP based network management system.

Maturity

CMIP was developed over a decade ago; however few implementations exist
because of the problems described above in Usage Considerations.

http://www.sei.cmu.edu/str/descriptions/cmip.html (2 of 5)7/28/2008 11:27:25 AM

Common Management Information Protocol

Costs and Limitations

Systems may not be capable of supporting the resource requirements of CMIP
and difficulties may exist in the procurement of CMIP software because of limited
availability.

Alternatives

SNMP is widely available and is the de facto standard network management
protocol; however, it does not provide all of the functionality of CMIP. SNMP
deficiencies are discussed in Usage Considerations for SNMP.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Common Management Information Protocol
(CMIP)

Application category Protocols (AP.2.2.3)
Network Management (AP.2.2.2)

Quality measures category Maintainability (QM.3.1)
Simplicity (QM.3.2.2)
Complexity (QM.3.2.1)
Efficiency/Resource Utilization (QM.2.2)
Scalability (QM.4.3)
Security (QM.2.1.5)

Computing reviews category Network Operations (C.2.3)
Distributed Systems (C.2.4)

References and Information Sources

[Korinko
96]

Korinko, Joe. CMIP-Common Management Information Protocol
[online]. Available WWW
<URL: http://www.rit.edu/~jek0539/icsa750/exam2/ex2pg1.htm>
(1996).

[Stallings
93]

Stallings, William. SNMP, SNMPv2, and CMIP: The Practical
Guide to Network Management Standards. Reading, MA:
Addison-Wesley, 1993.

http://www.sei.cmu.edu/str/descriptions/cmip.html (3 of 5)7/28/2008 11:27:25 AM

http://www.rit.edu/~jek0539/icsa750/exam2/ex2pg1.htm

Common Management Information Protocol

[Vallillee
96]

Vallillee, Tyler. SNMP & CMIP: An Introduction To Network
Management [online]. Available WWW
<URL: http://www.inforamp.net/~kjvallil/t/snmp.html> (1996).

[X.700 96] X.700 and Other Network Management Services [online].
Available WWW
<URL: http://ganges.cs.tcd.ie/4ba2/x700/index.html> (1996).

Current Author/Maintainer

Dan Plakosh, SEI

Modifications

9 February 98: minor modifications

13 May 97 (Original)

Footnotes

1 The OSI model is a framework for defining communications protocols. It
consists of seven layers of protocols that range from low level methods for
dealing with a physical communications medium, to high level methods for
dealing with the communications needs of user applications. Developed by the
International Standards Organization (ISO), specific protocols have been
designed to implement the functionality specified by the OSI model.

2 International Telegraph and Telephone Consultative Committee: This
organization is part of the United National International Telecommunications
Union (ITU) and is responsible for making technical recommendations about
telephone and data communications systems.

3 International Organization for Standardization (ISO). A voluntary, non-
treaty organization founded in 1946 which is responsible for creating
international standards in many areas, including computers and
communications. Its members are the national standards organizations of the 89
member countries, including ANSI for the U.S.
International Electrotechnical Commission (NEC). The international
standards and conformity assessment body for all fields of electrotechnology.
IEC and ISO technical committees collaborate in fields of mutual interest.

4 The ITU is an international organization within which governments and the
private sector coordinate global telecom networks and services. It also develops
standards to facilitate the interconnection of telecommunication systems on a
worldwide scale regardless of the type of technology used.

5 A management architecture framework developed by the International
Telecommunication Union (ITU), which provides an environment for interfacing a
telecommunication network with computer systems to provide different

http://www.sei.cmu.edu/str/descriptions/cmip.html (4 of 5)7/28/2008 11:27:25 AM

http://www.inforamp.net/~kjvallil/t/snmp.html
http://ganges.cs.tcd.ie/4ba2/x700/index.html

Common Management Information Protocol

management functions at several different levels. The framework allows the
management of business information between different components (operations
systems, communication equipment, network and computer systems) and
provides control of service operations and information flow.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/cmip_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/cmip.html (5 of 5)7/28/2008 11:27:25 AM

http://www.sei.cmu.edu/about/disclaimer.html

Common Object Request Broker Architecture

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Common Object Request Broker Architecture

Status

ADVANCED

Note

We recommend Object Request Broker, as prerequisite reading for this
technology description.

Purpose and Origin

The Common Object Request Broker Architecture (CORBA) is a specification of
a standard architecture for object request brokers (ORBs) (see Object Request
Broker). A standard architecture allows vendors to develop ORB products that
support application portability and interoperability across different programming
languages, hardware platforms, operating systems, and ORB implementations:

"Using a CORBA-compliant ORB, a client can transparently invoke a method on
a server object, which can be on the same machine or across a network. The
ORB intercepts the call, and is responsible for finding an object that can
implement the request, passing it the parameters, invoking its method, and
returning the results of the invocation. The client does not have to be aware of
where the object is located, its programming language, its operating system or
any other aspects that are not part of an object's interface" [OMG 96]. The
"vision" behind CORBA is that distributed systems are conceived and
implemented as distributed objects. The interfaces to these objects are
described in a high-level, architecture-neutral specification language that also
supports object-oriented design abstraction. When combined with the Object
Management Architecture (see Technical Detail), CORBA can result in
distributed systems that can be rapidly developed, and can reap the benefits that
result from using high-level building blocks provided by CORBA, such as
maintainability and adaptability.

The CORBA specification was developed by the Object Management Group
(OMG), an industry group with over six hundred member companies
representing computer manufacturers, independent software vendors, and a
variety of government and academic organizations [OMG 96]. Thus, CORBA
specifies an industry/consortium standard, not a "formal" standard in the IEEE/
ANSI/ISO sense of the term. The OMG was established in 1988, and the initial

http://www.sei.cmu.edu/str/descriptions/corba.html (1 of 11)7/28/2008 11:27:29 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/corba_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Common Object Request Broker Architecture

CORBA specification emerged in 1992. Since then, the CORBA specification
has undergone significant revision, with the latest major revision (CORBA v2.0)
released in July 1996.

Technical Detail

CORBA ORBs are middleware mechanisms (see Middleware), as are all ORBs.
CORBA can be thought of as a generalization of remote procedure call (RPC)
that includes a number of refinements of RPC, including:

● a more abstract and powerful interface definition language
● direct support for a variety of object-oriented concepts
● a variety of other improvements and generalizations of the more primitive

RPC

CORBA and the Object Management Architecture. It is impossible to
understand CORBA without appreciating its role in the Object Management
Architecture (OMA), shown in Figure 2. The OMA is itself a specification
(actually, a collection of related specifications) that defines a broad range of
services for building distributed applications. The OMA goes far beyond RPC in
scope and complexity. The distinction between CORBA and the OMA is an
important one because many services one might expect to find in a middleware
product such as CORBA (e.g., naming, transaction, and asynchronous event
management services) are actually specified as services in the OMA. For
reference, the OMA reference architecture encompasses both the ORB and
remote service/object depicted in Figure 21, Middleware.

Figure 2: Object Management Architecture

OMA services are partitioned into three categories: CORBAServices,
CORBAFacilities, and ApplicationObjects. The ORB (whose details are specified
by CORBA) is a communication infrastructure through which applications access
these services, and through which objects interact with each other.
CORBAServices, CORBAFacilities, and ApplicationObjects define different
categories of objects in the OMA; these objects (more accurately object types)
define a range of functionality needed to support the development of distributed
software systems.

● CORBAServices are considered fundamental to building non-trivial
distributed applications. These services currently include asynchronous

http://www.sei.cmu.edu/str/descriptions/corba.html (2 of 11)7/28/2008 11:27:29 AM

Common Object Request Broker Architecture

event management, transactions, persistence, externalization,
concurrency, naming, relationships, and lifecycle. Table 1 summarizes
the purpose of each of these services.

● CORBAFacilities may be useful for distributed applications in some
settings, but are not considered as universally applicable as
CORBAServices. These "facilities" include: user interface, information
management, system management, task management, and a variety of
"vertical market" facilities in domains such as manufacturing, distributed
simulation, and accounting.

● Application Objects provide services that are particular to an application
or class of applications. These are not (currently) a topic for
standardization within the OMA, but are usually included in the OMA
reference model for completeness, i.e., objects are either application-
specific, support common facilities, or are basic services.

Table 1: Overview of CORBA Services

Naming Service
Provides the ability to bind a name to an object.
Similar to other forms of directory service.

Event Service
Supports asynchronous message-based communication
among objects. Supports chaining of event channels,
and a variety of producer/consumer roles.

Lifecycle Service
Defines conventions for creating, deleting, copying
and moving objects.

Persistence Service
Provides a means for retaining and managing the
persistent state of objects.

Transaction Service
Supports multiple transaction models, including
mandatory "flat" and optional "nested" transactions.

Concurrency Service
Supports concurrent, coordinated access to objects
from multiple clients.

Relationship Service
Supports the specification, creation and maintenance
of relationships among objects.

Externalization Service
Defines protocols and conventions for externalizing
and internalizing objects across processes and across
ORBs.

CORBA in detail. Figure 3 depicts most of the basic components and interfaces
defined by CORBA. This figure is an expansion of the ORB component of the

http://www.sei.cmu.edu/str/descriptions/corba.html (3 of 11)7/28/2008 11:27:29 AM

Common Object Request Broker Architecture

OMA depicted in Figure 2.

Figure 3: Structure of CORBA Interfaces

One element (not depicted in Figure 2) that is crucial to the understanding of
CORBA is the interface definition language (IDL) processor. All objects are
defined in CORBA (actually, in the OMA) using IDL. IDL is an object-oriented
interface definition formalism that has some syntactic similarities with C++.
Unlike C++, IDL can only define interfaces; it is not possible to specify behavior
in IDL. Language mappings are defined from IDL to C, C++, Ada95, and
Smalltalk80.

An important point to note is that CORBA specifies that clients and object
implementations can be written in different programming languages and execute
on different computer hardware architectures and different operating systems,
and that clients and object implementations can not detect any of these details
about each other. Put another way, the IDL interface completely defines the
interface between clients and objects; all other details about objects (such as
their implementation language and location) can be made "transparent."

Table 2 summarizes the components of CORBA and their functional role.

Table 2: Components of the CORBA Specification

ORB Core
The CORBA runtime infrastructure. The
interface to the ORB Core is not defined by
CORBA, and will be vendor proprietary.

ORB Interface
A standard interface (defined in IDL) to
functions provided by all CORBA- compliant
ORBs.

http://www.sei.cmu.edu/str/descriptions/corba.html (4 of 11)7/28/2008 11:27:29 AM

Common Object Request Broker Architecture

IDL Stubs

Generated by the IDL processor for each
interface defined in IDL. Stubs hide the low-
level networking details of object
communication from the client, while
presenting a high-level, object type-specific
application programming interface (API).

Dynamic Invocation Interface
(DII)

An alternative to stubs for clients to access
objects. While stubs provide an object type-
specific API, DII provides a generic
mechanism for constructing requests at run
time (hence "dynamic invocation"). An
interface repository (another CORBA
component not illustrated in Figure 2) allows
some measure of type checking to ensure that
a target object can support the request made by
the client.

Object Adaptor

Provides extensibility of CORBA- compliant
ORBs to integrate alternative object
technologies into the OMA. For example,
adaptors may be developed to allow remote
access to objects that are stored in an object-
oriented database. Each CORBA-compliant
ORB must support a specific object adaptor
called the Basic Object Adaptor (BOA) (not
illustrated in Figure 2). The BOA defines a
standard API implemented by all ORBs.

IDL Skeletons

The server-side (or object implementation-
side) analogue of IDL stubs. IDL skeletons
receive requests for services from the object
adaptor, and call the appropriate operations in
the object implementation.

Dynamic Skeleton Interface
(DSI)

The server-side (or object implementation-
side) analogue of the DII. While IDL skeletons
invoke specific operations in the object
implementation, DSI defers this processing to
the object implementation. This is useful for
developing bridges and other mechanisms to
support inter-ORB interoperation.

Usage Considerations

http://www.sei.cmu.edu/str/descriptions/corba.html (5 of 11)7/28/2008 11:27:29 AM

Common Object Request Broker Architecture

Compliance. As noted, CORBA is a specification, not an implementation.
Therefore, the question of compliance is important: How does a consumer know
if a product is CORBA-compliant, and, if so, what does that mean? CORBA
compliance is defined by the OMG:

"The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping" [CORBA 96] where "mapping"
refers to a mapping from IDL to a programming language (C, C++ or
Smalltalk80; Ada95 is specified but has not been formally adopted by the OMG
at the time of this writing). The CORBA Core (not the same as the ORB Core
denoted in Figure 3 and Table 2) is defined for compliance as including the
following:

● the interfaces to all of the elements depicted in Figure 3
● interfaces to the interface repository (not shown in Figure 3)
● a definition of IDL syntax and semantics
● the definition of the object model that underlies CORBA (e.g., what is an

object, how is it defined, where do they come from)

Significantly, the CORBA Core does not include CORBA interoperability, nor
does it include interworking, the term used to describe how CORBA is intended
to work with Microsoft's COM (see Component Object Model (COM), DCOM,
and Related Capabilities). A separate but related point is that CORBA ORBs
need not provide implementations of any OMA services.

There are as yet no defined test suites for assessing CORBA compliance. Users
must evaluate vendor claims on face value, and assess the likelihood of vendor
compliance based upon a variety of imponderables, such as the role played by
the vendor in the OMG; vendor market share; and press releases and
testimonials. Hands-on evaluation of ORB products is an absolute necessity.
However, given the lack of a predefined compliance test suite, the complexity of
the CORBA specification (see next topic), and the variability of vendor
implementation choices, even this will be inadequate to fully assess
"compliance."

Although not concerned with compliance testing in a formal sense, one
organization has developed an operational testbed for demonstrating ORB
interoperability [CORBANet 96]. It is conceivable that other similar centers may
be developed that address different aspects of CORBA (e.g., real time, security),
or that do formal compliance testing. However, no such centers exist at the time
of this writing.

Complexity. CORBA is a complex specification, and considerable effort may be
required to develop expertise in its use. A number of factors compound the
inherent complexity of the CORBA specification.

● While CORBA defines a standard, there is great latitude in many of the
implementation details- ORBs developed by different vendors may have
significantly different features and capabilities. Thus, users must learn a
specification, the way vendors implement the specification, and their
value-added features (which are often necessary to make a CORBA

http://www.sei.cmu.edu/str/descriptions/corba.html (6 of 11)7/28/2008 11:27:29 AM

Common Object Request Broker Architecture

product usable).
● While CORBA makes the development of distributed applications easier

than with previous technologies, this ease of use may be deceptive: The
difficult issues involved in designing robust distributed systems still
remain (e.g., performance prediction and analysis, failure mode analysis,
consistency and caching, and security).

● Facility with CORBA may require deep expertise in related technologies,
such as distributed systems design, distributed and multi-threaded
programming and debugging; inter-networking; object-oriented design,
analysis, and programming. In particular, expertise in object-oriented
technology may require a substantial change in engineering practice, with
all the technology transition issues that implies (see The Technology
Adoption Challenge).

Stability. CORBA (and the OMA) represent a classical model of distributed
computing, despite the addition of object-oriented abstraction. Recent advances
in distributed computing have altered the landscape CORBA occupies.
Specifically, the recent emergence of mobile objects via Java (see Java), and
the connection of Java with "web browser" technologies has muddied the waters
concerning the role of CORBA in future distributed systems. CORBA vendors
are responding by supporting the development of "ORBlets", i.e., Java applets
that invoke the services of remote CORBA objects. However, recent additions to
Java support remote object invocation directly in a native Java form. The upshot
is that, at the time of this writing, there is great instability in the distributed object
technology marketplace.

Industry standards such as CORBA have the advantage of flexibility in response
to changes in market conditions and technology advances (in comparison,
formal standards bodies move much more slowly). On the other hand, changes
to the CORBA specifications- while technically justified- have resulted in
unstable ORB implementations. For example, CORBA v2.0, released in July
1995 with revisions in July 1996, introduced features to support interoperation
among different vendor ORBs. These features are not yet universally available in
all CORBA ORBs, and those ORBs that implement these features do so in
uneven ways. Although the situation regarding interoperation among CORBA
ORBs is improving, instability of implementations is the price paid for flexibility
and evolvability of specification.

The OMA is also evolving, and different aspects are at different maturity levels.
For instance, CORBAFacilities defines more of a framework for desired services
than a specification suitable for implementation. The more fundamental
CORBAServices, while better defined, are not rigorously defined; a potential
consequence is that different vendor implementations of these services may
differ widely both in performance and in semantics. The consequence is
particularly troubling in light of the new interoperability features; prior to inter-
ORB interoperability the lack of uniformity among CORBAServices
implementations would not have been an issue.

Maturity

A large and growing number of implementations of CORBA are available in the
marketplace, including implementations from most major computer

http://www.sei.cmu.edu/str/descriptions/corba.html (7 of 11)7/28/2008 11:27:29 AM

Common Object Request Broker Architecture

manufacturers and independent software vendors. See Object Request Broker
for a listing of available CORBA-compliant ORBs. CORBA ORBs are also being
developed by university research and development projects, for example
Stanford's Fresco, XeroxPARC's ILU, Cornell's Electra, and others.

At the same time, it must be noted that not all CORBA ORBs are equally mature,
nor has the OMA sufficiently matured to support the vision that lies behind
CORBA (see Purpose and Origin). While CORBA and OMA products are
maturing and are being used in increasingly complex and demanding situations,
the specifications and product implementations are not entirely stable. This is in
no small way a result of the dynamism of distributed object technology and
middleware in general and is no particular fault of the OMG. Fortunately
techniques exist for evaluating technology in the face of such dynamism
[Wallace 96, Brown 96].

Costs and Limitations

Costs and limitations include the following:

● Real time. CORBA v2.0 does not address real-time issues.
● Programming language support. IDL is a "least-common denominator"

language. It does not fully exploit the capabilities of programming
languages to which it is mapped, especially where the definition of
abstract types is concerned.

● Pricing and licensing. The price of ORBs varies greatly, from a few
hundred to several thousand dollars. Licensing schemes also vary.

● Training. Training is essential for the already experienced programmer:
five days of hands-on training for CORBA programming fundamentals is
suggested [Mowbray 93].

● Security. CORBA specifies only a minimal range of security mechanisms;
more ambitious and comprehensive mechanisms have not yet been
adopted by the OMG. Deng discusses the potential integration of security
into CORBA-based systems [Deng 95].

Dependencies

Dependencies include the following:

● TCP/IP is needed to support the CORBA-defined inter-ORB
interoperability protocol (IIOP).

● Most commercial CORBA ORBs rely on C++ as the principal client and
server programming environment. Java-specific ORBs are also emerging.

Alternatives

Alternatives include the following:

● The Open Group's Distributed Computing Environment (DCE) is
sometimes cited as an alternative "open" specification for distributed

http://www.sei.cmu.edu/str/descriptions/corba.html (8 of 11)7/28/2008 11:27:29 AM

Common Object Request Broker Architecture

computing (see Distributed Computing Environment).
● Where openness is not a concern and PC platforms are dominant,

Microsoft's COM/DCOM (see Component Object Model (COM), DCOM,
and Related Capabilities) may be suitable alternatives.

● Other middleware technologies may be appropriate in different settings (e.
g., message-oriented middleware (see Message-Oriented Middleware)).

Complementary Technologies

Complementary technologies include the following:

● Java and/or web browsers can be used in conjunction with CORBA,
although precise usage patterns have not yet emerged and are still highly
volatile.

● Object-oriented database management systems (OODBMS) vendors are
developing object adaptors to support more robust three-tier architecture
(see Three Tier Software Architectures) development using CORBA.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Common Object Request Broker Architecture

Application category Client/Server (AP.2.1.2.1),
Client/Server Communication (AP.2.2.1)

Quality measures category Maintainability (QM.3.1),
Interoperability (QM.4.1),
Portability (QM.4.2),
Scalability (QM.4.3),
Reusability (QM.4.4)

Computing reviews category Distributed Systems (C.2.4),
Object-Oriented Programming (D.1.5)

References and Information Sources

[Baker 94] Baker, S. "CORBA Implementation Issues." IEEE Colloquium
on Distributed Object Management Digest 1994 7 (January
1994): 24-25.

[Brando 96] Brando, T. "Comparing CORBA & DCE." Object Magazine 6,
1 (March 1996): 52-7.

[Brown 96] Brown, A. & Wallnau, K. "A Framework for Evaluating
Software Technology." IEEE Software 13, 5 (September 1996):
39-49.

http://www.sei.cmu.edu/str/descriptions/corba.html (9 of 11)7/28/2008 11:27:29 AM

Common Object Request Broker Architecture

[CORBA 96] The Common Object Request Broker: Architecture and
Specification, Version 2.0. Framingham, MA: Object
Management Group, 1996. Also available [online] WWW
<URL: http://www.omg.org> (1996).

[CORBANet 96] Distributed Software Technology Center Home Page [online].
Available WWW
<URL: http://corbanet.dstc.edu.au> (1996).

[Deng 95] Deng, R.H., et al. "Integrating Security in CORBA-Based
Object Architectures," 50-61. Proceedings of the 1995 IEEE
Symposium on Security and Privacy. Oakland, CA, May 8-10,
1995. Los Alamitos, CA: IEEE Computer Society Press, 1995.

[Foody 96] Foody, M.A. "OLE and COM vs. CORBA." UNIX Review 14,
4. (April 1996): 43-45.

[Jell 95] Jell, T. & Stal, M. "Comparing, Contrasting, and Interweaving
CORBA and OLE," 140-144. Object Expo Europe 1995.
London, UK, September 25-29, 1995. Newdigate, UK: SIGS
Conferences, 1995.

[Kain 94] Kain, J.B. "An Overview of OMG's CORBA," 131-134.
Proceedings of OBJECT EXPO `94. New York, NY, June 6-
10, 1994. New York, NY: SIGS Publications, 1994.

[Mowbray 93] Mowbray, T.J. & Brando, T. "Interoperability and CORBA-
Based Open Systems." Object Magazine 3, 3 (September/
October 1993): 50-4.

[OMG 96] Object Management Group home page [online]. Available
WWW
<URL: http://www.omg.org> (1996).

[Roy 95] Roy, Mark & Ewald, Alan. "Distributed Object
Interoperability." Object Magazine 5, 1 (March/April 1995):
18.

[Steinke 95] Steinke, Steve. "Middleware Meets the Network." LAN: The
Network Solutions Magazine 10, 13 (December 1995): 56.

[Tibbets 95] Tibbets, Fred. "CORBA: A Common Touch for Distributed
Applications." Data Comm Magazine 24, 7 (May 1995): 71-75.

[Wallace 96] Wallnau, Kurt & Wallace, Evan. "A Situated Evaluation of the
Object Management Group's (OMG) Object Management
Architecture (OMA)," 168-178. Proceedings of the
OOPSLA'96. San Jose, CA, October 6-10, 1996. New York,
NY: ACM, 1996. Presentation available [online] FTP.
<URL: ftp://ftp.sei.cmu.edu/pub/corba/OOPSLA/present>
(1996).

[Watson 96] Watson, A. "The OMG After CORBA 2." Object Magazine 6,
1 (March 1996): 58-60.

Current Author/Maintainer

http://www.sei.cmu.edu/str/descriptions/corba.html (10 of 11)7/28/2008 11:27:29 AM

http://www.omg.org/
http://corbanet.dstc.edu.au/
http://www.omg.org/
ftp://ftp.sei.cmu.edu/pub/corba/OOPSLA/present

Common Object Request Broker Architecture

Kurt Wallnau, SEI

External Reviewers

Dave Carney, SEI
Ed Morris, SEI

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/corba_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/corba.html (11 of 11)7/28/2008 11:27:29 AM

http://www.sei.cmu.edu/about/disclaimer.html

Component-Based Software Development / COTS Integration

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Component-Based Software Development / COTS Integration

Status

Advanced

Note

We recommend COTS and Open Systems--An Overview as prerequisite reading
for this technology description.

Purpose and Origin

Component-based software development (CBSD) focuses on building large
software systems by integrating previously-existing software components. By
enhancing the flexibility and maintainability of systems, this approach can
potentially be used to reduce software development costs, assemble systems
rapidly, and reduce the spiraling maintenance burden associated with the
support and upgrade of large systems. At the foundation of this approach is the
assumption that certain parts of large software systems reappear with sufficient
regularity that common parts should be written once, rather than many times,
and that common systems should be assembled through reuse rather than
rewritten over and over. CBSD embodies the "buy, don't build" philosophy
espoused by Fred Brooks [Brooks 87]. CBSD is also referred to as component-
based software engineering (CBSE) [Brown 96a, Brown 96b].

Component-based systems encompass both commercial-off-the-shelf (COTS)
products and components acquired through other means, such as
nondevelopmental items (NDIs).1 Developing component-based systems is
becoming feasible due to the following:

● the increase in the quality and variety of COTS products
● economic pressures to reduce system development and maintenance

costs
● the emergence of component integration technology (see Object Request

Broker)
● the increasing amount of existing software in organizations that can be

reused in new systems

http://www.sei.cmu.edu/str/descriptions/cbsd.html (1 of 11)7/28/2008 11:27:31 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/cbsd_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Component-Based Software Development / COTS Integration

CBSD shifts the development emphasis from programming software to
composing software systems [Clements 95].

Technical Detail

In CBSD, the notion of building a system by writing code has been replaced with
building a system by assembling and integrating existing software components.
In contrast to traditional development, where system integration is often the tail
end of an implementation effort, component integration is the centerpiece of the
approach; thus, implementation has given way to integration as the focus of
system construction. Because of this, integrability is a key consideration in the
decision whether to acquire, reuse, or build the components.

As shown in Figure 4, four major activities characterize the component-based
development approach; these have been adapted from Brown [Brown 96b]:

● component qualification (sometimes referred to as suitability testing)
● component adaptation
● assembling components into systems
● system evolution

Figure 4: Activities of the Component-Based Development Approach

Each activity is discussed in more detail in the following paragraphs.

Component qualification. Component qualification is a process of determining
"fitness for use" of previously-developed components that are being applied in a
new system context. Component qualification is also a process for selecting
components when a marketplace of competing products exists. Qualification of a
component can also extend to include qualification of the development process
used to create and maintain it (for example, ensuring algorithms have been
validated, and that rigorous code inspections have taken place). This is most
obvious in safety-critical applications, but can also reduce some of the attraction

http://www.sei.cmu.edu/str/descriptions/cbsd.html (2 of 11)7/28/2008 11:27:31 AM

Component-Based Software Development / COTS Integration

of using preexisting components.

There are two phases of component qualification: discovery and evaluation. In
the discovery phase, the properties of a component are identified. Such priorities
include component functionality (what services are provided) and other aspects
of a component's interface (such as the use of standards). These properties also
include quality aspects that are more difficult to isolate, such as component
reliability, predictability, and usability. In some circumstances, it is also
reasonable to discover "non-technical" component properties, such as the
vendor's market share, past business performance, and process maturity of the
component developer's organization. Discovery is a difficult and ill-defined
process, with much of the needed information being difficult to quantify and, in
some cases, difficult to obtain.

There are some relatively mature evaluation techniques for selecting from
among a group of peer products. For example, the International Standards
Organization (ISO) describes general criteria for product evaluation [ISO 91]
while others describe techniques that take into account the needs of particular
application domains [IEEE 93, Poston 92]. These evaluation approaches
typically involve a combination of paper-based studies of the components,
discussion with other users of those components, and hands-on benchmarking
and prototyping.

One recent trend is toward a "product line" approach that is based on a reusable
set of components that appear in a range of software products. This approach
assumes that similar systems (e.g., most radar systems) have a similar software
architecture and that a majority of the required functionality is the same from one
product to the next. (See Domain Engineering and Domain Analysis for further
details on techniques to help determine similarity). The common functionality can
therefore be provided by the same set of components, thus simplifying the
development and maintenance life cycle. Results of implementing this approach
can be seen in two different efforts [Lettes 96, STARSSCAI 95].

Component adaptation. Because individual components are written to meet
different requirements, and are based on differing assumptions about their
context, components often must be adapted when used in a new system.
Components must be adapted based on rules that ensure conflicts among
components are minimized. The degree to which a component's internal
structure is accessible suggests different approaches to adaptation [Valetto 95]:

● white box, where access to source code allows a component to be
significantly rewritten to operate with other components

● grey box, where source code of a component is not modified but the
component provides its own extension language or application
programming interface (API) (see Application Programming Interface)

● black box, where only a binary executable form of the component is
available and there is no extension language or API

Each of these adaptation approaches has its own positives and negatives;

http://www.sei.cmu.edu/str/descriptions/cbsd.html (3 of 11)7/28/2008 11:27:31 AM

Component-Based Software Development / COTS Integration

however, white box approaches, because they modify source code, can result in
serious maintenance and evolution concerns in the long term. Wrapping,
bridging, and mediating are specific programming techniques used to adapt
grey- and black-box components.

Assembling components into systems. Components must be integrated
through some well-defined infrastructure. This infrastructure provides the binding
that forms a system from the disparate components. For example, in developing
systems from COTS components, several architectural styles are possible:

● database, in which centralized control of all operational data is the key to
all information sharing among components in the system

● blackboard, in which data sharing among components is opportunistic,
involving reduced levels of system overhead

● message bus, in which components have separate data stores
coordinated through messages announcing changes among components

● object request broker (ORB) mediated, in which the ORB technology (see
Object Request Broker) provides mechanisms for language-independent
interface definition and object location and activation

Each style has its own particular strengths and weaknesses. Currently, most
active research and product development is taking place in object request
brokers (ORBs) conforming to the Common Object Request Broker Architecture

(CORBA).2

System evolution. At first glance, component-based systems may seem
relatively easy to evolve and upgrade since components are the unit of change.
To repair an error, an updated component is swapped for its defective
equivalent, treating components as plug-replaceable units. Similarly, when
additional functionality is required, it is embodied in a new component that is
added to the system.

However, this is a highly simplistic (and optimistic) view of system evolution.
Replacement of one component with another is often a time-consuming and
arduous task since the new component will never be identical to its predecessor
and must be thoroughly tested, both in isolation and in combination with the rest
of the system. Wrappers must typically be rewritten, and side-effects from
changes must be found and assessed. One possible approach to remedying this
problem is Simplex (see Simplex Architecture).

Usage Considerations

Several items need to be considered when implementing component-based
systems:

Short-term considerations

http://www.sei.cmu.edu/str/descriptions/cbsd.html (4 of 11)7/28/2008 11:27:31 AM

Component-Based Software Development / COTS Integration

● Development process. An organization's software development process
and philosophy may need to change. System integration can no longer be
at the end of the implementation phase, but must be planned early and be
continually managed throughout the development process. It is also
recommended that as tradeoffs are being made among components
during the development process, the rationale used in making the tradeoff
decisions should be recorded and then evaluated in the final product
[Brown 96b].

● Planning. Many of the problems encountered when integrating COTS
components cannot be determined before integration begins. Thus,
estimating development schedules and resource requirements is
extremely difficult [Vigder 96].

● Requirements. When using a preexisting component, the component has
been written to a preexisting, and possibly unknown, set of requirements.
In the best case, these requirements will be very general, and the system
to be built will have requirements that either conform or can be made to
conform to the preexisting general requirements. In the worst case, the
component will have been written to requirements that conflict in some
critical manner with those of the new system, and the system designer
must choose whether using the existing component is viable at all.

● Architecture. The selection of standards and components needs to have a
sound architectural foundation, as this becomes the foundation for system
evolution. This is especially important when migrating from a legacy
system to a component-based system.

● Standards. If an organization chooses to use the component-based
system development approach and it also has the goal of making a
system open, then interface standards need to come into play as criteria
for component qualification. The degree to which a software component
meets certain standards can greatly influence the interoperability and
portability of a system. Reference the COTS and Open Systems--An
Overview description for further discussion.

● Reuse of existing components. Component-based system development
spotlights reusable components. However, even though organizations
have increasing amounts of existing software that can be reused, most
often some amount of reengineering must be accomplished on those
components before they can be adapted to new systems.

● Component qualification. While there are several efforts focusing on
component qualification, there is little agreement on which quality
attributes or measures of a component are critical to its use in a
component-based system. A useful work that begins to address this issue
is "SAAM: A Method for Analyzing the Properties of Software
Architecture" [Abowd 94]. Another technique addresses the complexity of
component selection and provides a decision framework that supports
multi-variable component selection analysis [Kontio 96]. Other
approaches, such as the qualification process defined by the US Air
Force PRISM program, emphasize "fitness for use" within specific
application domains, as well as the primacy of integrability of components
[PRISM 96]. Another effort is Product Line Asset Support [PLAS 96].

Long-term considerations

http://www.sei.cmu.edu/str/descriptions/cbsd.html (5 of 11)7/28/2008 11:27:31 AM

Component-Based Software Development / COTS Integration

● External dependencies/vendor-driven upgrade problem. An organization
loses a certain amount of autonomy and acquires additional
dependencies when integrating COTS components. COTS component
producers frequently upgrade their components based on error reports,
perceived market needs and competition, and product aesthetics. DoD
systems typically change at a much slower rate and have very long
lifetimes. An organization must juggle its new functionality requirements
to accommodate the direction in which a COTS product may be going.
New component releases require a decision from the component-based
system developer/integrator on whether to include the new component in
the system. To answer "yes" implies facing an undetermined amount of
rewriting of wrapper code and system testing. To answer "no" implies
relying on older versions of components that may be behind the current
state-of-the-art and may not be adequately supported by the COTS
supplier. This is why the component-based system approach is
sometimes considered a risk transfer and not a risk reduction approach.

● System evolution/technology insertion. System evolution is not a simple
plug-and-play approach. Replacing one component often has rippling
affects throughout the system, especially when many of the components
in the system are black box components; the system's integrator does not
know the details of how a component is built or will react in an
interdependent environment. Further complicating the situation is that
new versions of a component often require enhanced versions of other
components, or in some cases may be incompatible with existing
components.

Over the long-term life of a system, additional challenges arise, including
inserting COTS components that correspond to new functionality (for
example, changing to a completely new communications approach) and
"consolidation engineering" wherein several components may be
replaced by one "integrated" component. In such situations, maintaining
external interface compatibility is very important, but internal data flows
that previously existed must also be analyzed to determine if they are still
needed.

Maturity

To date, the commercial components available and reliable enough for
operational systems, and whose interfaces are well-enough understood, have
primarily been operating systems, databases, email and messaging systems,
office automation software (e.g., calendars, word processors, spreadsheets),
and Graphical User Interface Builders. The number of available components
continues to grow and quality and applicability continue to improve. As such,
most successful applications have been in the AIS/MIS and C3I areas, with
rather limited success in applications having real-time performance, safety, and
security requirements. Indeed, in spite of the possible savings, using COTS
components to build safety-critical systems where reliability, availability,
predictability, and security are essential is frequently too risky [Brown 96b]. An
organization will typically not have complete understanding or control of the
COTS components and their development.

http://www.sei.cmu.edu/str/descriptions/cbsd.html (6 of 11)7/28/2008 11:27:31 AM

Component-Based Software Development / COTS Integration

Examples of apparently successful integration of COTS into operational systems
include the following

● Deep Space Network Program at the NASA Jet Propulsion Laboratory
[NASA 96a]

● Lewis Mission at NASA's Goddard Space Center [NASA 96b]
● Boeing's new 777 aircraft with 4 million lines of COTS software [Vidger 96]
● Air Force Space and Missile System Center's telemetry, tracking, and

control (TT&C) system called the Center for Research Support (CERES)
[Monfort 96]

In addition to the increasing availability of components applicable to certain
domains, understanding of the issues and technologies required to expand
CBSD practice is also growing, although significant work remains. Various new
technical developments and products, including Common Object Request Broker
Architecture and Component Object Model (COM), DCOM, and Related
Capabilities [Vidger 96] and changes in acquisition and business practices
should further stimulate the move to CBSD.

Costs and Limitations

It is widely assumed that the component-based software development approach,
particularly in the sense of using COTS components, will be significantly less
costly (i.e., shorter development cycles and lower development costs) than the
traditional method of building systems "from scratch." In the case of using such
components as databases and operating systems, this is almost certainly true.
However, there is little data available concerning the relative costs of using the
component-based approach and, as indicated in Usage Considerations, there
are a number of new issues that must be considered.

In addition, if integrating COTS components, an additional system development
and maintenance cost will be to negotiate, manage, and track licenses to ensure
uninterrupted operation of the system. For example, a license expiring in the
middle of a mission might have disastrous consequences.

Dependencies

Adapting preexisting components to a system requires techniques such as
Application Programming Interface, wrapping, bridging, or mediating, as well as
an increased understanding of architectural interactions and components'
properties.

Alternatives

The alternatives include using preexisting components or creating the entire
system as a new item.

http://www.sei.cmu.edu/str/descriptions/cbsd.html (7 of 11)7/28/2008 11:27:31 AM

Component-Based Software Development / COTS Integration

Complementary Technologies

The advantages of using the CBSD/COTS integration approach can be greatly
enhanced by coupling the approach with open systems (see COTS and Open
Systems--An Overview).

Domain Engineering and Domain Analysis aid in identifying common functions
and data among a domain of systems which in turn identifies possible reusable
components.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Component-Based Software Development/ COTS
Integration

Application category System Allocation (AP.1.2.1),
Select or Develop Algorithms (AP.1.3.4),
Plan and Perform Integration (AP.1.4.4),
Reengineering (AP.1.9.5)

Quality measures category Maintainability (QM.3.1)

Computing reviews category Software Engineering Design (D.2.10),
Software Engineering Miscellaneous (D.2.m)

References and Information Sources

[Abowd 94] Abowd, G., et al. "SAAM: A Method for Analyzing the Properties of
Software Architecture," 81-90. Proceedings of the 16th International
Conference on Software Engineering. Sorrento, Italy, May 16-21,
1994. Los Alamitos, CA: IEEE Computer Society Press, 1994.

[Brooks 87] Brooks, F. P. Jr. "No Silver Bullet: Essence and Accidents of
Software Engineering," Computer 20, 4 (April 1987): 10-9.

[Brown 96a] Brown, Alan W. "Preface: Foundations for Component-Based
Software Engineering," vii-x. Component-Based Software
Engineering: Selected Papers from the Software Engineering
Institute. Los Alamitos, CA: IEEE Computer Society Press, 1996.

http://www.sei.cmu.edu/str/descriptions/cbsd.html (8 of 11)7/28/2008 11:27:31 AM

Component-Based Software Development / COTS Integration

[Brown 96b] Brown, Alan W. & Wallnau, Kurt C. "Engineering of Component-
Based Systems," 7-15. Component-Based Software Engineering:
Selected Papers from the Software Engineering Institute. Los
Alamitos, CA: IEEE Computer Society Press, 1996.

[Clements 95] Clements, Paul C. "From Subroutines to Subsystems: Component-
Based Software Development," 3-6. Component-Based Software
Engineering: Selected Papers from the Software Engineering
Institute. Los Alamitos, CA: IEEE Computer Society Press, 1996.

[IEEE 93] IEEE Recommended Practice on the Selection and Evaluation of
CASE Tools (IEEE Std. 1209-1992). New York, NY: Institute of
Electrical and Electronics Engineers, 1993.

[ISO 91] Information Technology - Software Product Evaluation - Quality
Characteristics and Guidelines for their Use. Geneve, Switzerland:
International Standards Organization/International Electrochemical
Commission, 1991.

[Kontio 96] Kontio, J. "A Case Study in Applying a Systematic Method for
COTS Selection," 201-209. Proceedings of the 18th International
Conference on Software Engineering. Berlin, Germany, March 25-
30, 1996. Los Alamitos, CA: IEEE Computer Society Press, 1996.

[Lettes 96] Lettes, Judith A. & Wilson, John. Army STARS Demonstration
Project Experience Report (STARS-VC-A011/003/02). Manassas,
VA: Loral Defense Systems-East, 1996.

[Monfort 96] Monfort, Lt. Col. Ralph D. "Lessons Learned in the Development
and Integration of a COTS-Based Satellite TT&C System." 33rd
Space Congress. Cocoa Beach, FL, April 23-26, 1996.

[NASA 96a] COTS Based Development [online]. Available WWW
<URL: http://www-isds.jpl.nasa.gov/cwo/cwo_23/handbook/
Dsnswdhb.htm> (1996).

[NASA 96b] Create Mechanisms/Incentives for Reuse and COTS Use [online].
Available WWW
<URL: http://bolero.gsfc.nasa.gov/c600/workshops/sswssp4b.htm>
(1996).

[PLAS 96] PLAS [online]. Available WWW
<URL: http://www.cards.com/plas> (1996).

[Poston 92] Poston R.M. & Sexton M.P. "Evaluating and Selecting Testing
Tools." IEEE Software 9, 3 (May 1992): 33-42.

http://www.sei.cmu.edu/str/descriptions/cbsd.html (9 of 11)7/28/2008 11:27:31 AM

http://www-isds.jpl.nasa.gov/cwo/cwo_23/handbook/Dsnswdhb.htm
http://www-isds.jpl.nasa.gov/cwo/cwo_23/handbook/Dsnswdhb.htm
http://bolero.gsfc.nasa.gov/c600/workshops/sswssp4b.htm
http://www.cards.com/plas

Component-Based Software Development / COTS Integration

[PRISM 96] Portable, Reusable, Integrated Software Modules (PRISM) Program
[online]. Available WWW
<URL: http://www.cards.com/PRISM/prism_ov.html>(1996).

[STARSSCAI 95] Air Force/STARS Demonstration Project Home Page [online].
Available WWW
<URL: http://www.asset.com/stars/afdemo/home.html> (1995).

[Thomas 92] Thomas, I. & Nejmeh. B. "Definitions of Tool Integration for
Environments." IEEE Software 9, 3 (March 1992): 29-35.

[Valetto 95] Valetto, G. & Kaiser, G.E. "Enveloping Sophisticated Tools into
Computer-Aided Software Engineering Environments," 40-48.
Proceedings of 7th IEEE International Workshop on CASE. Toronto,
Ontario, Canada, July 10-14, 1995. Los Alamitos, CA: IEEE
Computer Society Press, 1995.

[Vidger 96] Vidger, M.R.; Gentleman, W.M.; & Dean, J. COTS Software
Integration: State-of-the-Art [online]. Available WWW
<URL: http://wwwsel.iit.nrc.ca/abstracts/NRC39198.abs> (1996).

Current Author/Maintainer

Capt Gary Haines, AFMC SSSG
David Carney, SEI
John Foreman, SEI

External Reviewers

Paul Kogut, Lockheed Martin, Paoli, PA
Ed Morris, SEI
Tricia Oberndorf, SEI
Kurt Wallnau, SEI

Modifications

7 Oct 97: minor edits
20 Jun 97: updated URL for [NASA 96a]
10 Jan 97 (original)

Footnotes

1 See the definition of NDI in COTS and Open Systems - An Overview.

2 From Wallnau, K. & Wallace, E. A Robust Evaluation of the Object
Management Architecture: A Focused Case Study in Legacy Systems Migration.

http://www.sei.cmu.edu/str/descriptions/cbsd.html (10 of 11)7/28/2008 11:27:31 AM

http://www.cards.com/PRISM/prism_ov.html
http://www.asset.com/stars/afdemo/home.html
http://wwwsel.iit.nrc.ca/abstracts/NRC39198.abs

Component-Based Software Development / COTS Integration

Submitted for publication to OOPLSA'96.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/cbsd_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/cbsd.html (11 of 11)7/28/2008 11:27:31 AM

http://www.sei.cmu.edu/about/disclaimer.html

Component Object Model (COM), DCOM, and Related Capabilities

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Component Object Model (COM), DCOM, and Related
Capabilities

Status

Advanced

Note

We recommend Object Request Broker, Remote Procedure Call, and
Component-Based Software Development/COTS Integration, as prerequisite
readings for this technology description.

Purpose and Origin

COM [COM 95] refers to both a specification and implementation developed by
Microsoft Corporation which provides a framework for integrating components.
This framework supports interoperability and reusability of distributed objects by
allowing developers to build systems by assembling reusable components from
different vendors which communicate via COM. By applying COM to build
systems of preexisting components, developers hope to reap benefits of
maintainability and adaptability.

COM defines an application programming interface (API) to allow for the creation
of components for use in integrating custom applications or to allow diverse
components to interact. However, in order to interact, components must adhere
to a binary structure specified by Microsoft. As long as components adhere to
this binary structure, components written in different languages can interoperate.

Distributed COM [DCOM 97] is an extension to COM that allows network-based
component interaction. While COM processes can run on the same machine but
in different address spaces, the DCOM extension allows processes to be spread
across a network. With DCOM, components operating on a variety of platforms
can interact, as long as DCOM is available within the environment.

It is best to consider COM and DCOM as a single technology that provides a
range of services for component interaction, from services promoting component
integration on a single platform, to component interaction across heterogeneous
networks. In fact, COM and its DCOM extensions are merged into a single
runtime. This single runtime provides both local and remote access.

http://www.sei.cmu.edu/str/descriptions/com.html (1 of 13)7/28/2008 11:27:32 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/com_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Component Object Model (COM), DCOM, and Related Capabilities

While COM and DCOM represent "low-level" technology that allows components
to interact, OLE [Brockschmidt 95], ActiveX [Active 97] and MTS [Harmon 99]
represent higher-level application services that are built on top of COM and
DCOM. OLE builds on COM to provide services such as object "linking" and
"embedding" that are used in the creation of compound documents (documents
generated from multiple tool sources). ActiveX extends the basic capabilities to
allow components to be embedded in Web sites. MTS expands COM
capabilities with enterprise services such as transaction and security to allow
Enterprise Information Systems (EIS) to be built using COM components. COM+
is the evolution of COM.

COM+ integrates MTS services and message queuing into COM, and makes
COM programming easier through a closer integration with Microsoft languages
as Visual Basic, Visual C++, and J++. COM+ will not only add MTS-like quality of
service into every COM+ object, but it will hide some of the complexities in COM
coding.

The distinctions among various Microsoft technologies and products are
sometimes blurred. Thus, one might read about "OLE technologies" which
encompass COM, or "Active Platform" as a full web solution. In this technology
description, we focus on the underlying technology represented by COM,
DCOM, and COM+.

Technical Detail

COM is a binary compatibility specification and associated implementation that
allows clients to invoke services provided by COM-compliant components (COM
objects). As shown in Figure 5, services implemented by COM objects are
exposed through a set of interfaces that represent the only point of contact
between clients and the object.

Figure 5: Client Using COM Object Through an Interface Pointer [COM 95]

COM defines a binary structure for the interface between the client and the
object. This binary structure provides the basis for interoperability between
software components written in arbitrary languages. As long as a compiler can
reduce language structures down to this binary representation, the
implementation language for clients and COM objects does not matter - the point
of contact is the run-time binary representation. Thus, COM objects and clients
can be coded in any language that supports Microsoft's COM binary structure.

A COM object can support any number of interfaces. An interface provides a
grouped collection of related methods. For example, Figure 6 depicts a COM

http://www.sei.cmu.edu/str/descriptions/com.html (2 of 13)7/28/2008 11:27:32 AM

Component Object Model (COM), DCOM, and Related Capabilities

object that emulates a clock. IClock, IAlarm and ITimer are the interfaces of the
clock object. The IClock interface can provide the appropriate methods (not
shown) to allow setting and reading the current time. The IAlarm and ITimer
interfaces can supply alarm and stopwatch methods.

Figure 6: Clock COM object

COM objects and interfaces are specified using Microsoft Interface Definition
Language (IDL), an extension of the DCE Interface Definition Language
standard (see Distributed Computing Environment). To avoid name collisions,
each object and interface must have a unique identifier.

Interfaces are considered logically immutable. Once an interface is defined, it
should not be changed-new methods should not be added and existing methods
should not be modified. This restriction on the interfaces is not enforced, but it is
a rule that component developers should follow. Adhering to this restriction
removes the potential for version incompatibility-if an interface never changes,
then clients depending on the interface can rely on a consistent set of services. If
new functionality has to be added to a component, it can be exposed through a
different interface. For our clock example, we can design an enhanced clock
COM object supporting the IClock2 interface that inherits from IClock. IClock2
may expose new functionality.

Every COM object runs inside of a server. A single server can support multiple
COM objects. As shown in Figure 7, there are three ways in which a client can
access COM objects provided by a server:

1. In-process server: The client can link directly to a library containing the
server. The client and server execute in the same process.
Communication is accomplished through function calls.

2. Local Object Proxy: The client can access a server running in a different
process but on the same machine through an inter-process
communication mechanism. This mechanism is actually a lightweight
Remote Procedure Call (RPC).

3. Remote Object Proxy: The client can access a remote server running on
another machine. The network communication between client and server
is accomplished through DCE RPC. The mechanism supporting access to
remote servers is called DCOM.

http://www.sei.cmu.edu/str/descriptions/com.html (3 of 13)7/28/2008 11:27:32 AM

Component Object Model (COM), DCOM, and Related Capabilities

Figure 7: Three Methods for Accessing COM Objects [COM 95]

If the client and server are in the same process, the sharing of data between the
two is simple. However, when the server process is separate from the client
process, as in a local server or remote server, COM must format and bundle the
data in order to share it. This process of preparing the data is called marshalling.
Marshalling is accomplished through a "proxy" object and a "stub" object that
handle the cross-process communication details for any particular interface
(depicted in Figure 8). COM creates the "stub" in the object's server process and
has the stub manage the real interface pointer. COM then creates the "proxy" in
the client's process, and connects it to the stub. The proxy then supplies the
interface pointer to the client.

The client calls the interfaces of the server through the proxy, which marshals
the parameters and passes them to the server stub. The stub unmarshals the
parameters and makes the actual call inside the server object. When the call
completes, the stub marshals return values and passes them to the proxy, which
in turn returns them to the client. The same proxy/stub mechanism is used when
the client and server are on different machines. However, the internal
implementation of marshalling and unmarshalling differs depending on whether
the client and server operate on the same machine (COM) or on different
machines (DCOM). Given an IDL file, the Microsoft IDL compiler can create
default proxy and stub code that performs all necessary marshalling and
unmarshalling.

http://www.sei.cmu.edu/str/descriptions/com.html (4 of 13)7/28/2008 11:27:32 AM

Component Object Model (COM), DCOM, and Related Capabilities

Figure 8: Cross-process communication in COM [COM 95]

All COM objects are registered with a component database. As shown in Figure
9, when a client wishes to create and use a COM object:

1. It invokes the COM API to instantiate a new COM object.
2. COM locates the object implementation and initiates a server process for

the object.
3. The server process creates the object, and returns an interface pointer at

the object.
4. The client can then interact with the newly instantiated COM object

through the interface pointer.

An important aspect in COM is that objects have no identity, i.e. a client can ask
for a COM object of some type, but not for a particular object. Every time that
COM is asked for a COM object, a new instance is returned. The main
advantage of this policy is that COM implementations can pool COM objects and
return these pooled objects to requesting clients. Whenever a client has finished
using an object the instance is returned to the pool. However, there are
mechanisms to simulate identity in COM such as monikers (reviewed later).

http://www.sei.cmu.edu/str/descriptions/com.html (5 of 13)7/28/2008 11:27:32 AM

Component Object Model (COM), DCOM, and Related Capabilities

Figure 9: Creating a COM object pointer [COM 95]

COM includes interfaces and API functions that expose operating system
services, as well as other mechanisms necessary for a distributed environment
(naming, events, etc.). These are sometimes referred to as COM technologies
(or services), and are shown in Table 3.

Table 3: COM Technologies

Service Explanation

Type
Information

Some clients need runtime access to type information
about COM objects. This type information is generated by
the Microsoft IDL compiler and is stored in a type library.
COM provides interfaces to navigate the type library.

Structured
Storage and Persistence

COM objects need a way to store their data when they are
not running. The process of saving data for an object is
called making an object persistent. COM supports object
persistence through "Structured Storage", which creates
an analog of a file system within a file. Individual COM
objects can store data within the file, thus providing
persistence.

Monikers Clients often require a way to allow them to connect to
the exact same object instance with the exact same state at
a later point in time. This support is provided via
"monikers". A moniker is a COM object that knows how
to create and initialize the content of a single COM object
instance. A moniker can be asked to bind to the COM
object it represents, such as a COM object residing on
specific machine on the network, or a group of cells
inside a spreadsheet.

http://www.sei.cmu.edu/str/descriptions/com.html (6 of 13)7/28/2008 11:27:32 AM

Component Object Model (COM), DCOM, and Related Capabilities

Uniform Data Transfer COM objects often need to pass data amongst themselves.
Uniform Data Transfer provides for data transfers and
notifications of data changes between a source called the
data object, and something that uses the data, called the
consumer object.

Connectable Objects Some objects require a way to notify clients that an event
that has occurred. COM allows such objects to define
outgoing interfaces to clients as well as incoming
interfaces. The object defines an interface it would like to
use (e.g., a notification interface) and the client
implements the interface. This enables two-way
communication between the client and the component.

COM has enjoyed great industrial support with thousands of ISVs developing
COM components and applications. However, COM suffers from some
weaknesses that have been recognized by Microsoft and addressed in
Component Object Model+, which is the ongoing upgrade of COM.

1. COM is hard to use. Reference counting, Microsoft IDL, Global Unique
Identifiers (GUID), etc. require deep knowledge of COM specification from
developers.

2. COM is not robust enough for enterprise deployments. Services such as
security, transactions, reliable communications, and load balancing are
not integrated in COM.

Both issues were partially mitigated by add-ons of COM, complexity by
integrated development environments and robustness by MTS. However, to
further address those problems, the company is working to turn COM+ and the
MTS (Microsoft Transaction Server) into one programming model that will
simplifying the lives of developers building distributed, enterprise-wide COM
applications. COM+ integrates seamlessly with all COM-aware languages
(basically Microsoft languages). Users write components in their favorite
language. The tool chosen and the COM+ runtime take care of turning these
classes into COM components [Kirtland 97].

Usage Considerations

A number of issues must be evaluated when considering COM, DCOM, and
COM+. They include

● Platform support. COM and DCOM are best supported on Windows 95
and NT platforms. However, Microsoft has released a version of COM/
DCOM for MacOS that supports OLE-style compound documents and the
creation of ActiveX controls. Software AG, a Microsoft partner, has
released DCOM for some UNIX operating systems, concretely OS/390,

http://www.sei.cmu.edu/str/descriptions/com.html (7 of 13)7/28/2008 11:27:32 AM

Component Object Model (COM), DCOM, and Related Capabilities

HP-UX 11.0, SUN Solaris, AIX 4.2, 4.3, Tru64 Unix 4.0 and Linux.
However, DCOM over non-Windows platforms has few supporters. Until
DCOM for alternate platforms has solidified, the technology is best
applied in environments that are primarily Windows-based.

● Platform specificity of COM/DCOM components. Because COM and
DCOM are based on a native binary format, components written to these
specifications are not platform independent. Thus, either they must be
recompiled for a specific platform, or an interpreter for the binary format
must become available. Depending on your perspective, the use of a
binary format may be either an advantage (faster execution, better use of
native platform capabilities) or a disadvantage (ActiveX controls, unlike
Java applets, are NOT machine independent). See Java for more
information.

● Security. Because COM/DCOM components have access to a version of
the Microsoft Windows API, "bad actors" can potentially damage the
user's computing environment. In order to address this problem, Microsoft
employs "Authenticode" [Microsoft 96] which uses public key encryption
to digitally sign components. Independent certification authorities such as
VeriSign issue digital certificates to verify the identity of the source of the
component [VeriSign 97]. However, even certified code can contain
instructions that accidentally, or even maliciously, compromise the user's
environment.

● Support for distributed objects. COM/DCOM provides basic support for
distributed objects. There is currently no support for situations requiring
real time processing, high reliability, or other such specialized component
interaction.

● Stability of APIs. In October of 1996 Microsoft turned over COM/DCOM,
parts of OLE, and ActiveX to the Open Group (a merger of Open
Software Foundation and X/Open). The Open Group has formed the
Active Group to oversee the transformation of the technology into an
open standard. The aim of the Active Group is to promote the
technology's compatibility across systems (Windows, UNIX, and MacOS)
and to oversee future extension by creating working groups dedicated to
specific functions. However, it is unclear how much control Microsoft will
relinquish over the direction of the technology. Certainly, as the inventor
and primary advocate of COM and DCOM, Microsoft is expected to have
strong influence on the overall direction of the technology and underlying
APIs.

● Long-term system maintainability. Microsoft is actively supporting COM
and DCOM technology and pushing it in distributed and Web-based
directions. Microsoft is also trying to preserve existing investments in
COM technology while introducing incremental changes. Microsoft, for
example, has ensured backward compatibility of COM+. Although this
affirmation is in general true, COM objects that access local information in
the registry or in system folders may require modification. In general, the
PC community has not been faced with the concern of very long-lived
systems, and vendors often provide support only for recent releases.

Maturity

COM has its roots in OLE version 1, which was created in 1991 and was a
proprietary document integration and management framework for the Microsoft

http://www.sei.cmu.edu/str/descriptions/com.html (8 of 13)7/28/2008 11:27:32 AM

Component Object Model (COM), DCOM, and Related Capabilities

Office suite. Microsoft later realized that document integration is just a special
case of component integration. OLE version 2, released in 1995 was a major
enhancement over its predecessor. The foundation of OLE version 2, now called
COM, provided a general-purpose mechanism for component integration on
Windows platforms [Brockschmidt 95]. While this early version of COM included
some notions of distributed components, more complete support for distribution
became available with the DCOM specifications and implementations for
Windows95 and Windows NT released in 1996. Beta versions of DCOM for Mac,
Solaris and other operating systems followed shortly after.

There are many PC-based applications that take advantage of COM and DCOM
technology. The basic approach has proven sound, and as previously
mentioned, a large component industry has sprung up to take advantage of
opportunities created by the Microsoft technology. On the other hand, DCOM
has just arrived on non-Windows platforms, and there is little experience with it.
DCOM for non-Windows platforms is mainly used to communicate COM based
programs with legacy applications in Mainframes and Unix workstations.

COM+ is much younger than COM, it was announced in Sept. 23, 1997 and
shipped with windows 2000 (a.k.a. Windows NT 5.0). COM+ can be considered
the next release of COM. We are unaware of any large-scale distributed
applications relying on COM+ support.

The computing paradigm for distributed applications is in flux, due to the relative
immaturity of the technology and recent advances in web-based computing. The
Web-centered computing industry has begun to align itself into two technology
camps-with one camp centered around Microsoft's COM/DCOM/COM+, Internet
Explorer, and ActiveX capabilities, and the other camp championing Netscape,
CORBA, and Java/J2EE solutions. Both sides argue vociferously about the
relative merits of their approach, but at this time there is no clear technology
winner. Fortunately, both camps are working on mechanisms to support interplay
between the technology bases. Thus, a COM/DCOM to CORBA mapping is
supported by CORBA vendors [Foody 96], and Microsoft has incorporated Java
into an Internet strategy. However, work on interconnection between the
competing approaches is not complete, and each camp would shed few tears if
the other side folded.

Costs and Limitations

Low cost development tools from Microsoft (such as Visual C++ or Visual Basic),
as well as tools from other vendors provide the ability to build and access COM
components for Windows platforms. Construction of clients and servers is
straightforward on these platforms. In addition, the initial purchase price for COM
and DCOM is low on Windows platforms. For other platforms the prices are
considerably more expensive. DCOM for mainframes, for example, costs around
two hundred thousand dollars by December 1999.

Beyond basic costs to procure the technology, any serious software
development using COM/DCOM/COM+ requires substantial programmer
expertise-the complexities of building distributed applications are not eliminated.
It would be a serious mistake to assume that the advent of distributed object

http://www.sei.cmu.edu/str/descriptions/com.html (9 of 13)7/28/2008 11:27:32 AM

Component Object Model (COM), DCOM, and Related Capabilities

technologies like COM/DCOM/COM+ reduces the need for expertise in areas
like distributed systems design, multi-threaded applications, and networking.

However, Microsoft has a strong support organization to assist individuals
developing COM/DCOM clients and objects: many sample components, books
and guides on the subject of COM/DCOM development are available.
Unfortunately, information on COM+ is limited at this time.

Dependencies

Dependencies include Remote Procedure Call and Distributed Computing
Environment.

Alternatives

COM/DCOM/COM+ represents one of a number of alternate technologies that
support distributed computing. Some technologies, such as remote procedure
call, offer "low level" distribution support. Other technologies, such as message
oriented middleware and transaction processing monitors, offer distribution
support paradigms outside the realm of objects. The Common Object Request
Broker Architecture (CORBA) and Java 2 Enterprise Edition (J2EE) can be
considered direct competitors to COM/DCOM. Information about technologies
supporting distributed computing is available in the following places:

● Distributed Computing Environment
● Remote Procedure Call
● Message-Oriented Middleware
● Transaction Processing Monitor Technology
● Common Object Request Broker Architecture
● Two Tier Software Architectures
● Java

Complementary Technologies

One commonly hears of COM and DCOM in conjunction with OLE, ActiveX,
MTS and COM+. Indeed, these and other technologies constitute Microsoft's
distributed and web-oriented strategy. This strategy is globally referred as
Distributed interNet Architecture(tm) (DNA) and it comprises a full set of
products and specifications to implement net-centric applications.

Technologies championed by other vendors can also be used in conjunction with
COM. For example, COM objects can be created and manipulated from Java
code. Tools are provided to create Java classes from COM type library
information-these classes can be included in Java code. Using Internet Explorer,
Java programs can also expose functionality as COM services. In general,
Microsoft's approach for Java support involves tying it very closely to its existing
Internet strategy (Internet Explorer, COM/DCOM, ActiveX); i.e., to provide a
mechanism for interfacing to the wide range of components that already adhere
to Microsoft's strategy and specifications.

http://www.sei.cmu.edu/str/descriptions/com.html (10 of 13)7/28/2008 11:27:32 AM

Component Object Model (COM), DCOM, and Related Capabilities

COM+ is a good candidate to implement the middle layer of multitier
architectures. The distribution support and quality of service provided by COM+
can help to overcome some of the complexities involved in these architectures.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Component Object Model (COM), DCOM, and
Related Capabilities

Application category Software Architecture Models (AP.2.1.1)
Client/Server (AP.2.1.2.1)
Client/Server Communications (AP.2.2.1)

Quality measures category Maintainability (QM.3.1)
Interoperability (QM.4.1)
Reusability (QM.4.4)

Computing reviews category Distributed Systems (C.2.4)
Object-Oriented Programming (D.1.5)

References and Information Sources

[Active 97] Active Group home page [online]. Available WWW
<URL: http://www.activex.org/> (1997).

[Brockschmidt 95] Brockschmidt, Kraig. Inside OLE, 2nd edition, Microsoft
Press, 1995

[Chappell 96] Chappell, David. DCE and Objects [online]. Available WWW
<URL: http://www.opengroup.org/dce/info/dce_objects.htm>
(1996).

[COM 95] Microsoft Corporation. The Component Object Model
Specification, Version 0.9, October 24, 1995 [online].
Available WWW
<URL: http://www.microsoft.com/com/resources/comdocs.
asp>(1995).

http://www.sei.cmu.edu/str/descriptions/com.html (11 of 13)7/28/2008 11:27:32 AM

http://www.activex.org/
http://www.opengroup.org/dce/info/dce_objects.htm
http://www.microsoft.com/com/resources/comdocs.asp
http://www.microsoft.com/com/resources/comdocs.asp

Component Object Model (COM), DCOM, and Related Capabilities

[DCOM 97] Microsoft Corporation. Distributed Component Object Model
Protocol-DCOM/1.0, draft, November 1996 [online].
Available WWW
<URL: http://www.globecom.net/ietf/draft/draft-brown-dcom-
v1-spec-03.html> (1996).

[Foody 96] Foody, M.A. "OLE and COM vs. CORBA." UNIX Review
14, 4. (April 1996): 43-45.

[Harmon 99] Harmon, Paul. Microsoft transaction Server. Component
development Strategies Vol IX No 3. Available WWW
<URL: http://www.cutter.com/cds/1999toc.htm#mar > 1999

[Kirtland 97] Kirtland, Mary. "The COM+ Programming Model Makes it
Easy to Write Components in Any Language". Microsoft
System Journal. Dec, 1997.

[Microsoft 96] Microsoft Corporation. Microsoft Authenticode Technology
[online]. Available WWW
<URL: http://www.microsoft.com/security/tech/misf8.htm>
(1996).

[MSCOM 97] Microsoft home page [online]. The site provides information
about COM, DCOM and OLE. Available WWW
<URL: http://www.microsoft.com/> (1997).

[OMG 97] Object Management Group home page [online]. The site
provides information comparing DCOM (ActiveX) to
CORBA. Available WWW
<URL: http://www.omg.org/> (1997).

[VeriSign 97] Verisign home page [online]. Available WWW
<URL: http://www.verisign.com> (1997).

Current Author/Maintainer

Santiago Comella-Dorda, SEI

External Reviewers

Modifications

13 Mar 2001: Update with new developments of COM

http://www.sei.cmu.edu/str/descriptions/com.html (12 of 13)7/28/2008 11:27:32 AM

http://www.globecom.net/ietf/draft/draft-brown-dcom-v1-spec-03.html
http://www.globecom.net/ietf/draft/draft-brown-dcom-v1-spec-03.html
http://www.cutter.com/cds/1999toc.htm#mar
http://www.microsoft.com/security/tech/misf8.htm
http://www.microsoft.com/
http://www.omg.org/
http://www.verisign.com/

Component Object Model (COM), DCOM, and Related Capabilities

23 June 1997: Total replacement text
10 Jan 1997: Original

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/com_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/com.html (13 of 13)7/28/2008 11:27:32 AM

http://www.sei.cmu.edu/about/disclaimer.html

Computer System Security--An Overview

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Computer System Security--An Overview

Status

Advanced

Purpose and Origin

C4I systems include networks of computers that provide real-time situation data
for military decision makers and a means of directing response to a situation.
These networks collect data from sensors and subordinate commands. That
data is fused with the existing situation status data and presented by the C4I
system to decision makers through display devices. C4I networks today may
incorporate two general types of networks: networks of Multi-level Secure (MLS)
Systems, and Intranets of single level systems. Figure 5 shows the relevant
major security components of a C4I computer system network.

Figure 5: Computer System Security in C4I Systems

This technology description is tutorial in nature. It provides a general overview of
key concepts and introduces key technologies. Detailed discussions of the
individual technologies can be found in the referenced technology descriptions.

http://www.sei.cmu.edu/str/descriptions/security.html (1 of 6)7/28/2008 11:27:33 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/security_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Computer System Security--An Overview

Technical Detail

Some computers in the network are hosts that collect and process data. A host
can be a mainframe, a server, a workstation, or a PC. It may perform the
function of an application processor, a communication processor, a database
processor, a display processor, or a combination. The security mode for the host
may be single-level or multi-level. A single-level host processes all data as
though it was one security level. A multi-level host can process data at different
security levels, identify and isolate data in the appropriate levels or categories,
and distribute data only to the appropriately cleared users.

C4I systems benefit from multi-level security implementations because C4I
systems fuse data from sources with a wide range of security levels and provide
status, warning data, or direction to war fighting systems that may be at lesser
security levels. An MLS operating system (see Multi-Level Secure One Way
Guard with Random Acknowledgment) provides the software that makes a host
MLS. A particular kind of MLS host is the Compartmented Mode Workstation
(CMW). A CMW is a MLS host that has been evaluated to satisfy the Defense
Intelligence Agency CMW requirements [Woodward 87] in addition to the
Trusted Computer System Evaluation Criteria [DoD 85]. A MLS host may use a
MLS DBMS (see Multi-Level Secure Database Management Schemes) to store
and retrieve data at multiple security levels. A MLS guard provides a secure
interface across a security boundary between systems operating at different
security levels or modes.

MLS guards may allow data across the interface automatically or may require
manual review of data and approval of transfer on an attached terminal. They
also may control data transfer across the interface in both directions or be limited
to allowing data to be transferred one way, usually from the low security level
side of a security boundary to the high security level side. One-way guards are
usually the easiest to implement and accredit for use. Data integrity is an issue
with one-way guards because an acknowledgment message can not be used.
Recent research in one-way guards has addressed allowing an acknowledgment
message (see Multi-Level Secure One Way Guard with Random
Acknowledgment).

Intranets use the same kind of networking software (e.g., TCP/IP, Telnet,
Netnews, DNS, browsers, home pages) that is used on the Internet, but
Intranets use them on a private dedicated network. They are in essence a
private Internet. They are used in a growing number of ways in many military
and corporate networks including mission performance, off-line processing of
raw data, administrative support, and mail networks. They may be incorporated
into C4I systems using firewalls or proxies (see Firewalls and Proxies) and MLS
guards. Firewalls or proxies may be used to provide a security interface to the
Internet. If the Intranets are to be connected to MLS systems, they must be
connected through MLS guards. In an environment with Intranet hosts, a major
concern is Virus Detection and Intrusion Detection. PCs on a network are
particularly susceptible to virus attacks from other hosts on the network or the
Internet. PCs are also vulnerable to viruses carried on floppy disks. Since PCs
are now in most homes, transfer of files from home to work via floppy disk

http://www.sei.cmu.edu/str/descriptions/security.html (2 of 6)7/28/2008 11:27:33 AM

Computer System Security--An Overview

provides the risk of introducing a virus into the Intranet. PCs are more vulnerable
to viruses than UNIX-based workstations or mainframes because the PC has no
memory protection hardware and the operating system (DOS and Windows)
allows a program to access any part of memory or disk.

Security across the networks in a C4I system is crucial. Traditionally this security
is provided by physically protecting the equipment and cables in the network for
localized networks. When that is not possible, the network connections are
encrypted using encryption hardware in the communications paths. End-to-end
encryption is an alternative that encrypts the data using software before it is put
on the network and decrypts it after it has been taken off of the network. Then
non-encrypted circuits can be used for communications.

Any encryption system involves the distribution of keys used by the encryption
algorithm for the encryption/decryption of messages and data. Encryption keys
must be replaced periodically to enhance security or when the key has been
compromised or lost. Traditionally these keys have been distributed through
couriers or encrypted circuits. Public key cryptography provides a means of
electronic encryption key distribution that can lower the security risk and
administrative workload associated with encryption.

Data integrity is another issue associated with the networks used in C4I
systems. Public Key Digital Signatures and providing for Nonrepudiation in
Network Communications are two means to enhance data integrity. Public key
digital signatures, which make use of public key encryption and message
authentication codes, are a means to authenticate that data came from the
person identified as the sender and that the data has not been modified. The
nonrepudiation process uses a digital signature and a trusted arbitrator process
to assure that a particular message has been sent and received and to establish
the time when this occurred.

Usage Considerations

MLS systems require specialized knowledge to build, accredit, and maintain.
The cost of MLS systems can be high. The system development overhead and
operational performance overhead associated with MLS systems are substantial.
They are difficult to implement in an "open" configuration because open
requirements sometimes conflict with MLS requirements. On the other hand,
using MLS techniques may be the only allowable way to construct some C4I
systems. Operational security vulnerabilities may be unacceptable without MLS
implementations. Procedural security approaches may be too slow for an
operational C4I system as a non-MLS approach. A single-level system approach
may be too restrictive. For example, a secret single-level system that contains
unclassified, confidential, and secret data will not release confidential data to a
user who is cleared for confidential and needs the data. That is because the
system cannot determine what data is confidential rather than secret. Further
usage discussions are addressed in individual technology descriptions.

The National Security Agency (NSA) Multilevel Information Systems Security
Initiative (MISSI) is an evolutionary effort intended to provide better MLS
capability in a cost-effective manner [MISSI 96]. This effort was initiated after the

http://www.sei.cmu.edu/str/descriptions/security.html (3 of 6)7/28/2008 11:27:33 AM

Computer System Security--An Overview

Gulf War when it was recognized that war fighting commanders needed MLS
systems in order to incorporate intelligence and other highly classified data into
their planning and operations in a timely manner. The MISSI effort is developing
a set of building block products that can be obtained commercially to construct
an MLS system. The initial products include the FORTEZZA crypto cards and
associated FORTEZZA ready workstation applications to control access to and
protect data on a workstation in a network environment. Other products include
high-assurance guards and firewalls to provide access control and encryption
services between the local security boundary and external networks. MISSI will
also include secure computing products that provide high-trust operating
systems and application programs for MLS hosts, and network encryption and
security management products. These products can be incorporated into
developing MLS systems as the products become available.

Maturity

See individual technologies.

Costs and Limitations

See individual technologies.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Computer System Security - an Overview

Application category Information Security (AP.2.4)

Quality measures category Security (QM.2.1.5)

Computing reviews category Operating Systems Security & Protection (D.4.6),
Security & Protection (K.6.5),
Computer-Communications Networks Security and
Protection (C.2.0)

References and Information Sources

[Abrams 95] Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J. Information
Security An Integrated Collection of Essays. Los Alamitos, CA: IEEE
Computer Society Press, 1995.

http://www.sei.cmu.edu/str/descriptions/security.html (4 of 6)7/28/2008 11:27:33 AM

Computer System Security--An Overview

[Woodward 87] Woodward, John. Security Requirements for High and Compartmented
Mode Workstations (MTR 9992, DDS 2600-5502-87). Washington,
DC: Defense Intelligence Agency, 1987.

[DoD 85] Department of Defense (DoD) Trusted Computer System Evaluation
Criteria (TCSEC) (DoD 5200.28-STD 1985). Fort Meade, MD:
Department of Defense, 1985. Also available WWW
<URL: http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.
html> (1985).

[MISSI 96] MISSI Web site [online]. Available WWW
<URL: http://beta.missilab.com> (1996).

[Russel 91] Russel, Deborah & Gangemi, G.T. Sr. Computer Security Basics.
Sebastopol, CA: O'Reilly & Associates, Inc., 1991.

[White 96] White, Gregory B.; Fisch, Eric A.; & Pooch, Udo W. Computer System
and Network Security. Boca Raton, FL: CRC Press, 1996.

Current Author/Maintainer

Tom Mills, Lockheed Martin

External Reviewers

Brian Gallagher, SEI

Modifications

8 July 97: added reference to MLS One-Way Guard with Random Ack.
20 June 97: updated URL for [MISSI 96]
10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/security_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

http://www.sei.cmu.edu/str/descriptions/security.html (5 of 6)7/28/2008 11:27:33 AM

http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html
http://beta.missilab.com/
http://www.sei.cmu.edu/about/disclaimer.html

Computer System Security--An Overview

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/security.html (6 of 6)7/28/2008 11:27:33 AM

COTS and Open Systems--An Overview

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

COTS and Open Systems--An Overview

Status

Advanced

Purpose and Origin

One of the latest trends in systems development is to make greater use of
commercial-off-the-shelf (COTS) products. While this change has been
encouraged for many years for all kinds of systems development, especially in
the Department of Defense (DoD), it is only in the early 1990s that the practice
has been mandated by everyone from industry executives to Congress.

At the same time, an open systems approach to develop systems has been
gaining popularity, with visions of open systems that are "plug-and-play"
compatible, where components from one supplier can be easily replaced by
those from another supplier. Advocates of open systems often confuse them
with the use of COTS products, making it difficult for the average engineer to
know just what (s)he should be doing to develop (and maintain) systems more
effectively.

These two concepts- the use of COTS products and the creation of open
systems- are closely related and complementary, although definitely not
synonymous. The purpose of this technology description is to

● define/clarify what each is
● explain the differences between them
● examine the benefits each brings to the development, maintenance, and

evolution of systems

A brief summary of the key points in this technology description follows:

● COTS products hold the potential for cost-effective acquisition of
components and advancing technology, but they are not necessarily open.

● Open systems emphasize (1) the use of interface standards and (2) the
use of implementations that conform to those standard interfaces. Open

http://www.sei.cmu.edu/str/descriptions/cots.html (1 of 11)7/28/2008 11:27:35 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/cots_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

COTS and Open Systems--An Overview

systems provide stability and a framework for the effective use of COTS
products and other non-developmental items (NDI) through the use of
interface standards. Well-chosen interface standards can outlast any
particular product, vendor, or technology.

● It is possible to use COTS products without creating an open system;
similarly, it is possible to create an open system without significant use of
COTS products or NDI.

● COTS products and an open systems approach are both means to
important system goals of improving the quality and performance of our
systems, developing them more quickly, and sustaining them more cost-
effectively. The greatest advantage can be gained from using these two
approaches together.

For further detail on COTS, open systems, and component-based software
development approaches, see Component-Based Software Development/COTS
Integration.

Technical Detail

COTS. The term "COTS" is meant to refer to things that one can buy, ready-
made, from some manufacturer's virtual store shelf (e.g., through a catalogue or
from a price list). It carries with it a sense of getting, at a reasonable cost,
something that already does the job. It replaces the nightmares of developing
unique system components with the promises of fast, efficient acquisition of
cheap (or at least cheaper) component implementations.

Because of the need for precision in procurement, the federal government has
defined the term "commercial item." The full text of this definition can be found in
the Federal Acquisition Regulations (FARs); the following is a summary [FAR 96]:

A commercial item is

1. property1 customarily used for nongovernmental purposes and has been
sold, leased, or licensed (or offered for sale, lease or license) to the
general public;

2. any item evolved from an item in (1) through advances in technology and
is not yet available commercially but will be available in time to satisfy the
requirement;

3. any item that would satisfy (1) or (2) but for modifications customarily
available in the commercial marketplace or minor modifications made to
meet Federal Government requirements;

4. any combination of items meeting (1) - (3) above;
5. services for installation, maintenance, repair, training, etc. if such services

are procured for support of an item in (1), (2), or (3) above, as offered to
the public or provided by the same work force as supports the general
public, or other services sold competitively in the commercial marketplace;

6. a nondevelopmental item developed exclusively at private expense and
sold competitively to multiple state and local governments.

http://www.sei.cmu.edu/str/descriptions/cots.html (2 of 11)7/28/2008 11:27:35 AM

COTS and Open Systems--An Overview

Most people would agree that these ideas approximate the meaning of
"commercial-off the-shelf" (COTS) products, although the inclusion of "services"
as "COTS" is not often included. The salient characteristics of a COTS product
are

● it exists a priori
● it is available to the general public
● it can be bought (or leased or licensed)

Non-developmental item. A closely-related term that is often heard in
government (especially DoD) circles is nondevelopmental item (NDI). In
summary, a nondevelopmental item is [FAR 96]:

1. any previously developed item used exclusively for government purposes
by a federal, state, or local agency or government or by a foreign
government that has a mutual defense agreement with the U.S.;

2. any item described in (1) above that requires only minor modification or
modifications normally available in the commercial marketplace to meet
requirements;

3. any item being produced that does not meet (1) or (2) above only
because it is not yet in use.

The key point here is that NDI refers to something that was developed by
someone else. It might have been developed by a commercial interest, but
typically it will have been for some other government, department, or agency. A
large-scale example of an NDI would be a fighter aircraft that was developed by
some other nation. A more meaningful example in the current context would be a
navigation software subsystem developed for one aircraft that is available for
use in another aircraft. The salient characteristics of a nondevelopmental item
are the following:

● it exists, although not necessarily off some vendor's "shelf."
● it is available, although not necessarily to the general public.
● it can be obtained for use, although more likely off an existing contract

than off a published price list.

While there are certain reasons for using caution in applying the definitions of
COTS and NDI (e.g., how safe is a "minor modification," and what if it just looks
like a vendor has a product, whereas it is in reality just vaporware?), they do
fairly characterize the features that are of interest to those who believe that
"buying COTS" is desirable and beneficial. However, although closely related,
there are differences between NDI and COTS items:

http://www.sei.cmu.edu/str/descriptions/cots.html (3 of 11)7/28/2008 11:27:35 AM

COTS and Open Systems--An Overview

● COTS products would most likely be found in some sort of catalogue or
price list, whereas it may be more difficult to discover the existence of NDI.

● The range of possibilities opened up by NDI is broader than what COTS
products alone can offer, but NDI could lack the commercial leverage that
is sought in the use of COTS products.

Open systems. The basic tenet of open systems is the use of interface
standards in the engineering and design of systems, coupled with the use of
implementations (preferably, but not necessarily, COTS and non-developmental
items (NDI)) that conform to those interface standards. This provides a stable
basis on which to make decisions about the system, particularly with regard to its
evolution. An open systems approach has the potential to reduce the
developmental cost and schedule of systems while maintaining or even
improving performance. The dependence on stable interface standards makes
open systems more adaptable to advances in technology and changes in the
marketplace.

When people use the phrase open systems, they most often have in mind a
system that is flexible and adaptive, one that is "open" to inclusion of many
products from many sources. The phrase open systems often carries with it an
image of easy "plug-and-play" between components and products that were not
necessarily originally designed to work together. Open systems also hold out the
promise of being able to take immediate advantage of new technology as it
emerges, because it should be easier to plug in new technology, either in place
of an old component(s) or as a new extension of the system.

Many different definitions of open system have been offered in the past. To find
a truly workable one, we must look more closely at what it takes to make this
vision a reality. For the purposes of this technology description, open systems is
defined as follows [Meyers 97]:

An open system is

a collection of interacting software, hardware, and human components, designed
to satisfy stated needs, with the interface specification of components

● fully defined
● available to the public
● maintained according to group consensus, and

in which the implementations of components are conformant to the specification.
One key part of the definition addresses a set of criteria for the interface
specifications/standards. Not only must they be fully defined, but they must also
be available to the public. This implies that cost and public access may not be
prohibitive constraining factors; that is, the specification cannot be available only
to a selected group of people who have some special interest. Anyone is free to
obtain a copy of the specification (perhaps at the cost of duplication and
distribution, perhaps even at the cost of a small license fee) and they are also
free to produce and sell implementations of that specification. It is also very
important that the specification is of interest to a wide range of parties and is not
exclusively under the control of any single vendor. To this end, the definition
includes the idea that maintenance of the specification is by group consensus.

http://www.sei.cmu.edu/str/descriptions/cots.html (4 of 11)7/28/2008 11:27:35 AM

COTS and Open Systems--An Overview

Taken together, these criteria come very close to requiring that the interface
specification be a "standard."

The main benefit of this definition of open system is that it is operational. That is,
it can be applied to a single system at a given point in time. In contrast, most
other popular definitions identify desirable system qualities that open systems
are expected to display, such as portability, interoperability, and scalability.
Unfortunately, there is no way to measure a system with respect to these
qualities at a single point in time (e.g., "Portable" to what platforms? And how
many? "Interoperable" with what other systems or components? And how many?
"Scalable" for what use? To what size?). Each of these qualities implies a
relationship, either between the subject system and some other unspecified one
(s) or between the subject system and itself over time.

This definition also supports the vision of what people hope to achieve with open
systems. The very phrase "plug-and-play" brings to mind children's toys like
Tinker ToysTM and LegosTM. The key to them is a small set of well-defined,
consistently-enforced interfaces. It also invokes the images of hardware
components that can be plugged together because, for example, the pins and
configuration of the female connector are perfectly complementary to those of
the male connector. All these schemes have interface standards in common.

Most of the interface standards used in computer-based systems are for
application program interfaces (APIs), data formats, or protocols. For all of these
kinds of interface standards, one can find fully-defined specifications; without
such clear definition in the specifications, wide variation quickly emerges among
implementations, and this undermines the intended compatibility. Interface
standards are made widely available to the public to generate a thriving market
for components that can be plugged together. They are maintained using many
forms of group consensus; this precludes one vendor or group from making
arbitrary changes to the interface standard that will limit competition and
availability of alternative products.

Finally, for many of these interface standards it is possible to tell whether or not
a given implementation really matches the specification; this is called
conformance. If the implementations all match the specification/standard closely
enough, then one kind of incompatibility between components can be reduced if
not eliminated, and it may be possible to "plug" them into a system and get them
to "play" with the other components.2 On the other hand, if implementations only
loosely implement the standard or if incompatible interpretations cannot be
detected before trying to integrate a component into the system, then it is less
likely that the envisioned flexibility and adaptability can be realized.

It is important to realize that it is possible to create an open system, based on
interface standards, in which no COTS products or NDI are used. This might be
necessary in a situation where, for example, no COTS product conforming to the
interface standard also meet other system requirements, such as for real-time
performance or security. Although one would not gain the economic and
schedule advantages of using a component implementation that already existed
and was shared and supported by a number of users, the interface standards
would still provide the framework for future evolution of the system (provided
vendors do eventually pick up the standard and produce conformant products).

http://www.sei.cmu.edu/str/descriptions/cots.html (5 of 11)7/28/2008 11:27:35 AM

COTS and Open Systems--An Overview

Potentially some future product may emerge that does meet all the
requirements. In the mean time, the system enjoys the clarity and stability of a
well-defined specification.

Usage Considerations

There currently is a very strong push within the federal government, particularly
DoD, to make more use of COTS products and NDI.3 In addition to action by
DoD leaders, the Federal Acquisition Streamlining Acts of 1994 and 1995
directed the increased use of commercial items, coupled with several
adjustments to the federal procurement regulations to encourage the new
approach. Carney outlines current government trends toward using commercial-
off-the-shelf (COTS) products [Carney 97a, Carney 97b].

The reasoning behind these directives and laws is that government
organizations typically spend far too much effort on defining to the lowest level of
detail the desired characteristics of systems and how the contractors are to build
those systems to achieve those characteristics. Thus a lot of resources are
expended developing systems and components that often already exist- or exist
in "good enough" form with nearly the same capabilities- elsewhere. The
prevailing, and time-consuming, approach is always to develop from the ground
up; this approach results in unique systems each time. The result is systems that
are

● very expensive, with only one customer to bear the development and
maintenance costs over the life of the component or system

● inflexible and unable to easily capitalize on advances in technology
● historically fielding technology that is in excess of ten years old

Shifting to a paradigm in which systems are built primarily of components that
are available commercially offers the opportunity to lower costs by sharing them
with other users, thus amortizing them over a larger population, while taking
advantage of the investments that industry is putting into the development of
new technologies.

Open systems can have a positive impact either on new systems development
or in the context of legacy systems. Although there is generally more decision-
making freedom in the case of a new development, open systems can
nevertheless help shape an evolutionary path for a legacy system that will help
turn it into a more flexible and maintainable system.

Many initiatives are under way, both in the DoD and in individual services,
agencies, and companies, that are designed to promote the use of an open
systems approach and to secure even greater benefits than can be realized from
the use of COTS products alone. These initiatives are occurring because
projects have been learning the hard way that "just buying COTS" does not
necessarily secure all of the benefits desired. There are other problems and
sources of risk introduced by the use of COTS products.

http://www.sei.cmu.edu/str/descriptions/cots.html (6 of 11)7/28/2008 11:27:35 AM

COTS and Open Systems--An Overview

COTS products are not necessarily open. That is, they do not necessarily
conform to any recognized interface standards. Thus it is possible (in fact, likely)
that using a COTS product commits the user to proprietary interfaces and
solutions that are not common with any other product, component, or system. If
the sole objective is the ability to capture new technology more cheaply, then the
use of COTS products that are not open will do. But when one considers the
future of such a system, the disadvantages of this approach become apparent.
Many DoD systems have a 30- to 50-year lifetime, while the average COTS
component is upgraded every 6 to 12 months and new technology appears on
the scene about every 18 to 24 months. Thus any money that is saved by
procuring a COTS product with proprietary interfaces will quickly be lost in
maintenance as products and interfaces change- the ability to migrate cost-
effectively to other products and other technologies in the future will have been
lost.

Even if the expected lifetime of a system is only 5 to 10 years, the fluctuations in
COTS products and technology result in a state of constant change for any
system employing them. Interface standards provide a source of stability in the
midst of all this. Without such standards every change in the marketplace can
impose an unanticipated and unpredictable change to systems that use products
found in the marketplace. This situation is particularly painful when the vendor
stops supporting the product or goes out of business altogether, thus forcing a
change to a different product or vendor.

Program managers and lead engineers should also know that the depth of
understanding and technical and management skills required on a project team
is not necessarily diminished or decreased because of the use of COTS or open
systems. Arguably, the skills and understanding needed increase because of the
potential complexity of integration issues, the need to seriously consider longer
term system evolution as part of initial development, and the need to make
informed decisions about which products and standards are best.

Paradoxically, given the desire to produce systems more quickly, the emphasis
on standards can actually be something of an inhibitor. Some standards efforts,
in their desire to achieve maximum consensus, have very long cycle times (five
or more years), which certainly do not fit well with product development and
release cycles. This conflict is of concern and is being addressed by some
standards bodies, but it has led some projects to become involved with consortia
standards and also with de facto industry standards. While these are often
practical alternatives, they do have attendant risks; the de facto standards may
be proprietary, for example, and this limits long-term evolution. The key is to
weigh the risks of straying from the three basic criteria (fully-defined, available to
the public, and maintained according to group consensus) against what is
gained over the long term.

Maturity

The open systems concept has been at least partially introduced into C3I
systems, but it has been difficult to move into the realm of real-time embedded
systems, particularly weapon systems, where it is much more difficult to find
standards that meet a system's requirements. Examples might include cases of
extreme real-time performance or security concerns.

http://www.sei.cmu.edu/str/descriptions/cots.html (7 of 11)7/28/2008 11:27:35 AM

COTS and Open Systems--An Overview

There is limited documented experience with the open systems approach. An
example of successful use in the DoD is the Intelligence and Electronics Warfare
Common Sensor (IEWCS) program [IEWCS 96]. A survey of the awareness,
understanding, and implementation of open system concepts within the DoD is
available from the Open Systems Joint Task Force (OSJTF) [OSJTF 96].

There is more experience with the use of COTS items, but often this experience
is with COTS hardware. The concerns, problems, and solutions for COTS-based
software systems are somewhat different and not as well understood.

Costs and Limitations

An open systems approach requires investments in the following areas early in a
program's life cycle and on an ongoing basis:

● market surveys to determine the availability of standards
● standards selection
● standards profiling- the coordination and tailoring of standards to work

together
● selection of standards-compliant implementations

These costs/activities are the necessary foundation for creating systems that
serve current needs and yet can grow and advance as technology advances and
the marketplace changes.

A separate cost is the continued willingness of the government to invest in
standards development and maturation activities. While these activities are most
often handled at high government levels concerned with standards development
and usage (for example, Defense Information Systems Agency (DISA) in the
DoD), it is likewise important for individual programs (especially the larger
programs) to stay informed in this area. For example, individual programs should
be concerned about the following issues:

● When are revisions to specific standards coming out?
● What changes are proposed in the new revision?
● When are ballots on the revisions going to occur?
● Where are the implementations headed?

A COTS-based systems approach also requires new and different investments:

● market research on available and emerging products and technologies
● COTS product evaluation and selection
● "black box" integration of COTS components

http://www.sei.cmu.edu/str/descriptions/cots.html (8 of 11)7/28/2008 11:27:35 AM

COTS and Open Systems--An Overview

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology COTS and Open Systems

Application category Interfaces Design (AP.1.3.3)
Software Architecture (AP.2.1)

Quality measures category Openness (QM.4.1.2)
Interoperability (QM.4.1)
Maintainability (QM.3.1)

Computing reviews category Software Engineering Design (D.2.10)
Software Engineering Miscellaneous (D.2.m)

References and Information Sources

[Carney
97a]

Carney, D, & Oberndorf, P. "The Commandments of COTS: Still
Searching for the Promised Land." Crosstalk 10, 5 (May 1997): 25-30.
Also available online at
<URL: http://www.stsc.hill.af.mil/Crosstalk/frames.asp?uri=1997/05/
commandments.asp>.

[Carney
97b]

Carney, D. Assembling Large Systems from COTS Components:
Opportunities, Cautions, and Complexities [online]. Available WWW
<URL: /cbs/papers/paper13a.html>.

[FAR 96] Federal Acquisition Regulations. Washington, DC: General Services
Administration, 1996.

[IEWCS 96] Open Systems Joint Task Force Case Study of U.S. Army Intelligence
and Electronic Warfare Common Sensor (IEWCS) [online]. Available
WWW
<URL: http://www.acq.osd.mil/osjtf/how_to_do_os/program_apps/
index_1b.html> (1996).

[Meyers 97] Meyers, Craig & Oberndorf, Tricia. Open Systems: The Promises and
the Pitfalls. Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 1997.

http://www.sei.cmu.edu/str/descriptions/cots.html (9 of 11)7/28/2008 11:27:35 AM

http://www.stsc.hill.af.mil/Crosstalk/frames.asp?uri=1997/05/commandments.asp
http://www.stsc.hill.af.mil/Crosstalk/frames.asp?uri=1997/05/commandments.asp
http://www.sei.cmu.edu/cbs/papers/paper13a.html
http://www.acq.osd.mil/osjtf/how_to_do_os/program_apps/index_1b.html
http://www.acq.osd.mil/osjtf/how_to_do_os/program_apps/index_1b.html

COTS and Open Systems--An Overview

[OSJTF 96] Open Systems Joint Task Force Baseline Study [online]. Available
WWW
<URL: http://www.acq.osd.mil/osjtf/current_activities/
studies_and_projects/baseline.doc> (1996).

Current Author/Maintainer

Tricia Oberndorf, SEI

Modifications

7 August 97: updated [Carney 97a] reference
2 July 97: incorporated new definitions for COTS and NDI from the FARs

Minor updates in Maturity section and Costs and Limitations
9 April 97: minor edits; no content changes
10 Jan 97 (original); co-author for this version: John Foreman, SEI

Footnotes

1 "Property" in this definition explicitly excludes real property.

2 It should be noted that interface specifications are in general not sufficient to
ensure full "plug-and-play" operation. In practice, the real interface between two
components of a system consists of all the assumptions that each makes about
the other. APIs, data formats, and protocols address a large number of these
assumptions, but by no means all of them. It remains for further investigations to
determine the full set of interface knowledge that must be standardized to ever
get really close to an ideal "plug-and-play" system creation process.

3 In June 1994 Secretary of Defense William Perry directed that DoD
acquisitions should make maximum use of performance specifications and
commercial standards. In November 1994 Undersecretary of Defense
(Acquisition and Technology) Paul Kaminski directed "that `open systems'
specifications and standards be used for acquisition of weapon systems
electronics to the greatest extent practical."

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/cots_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

http://www.sei.cmu.edu/str/descriptions/cots.html (10 of 11)7/28/2008 11:27:35 AM

http://www.acq.osd.mil/osjtf/current_activities/studies_and_projects/baseline.doc
http://www.acq.osd.mil/osjtf/current_activities/studies_and_projects/baseline.doc
http://www.sei.cmu.edu/about/disclaimer.html

COTS and Open Systems--An Overview

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/cots.html (11 of 11)7/28/2008 11:27:35 AM

Cyclomatic Complexity

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Cyclomatic Complexity

Status

Advanced

Note

We recommend reading Maintenance of Operational Systems--An Overview
before reading this description; it offers a view of the life cycle of software from
development through reengineering. We also recommend concurrent reading of
Maintainability Index Technique for Measuring Program Maintainability, which
illustrates a specific application of cyclomatic complexity to quantify the
maintainability of software. These descriptions provide a framework for
assessing the applicability of cyclomatic complexity and other technologies to a
specific environment.

Purpose and Origin

Cyclomatic complexity is the most widely used member of a class of static
software metrics. Cyclomatic complexity may be considered a broad measure of
soundness and confidence for a program. Introduced by Thomas McCabe in
1976, it measures the number of linearly-independent paths through a program
module. This measure provides a single ordinal number that can be compared to
the complexity of other programs. Cyclomatic complexity is often referred to
simply as program complexity, or as McCabe's complexity. It is often used in
concert with other software metrics. As one of the more widely-accepted
software metrics, it is intended to be independent of language and language
format [McCabe 94].

Cyclomatic complexity has also been extended to encompass the design and
structural complexity of a system [McCabe 89].

Technical Detail

The cyclomatic complexity of a software module is calculated from a connected
graph of the module (that shows the topology of control flow within the program):

Cyclomatic complexity (CC) = E - N + p

http://www.sei.cmu.edu/str/descriptions/cyclomatic.html (1 of 7)7/28/2008 11:27:36 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/cyclomatic_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Cyclomatic Complexity

where E = the number of edges of the graph

N = the number of nodes of the graph

p = the number of connected components

To actually count these elements requires establishing a counting convention
(tools to count cyclomatic complexity contain these conventions). The complexity
number is generally considered to provide a stronger measure of a program's
structural complexity than is provided by counting lines of code. Figure 6 is a
connected graph of a simple program with a cyclomatic complexity of seven.
Nodes are the numbered locations, which correspond to logic branch points;
edges are the lines between the nodes.

Figure 6: Connected Graph of a Simple Program

A large number of programs have been measured, and ranges of complexity
have been established that help the software engineer determine a program's
inherent risk and stability. The resulting calibrated measure can be used in
development, maintenance, and reengineering situations to develop estimates of
risk, cost, or program stability. Studies show a correlation between a program's
cyclomatic complexity and its error frequency. A low cyclomatic complexity
contributes to a program's understandability and indicates it is amenable to
modification at lower risk than a more complex program. A module's cyclomatic

http://www.sei.cmu.edu/str/descriptions/cyclomatic.html (2 of 7)7/28/2008 11:27:36 AM

Cyclomatic Complexity

complexity is also a strong indicator of its testability (see Test planning under
Usage Considerations).

A common application of cyclomatic complexity is to compare it against a set of
threshold values. One such threshold set is in Table 4:

Table 4: Cyclomatic Complexity

Cyclomatic Complexity Risk Evaluation

1-10 a simple program, without much risk

11-20 more complex, moderate risk

21-50 complex, high risk program

greater than 50 untestable program (very high risk)

Usage Considerations

Cyclomatic complexity can be applied in several areas, including

● Code development risk analysis. While code is under development, it can
be measured for complexity to assess inherent risk or risk buildup.

● Change risk analysis in maintenance. Code complexity tends to increase
as it is maintained over time. By measuring the complexity before and
after a proposed change, this buildup can be monitored and used to help
decide how to minimize the risk of the change.

● Test Planning. Mathematical analysis has shown that cyclomatic
complexity gives the exact number of tests needed to test every decision
point in a program for each outcome. Thus, the analysis can be used for
test planning. An excessively complex module will require a prohibitive
number of test steps; that number can be reduced to a practical size by
breaking the module into smaller, less-complex sub-modules.

● Reengineering. Cyclomatic complexity analysis provides knowledge of
the structure of the operational code of a system. The risk involved in
reengineering a piece of code is related to its complexity. Therefore, cost
and risk analysis can benefit from proper application of such an analysis.

Cyclomatic complexity can be calculated manually for small program suites, but
automated tools are preferable for most operational environments. For
automated graphing and complexity calculation, the technology is language-
sensitive; there must be a front-end source parser for each language, with

http://www.sei.cmu.edu/str/descriptions/cyclomatic.html (3 of 7)7/28/2008 11:27:36 AM

Cyclomatic Complexity

variants for dialectic differences.

Cyclomatic complexity is usually only moderately sensitive to program change.
Other measures (see Complementary Technologies) may be very sensitive. It is
common to use several metrics together, either as checks against each other or
as part of a calculation set (see Maintainability Index Technique for Measuring
Program Maintainability).

Maturity

Cyclomatic complexity measurement, an established but evolving technology,
was introduced in 1976. Since that time it has been applied to tens of millions of
lines of code in both Department of Defense (DoD) and commercial applications.
The resulting base of empirical knowledge has allowed software developers to
calibrate measurements of their own software and arrive at some understanding
of its complexity. Code graphing and complexity calculation tools are available
as part (or as options) of several commercial software environments.

Costs and Limitations

Cyclomatic complexity measurement tools are typically bundled inside
commercially-available CASE toolsets. It is usually one of several metrics
offered. Application of complexity measurements requires a small amount of
training. The fact that a code module has high cyclomatic complexity does not,
by itself, mean that it represents excess risk, or that it can or should be
redesigned to make it simpler; more must be known about the specific
application.

Alternatives

Cyclomatic complexity is one measure of structural complexity. Other metrics
bring out other facets of complexity, including both structural and computational
complexity, as shown in Table 5.

Table 5: Other Facets of Complexity

Complexity Measurement Primary Measure of

Halstead Complexity Measures Algorithmic complexity, measured by counting
operators and operands

Henry and Kafura metrics Coupling between modules (parameters, global
variables, calls)

Bowles metrics Module and system complexity; coupling via
parameters and global variables

http://www.sei.cmu.edu/str/descriptions/cyclomatic.html (4 of 7)7/28/2008 11:27:36 AM

Cyclomatic Complexity

Troy and Zweben metrics Modularity or coupling; complexity of structure
(maximum depth of structure chart); calls-to and
called-by

Ligier metrics Modularity of the structure chart

Marciniak offers a more complete description of complexity measures and the
complexity factors they measure [Marciniak 94].

Complementary Technologies

The following three metrics are specialized measures that are used in specific
situations:

1. Essential complexity. This measures how much unstructured logic exists
in a module (e.g., a loop with an exiting GOTO statement).

2. The program in Figure 6 has no such unstructured logic, so its essential
complexity value is one.

3. Design complexity. This measures interaction between decision logic and
subroutine or function calls.

4. The program in Figure 6 has a design complexity value of 4, which is well
within the range of desirability.

5. Data complexity. This measures interaction between data references and
decision logic.

Other metrics that are "related" to Cyclomatic complexity in general intent are
also available in some CASE toolsets.

The metrics listed in Alternatives are also complementary; each metric highlights
a different facet of the source code.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Cyclomatic Complexity

Application category Test (AP.1.4.3)
Reapply Software Lifecyle (AP.1.9.3)
Reverse Engineering (AP.1.9.4)
Reengineering (AP.1.9.5)

http://www.sei.cmu.edu/str/descriptions/cyclomatic.html (5 of 7)7/28/2008 11:27:36 AM

Cyclomatic Complexity

Quality measures category Maintainability (QM.3.1)
Testability (QM.1.4.1)
Complexity (QM.3.2.1)
Structuredness (QM.3.2.3)

Computing reviews category Software Engineering Metrics (D.2.8)
Complexity Classes (F.1.3)
Tradeoffs Among Complexity Measures (F.2.3)

References and Information Sources

[Marciniak
94]

Marciniak, John J., ed. Encyclopedia of Software Engineering, 131-
165. New York, NY: John Wiley & Sons, 1994.

[McCabe 89] McCabe, Thomas J. & Butler, Charles W. "Design Complexity
Measurement and Testing." Communications of the ACM 32, 12
(December 1989): 1415-1425.

[McCabe 94] McCabe, Thomas J. & Watson, Arthur H. "Software Complexity."
Crosstalk, Journal of Defense Software Engineering 7, 12 (December
1994): 5-9.

[Perry 88] Perry, William E. A Structured Approach to Systems Testing.
Wellesley, MA: QED Information Sciences, 1988.

[Watson 96] Watson, Arthur H. & McCabe, Thomas J. "Structured Testing: A
Testing Methodology Using the Cyclomatic Complexity
Metric." [online]. Available WWW,
<URL: http://hissa.ncsl.nist.gov/HHRFdata/Artifacts/ITLdoc/235/
mccabe.html> (1996).

Current Author/Maintainer

Edmond VanDoren, Kaman Sciences, Colorado Springs

Modifications

12 Jul 2000: Updated reference list

10 Jan 1997 (original)

http://www.sei.cmu.edu/str/descriptions/cyclomatic.html (6 of 7)7/28/2008 11:27:36 AM

http://hissa.ncsl.nist.gov/HHRFdata/Artifacts/ITLdoc/235/mccabe.html
http://hissa.ncsl.nist.gov/HHRFdata/Artifacts/ITLdoc/235/mccabe.html

Cyclomatic Complexity

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/cyclomatic.html (7 of 7)7/28/2008 11:27:36 AM

http://www.sei.cmu.edu/about/disclaimer.html

Database Two Phase Commit

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Database Two Phase Commit

Status

Advanced

Note

We recommend Three Tier Software Architectures as prerequisite reading for
this technology description.

Purpose and Origin

Since the 1980s, two phase commit technology has been used to automatically
control and monitor commit and/or rollback activities for transactions in a
distributed database system. Two phase commit technology is used when data
updates need to occur simultaneously at multiple databases within a distributed
system. Two phase commits are done to maintain data integrity and accuracy
within the distributed databases through synchronized locking of all pieces of a
transaction. Two phase commit is a proven solution when data integrity in a
distributed system is a requirement. Two phase commit technology is used for
hotel and airline reservations, stock market transactions, banking applications,
and credit card systems. For more details on two phase commit see the
ORACLE7 Server Concept Manual and The Performance of Two-Phase Commit
Protocols in the Presence of Site Failures [ORACLE7 92, UCSB 94].

Technical Detail

As shown in Figure 7, applying two phase commit protocols ensures that
execution of data transactions are synchronized, either all committed or all rolled
back (not committed) to each of the distributed databases.

http://www.sei.cmu.edu/str/descriptions/dtpc.html (1 of 5)7/28/2008 11:27:37 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/dtpc_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Database Two Phase Commit

Figure 7: Distributed Databases When Two Phase Commit Happens
Simultaneously Through the Network

When dealing with distributed databases, such as in the client/server
architecture, distributed transactions need to be coordinated throughout the
network to ensure data integrity for the users. Distributed databases using the
two phase commit technique update all participating databases simultaneously.

Unlike non-distributed databases (see Figure 8), where a single change is or is
not made locally, all participating databases must all commit or all rollback in
distributed databases, even if there is a system or network failure at any node.
This is how the two phase commit process maintains system data integrity.

Figure 8: Non-Distributed Databases Make Only Local Updates

Two phase commit has two distinct processes that are accomplished in less than
a fraction of a second:

1. The Prepare Phase, where the global coordinator (initiating database)
requests that all participants (distributed databases) will promise to
commit or rollback the transaction. (Note: Any database could serve as
the global coordinator, depending on the transaction.)

http://www.sei.cmu.edu/str/descriptions/dtpc.html (2 of 5)7/28/2008 11:27:37 AM

Database Two Phase Commit

2. The Commit Phase, where all participants respond to the coordinator that
they are prepared, then the coordinator asks all nodes to commit the
transaction. If all participants cannot prepare or there is a system
component failure, the coordinator asks all databases to roll back the
transaction.

Should there be a machine, network, or software failure during the two phase
commit process, the two phase commit protocols will automatically and
transparently complete the recovery with no work from the database
administrator. This is done through use of pending transaction tables in each
database where information about distributed transaction is maintained as they
proceed through the two phase commit. Information in the pending transaction
table is used by the recovery process to resolve any transaction of questionable
status. This information can also be used by the database administrator to
override automated recovery procedures by forcing a commit or a rollback to
available participating databases.

Usage Considerations

Two phase commit protocols are offered in all modern distributed database
products. However, the methods for implementing two phase commits may vary
in the degree of automation provided. Some vendors provide a two phase
commit implementation that is transparent to the application. Other vendors
require specific programming of the calls into an application, and additional
programming would be needed should rollback be a requirement; this situation
would most likely result in an increase to program cost and schedule.

Maturity

The two phase commit protocol has been used successfully since the 1980s for
hotel and airline reservations, stock market transactions, banking applications
and credit card systems [Citron 93].

Costs and Limitations

There have been two performance issues with two phase commit:

1. If one database server is unavailable, none of the servers gets the
updates. This is correctable if the software administrator forces the
commit to the available participants, but if this is a recurring problem the
administrator may not be able to keep up, thus causing system and
network performance will deteriorate.

2. There is significant demand in network resources as the number of
database servers to which data must be distributed increases. This is
correctable through network tuning and correctly building the data
distribution through database optimization techniques.

Currently, two phase commit procedures are vendor proprietary. There are no
standards on how they should be implemented. X/Open has developed a
standard that is being implemented in several transaction processing monitors

http://www.sei.cmu.edu/str/descriptions/dtpc.html (3 of 5)7/28/2008 11:27:37 AM

Database Two Phase Commit

(see Transaction Processing Monitor Technology), but it has not been adopted
by the database vendors [X/Open 96]. Two phase commit proprietary protocols
have been published by several vendors.

Alternatives

An alternative to updating distributed databases with a two phase commit
mechanism is to update multiple servers using a transaction queuing approach
where transactions are distributed sequentially. Distributing transactions
sequentially raises the problem of users working with different version of the
data. In military usage, this could result in planning sorties for targets that have
already been eliminated.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Database Two Phase Commit

Application category Client-Server (AP.2.1.2.1)
Data Management (AP.2.6.1)

Quality measures category Accuracy (QM.2.1.2.1)

Computing reviews category Distributed Systems (C.2.4)

References and Information Sources

[Citron 93] Citron, A., et al. "Two-Phase Commit Optimization and
Tradeoffs in the Commercial Environment," 520-529.
Proceedings of the Ninth International Conference on Data
Engineering. Vienna, Austria, April 19-23, 1993. Los
Alamitos, CA: IEEE Computer Society Press, 1993.

[ORACLE7
92]

"Two-Phase Commit," 22-1-22-21. ORACLE7 Server Concept
Manual (6693-70-1292). Redwood City, CA: Oracle, 1992.

[Schussel 96] Schussel, G. Replication, The Next Generation of Distributed
Database Technology [online]. Available WWW
<URL: http://www.dciexpo.com/geos/replica.htm> (1996).

[UCSB 94] The Performance of Two-Phase Commit Protocols in the
Presence of Site Failures (TRCS94-09). Santa Barbara, CA:
University of California, Computer Science Department, April
1994.

http://www.sei.cmu.edu/str/descriptions/dtpc.html (4 of 5)7/28/2008 11:27:37 AM

http://www.dciexpo.com/geos/replica.htm

Database Two Phase Commit

[X/Open 96] X/Open Web Site [online]. Available WWW
<URL: http://www.rdg.opengroup.org/> (1996).

Current Author/Maintainer

Darleen Sadoski, GTE

External Reviewers

David Altieri, GTE

Modifications

20 June 97: updated URLs for [Schussel 96] and [X/Open 96]; changed label for
[UCSB 94]
10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/dtpc_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/dtpc.html (5 of 5)7/28/2008 11:27:37 AM

http://www.rdg.opengroup.org/
http://www.sei.cmu.edu/about/disclaimer.html

Defense Information Infrastructure Common Operating Environment (DII COE)

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Defense Information Infrastructure Common Operating Environment (DII
COE)

Status

Advanced

Note

We recommend Reference Models, Architectures, Implementations--An Overview as prerequisite
reading for this technology description.

Purpose and Origin

The Defense Information Infrastructure (DII) Common Operating Environment (COE) was
developed in late 1993. DII COE was designed to eliminate duplication of development (in areas
such as mapping, track management, and communication interfaces) and eliminate design
incompatibility among Department of Defense (DoD) systems. Conceptually, the COE is designed
to reduce program cost and risk through reusing proven solutions and sharing common
functionality, rather than developing systems from "scratch" every time. The purpose of DII COE is
to field systems with increasing interoperability, reusability, portability, and operational capability,
while reducing development time, technical obsolescence, training requirements, and life-cycle cost.

DII COE reuses proven software components contributed by services and programs to provide
common Command, Control, Communication, Computer and Intelligence (C4I) functions. For more
details on DII COE see the Defense Information Infrastructure (DII) Common Operating
Environment (COE) Integration and Runtime Specification and the DII COE Style Guide [DII COE
96a, DII COE 96b].

Technical Detail

DII COE technically is

● an architecture (including a set of guidelines and standards)
● a runtime environment
● software (including reusable components)
● a definition for acceptable application programming interfaces

The four major areas are described in further detail below:

1. Architecture. The DII COE architecture is fully compliant with the Department of Defense's
Technical Architecture for Information Management (TAFIM Reference Model). The DII COE

http://www.sei.cmu.edu/str/descriptions/diicoe.html (1 of 7)7/28/2008 11:27:38 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/diicoe_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Defense Information Infrastructure Common Operating Environment (DII COE)

architecture, presented in Figure 9, is a "plug and play," client/server architecture
(implemented and running) that defines COE interfaces and how system components will fit
together and interact.

2. Runtime environment. A runtime operating environment that includes a standard user
system interface, operating system, and windowing environment. The DII COE architecture
facilitates a developer in establishing the environment such that there is no conflict with other
developers' products.

Figure 9: Defense Information Infrastructure Common Operating Environment [DII COE 96]

1. Software. A defined set of reusable functions that are already built (available commercially or
as government products). Software (with the exception of the operating system and basic
windowing software) is packaged in self-contained, manageable units called segments.
Segments are the DII COE building block for constructing COE systems. Segments (mission
applications and components) may consist of one or more Computer Software Configuration
Items (CSCIs). Segments that are part of the reusable (by many mission applications) COE
are referred to as COE component segments. Segments are named according to their
meaning to operators, rather than internal software structures. Structuring the software into
segments allows functionality to be easily added or removed from the target system to meet
specific mission and site needs. DII COE databases are divided among segments (as are
mission applications) according to the data they contain and the mission applications they
support.

2. The kernel COE (light gray shading in Figure 9) is the minimal set of software that is required
on every workstation. It includes operating system, windowing services, and external
environment interfaces. There are normally five other services also included in the COE
kernel: system administration, security administration, executive manager, and two

http://www.sei.cmu.edu/str/descriptions/diicoe.html (2 of 7)7/28/2008 11:27:38 AM

Defense Information Infrastructure Common Operating Environment (DII COE)

templates, one for creating privileged operator accounts, and one for creating non-privileged
operator accounts. A subset of the kernel COE (defined as Bootstrap COE) is used during
initial installation of COE. DII COE is hardware-independent and will run on any open system
platform with a standards-based operating system, such as POSIX-compliant UNIX and
Windows NT.

3. APIs. Two types of Application Programming Interfaces (APIs) are defined for accessing
COE segments:

❍ public APIs (COE interfaces that will be supported for the COE life cycle)
❍ private APIs (interfaces that are supported for a short period of time to allow legacy

systems to migrate to full COE compliance)
4. Newly-developed software (segments) must use public APIs to be COE compliant. The

incremental implementation strategy for DII COE is to protect legacy system functionality
while migrating to fully-compliant COE design by evolving from private APIs to public APIs.

Usage Considerations

There is only one COE available for use by other systems. This COE is currently being used by
GCCS (Global Command and Control System) and GCSS (Global Combat Support System). Any
system built to the COE infrastructure must access the services using the COE APIs. This improves
interoperability between systems because the integration approach, the tool sets, and the segments
(software components, not just algorithms) are used by each system [DII COE 96a].

Conceptually, compliance to COE standards ensures that software that is developed or modified for
use within COE meets the intended requirements and goals and will evolve with the COE system.
Another perspective is that compliance measures the degree to which "plug and play" is possible
[Perry 96]. Owners of legacy systems should be familiar with COE compliance requirements to
ensure that scoping and planning for future legacy enhancement includes COE requirements and
goals.

There are a number of tradeoffs an organization must address when determining evolution of a
legacy system to a system that meets COE compliance.

● What are the goals of the legacy system, and will migrating to COE compliance support
achievement of the long range goals?

● What level of COE compliance will best and most cost effectively achieve the legacy
system's long range goals?

● What is the current state of the legacy system- how compliant is it today?
● Given the current state of the legacy system, what resources are available to begin and

follow through on the migration of the code to COE compliance?
● Does the organization want/need to control the legacy system code, and if not, when in the

migration to COE is turning it over to DISA desirable?

Based on this analysis, the appropriate level and strategy for compliance can be determined. The
four DII COE compliance categories are described in Table 6:

Table 6: DII COE Compliance Categories

Category Name Description

http://www.sei.cmu.edu/str/descriptions/diicoe.html (3 of 7)7/28/2008 11:27:38 AM

Defense Information Infrastructure Common Operating Environment (DII COE)

1 Runtime
Environment

Measures compliance of the proposed segment's fit within
the COE executing environment, the amount it reuses
COE segments, whether it will run on a COE platform,
and whether it will interfere with other segments. This can
be done by prototyping within the COE.

2 Style Guide Measures compliance of the proposed segment's user
interface to the Style Guide [DII COE 96b]. This is to
ensure that proposed segment will appear consistent with
the rest of the COE-based system to minimize training and
maintenance cost. Style Guide compliance can be done via
a checklist based on the Style Guides requirements.

3 Architectural Compatibility Measures compliance of the proposed segment's fit within
the COE architecture, and the segment's potential life
cycle as COE evolves. This can be done by evaluating the
segment's use of TAFIM and COE standards and
guidelines, and it's internal software structures.

4 Software
Quality

Assesses a proposed segment's program risk and software
maturity through the use of traditional software metrics.
This can be done using measurements such as lines of
code and McCabe complexity metrics (see Cyclomatic
Complexity).

Category 1 (Runtime) compliance progresses through eight (8) levels of integration from a state of
coexistence (agreement on a set of standards and ensure non-interference) with other COE
segments, to federated (non-interference when on the same workstation), to fully integrated (share
the same software and data). For a segment to be COE compliant, it must be qualified with a
category name and compliance level. The following summarizes Category 1's eight levels of
compliance; Appendix B of [DII COE 96a] provides a compliance checklist for each of the eight
levels. Checklists are the current means of assessing progress toward compliance.

● Standards Compliance Level One - A proposed segment shares only a common set of
standards with the rest of the COE environment, data sharing is undisciplined, and software
reuse is minimal other than use of Commercial-Off-The Shelf (COTS) software products.
Level 1 allows simultaneous execution of two systems.

● Network Compliance Level Two - Two segments will coexist on the same Local Area
Network (LAN), but on different CPUs. There is limited data sharing and there may be
common user interface "look and feel" if common user interface standards are applied.

● Workstation Compliance Level Three - Two applications can reside on the same LAN, share
data, and coexist on the same workstation (environmental conflict have been resolved). The
kernel COE, or its functional equivalent, resides on the workstation. Some COE components
may be reused, but segmenting may not be done. Segments may not interoperate, and do
not use the COE services.

● Bootstrap Compliance Level Four - Segment formatting is used in all applications. Segments
share the bootstrap COE. Some segment conflicts can be automatically checked by the COE
system. COE services are not being used. To switch between segments, users may still
require separate login accounts. To submit a prototype to DISA for consideration of use,
Bootstrap Compliance is required, although these segments will not be fielded or put in the

http://www.sei.cmu.edu/str/descriptions/diicoe.html (4 of 7)7/28/2008 11:27:38 AM

Defense Information Infrastructure Common Operating Environment (DII COE)

DISA maintained online library.
● Minimal COE Compliance Level Five - All segments share the same kernel COE (equivalent

functionality is not acceptable at Level Five). Functionality is available through the COE
Executive Manager. Segments may be successfully installed and removed through COE
installation tools. Segment descriptor files describe boot, background, and local processes.
Segments are registered and available through the online library. Applications appear
integrated to the user, but there may be duplication of functionality. Interoperability is not
guaranteed. DISA may allow Minimal COE Compliance segments to be installed and used
as prototypes at a few sites for evaluation. They can be placed in the library. Currently, Level
5 appears to be the level many legacy systems are targeting.

● Intermediate COE Compliance Level Six - Segments use existing account groups, and reuse
one or more COE segments. Minor differences may exist between the Style Guide [DII COE
96b] and the segment's graphical user interface implementation.

● Interoperability Compliance Level Seven - To ensure interoperability, proposed segments
must reuse COE segments, including communication interfaces, message parsers, database
tables, track data elements, and logistic services. Public APIs provide access with very few,
if any, private APIs. There is no duplicate functionality in the COE segments. DISA requires
Interoperability Compliance, for fieldable products and a migration strategy to full COE
Compliance (Level 8). A migration strategy is not needed if the proposed segment will be
phased out in the near term.

● Full COE Compliance Level Eight - All proposed new segments use COE services to the
maximum extent possible. New segments are available through the Executive Manager and
are completely integrated into the system. All segments fully comply with the Style Guide.
[DII COE 96b]. All segments use only public APIs. There is no duplication of functionality any
where in the system (as COE or as a mission application).

Two important resources for COE developers and operational sites are the online COE Software
Repository System (CSRS) that is used to disseminate and manage software, and the COE
Information Server (CINFO) that is used for documentation, meeting notices and general COE
information. [DII COE 96a]

Maturity

COE initial proof of concept was created and installed in 1994 with Global Command and Control
System (GCCS) Version 1.0. GCCS version 1.1 was used to monitor events during the 1994 Haiti
crisis. In 1995, GCCS version 2.0 began fielding to a number of operational sites. There are two
systems currently using DII COE: GCCS (developed in 1994 for a near term replacement for World-
Wide Military Command and Control System) and GCSS (already fielded at a number of operational
CINCs). It is expected that DII COE will be enhanced to include more functionality in such areas as
Electronic Commerce/Electronic Data Interchange (EC/EDI), transportation, base support,
personnel, health affairs, and finance. [DII COE 96a]

Costs and Limitations

DII COE is relatively new; actual cost, benefit, and risk information is still being collected.

Dependencies

DII COE is dependent of the evolution of TAFIM to ensure compatibility. (see TAFIM Reference
Model). An additional dependency could be the Joint Technical Architecture (JTA). The JTA is now
being mandated as a set of standards and guidelines for C4I systems, specifically in the area of
interoperability, to supersede TAFIM Volume 7, which did not appear to go far enough to ensure

http://www.sei.cmu.edu/str/descriptions/diicoe.html (5 of 7)7/28/2008 11:27:38 AM

Defense Information Infrastructure Common Operating Environment (DII COE)

interoperability [JTA 96].

Alternatives

Under conditions where the TAFIM reference model and DII COE compliance is not required, an
alternative model would be the Reference Model for Frameworks of Software Engineering
Environments (known as the ECMA reference model [ECMA 93]) that is promoted in Europe, and
used commercially and world-wide. Commercially-available Hewlett-Packard products use this
model [HP 96]. Another alternative would be the Common Object Request Broker Architecture
(CORBA) if the design called for object-oriented infrastructure (see Common Object Request Broker
Architecture).

Complementary Technologies

Open systems (see COTS and Open Systems--An Overview) would be a complementary
technology to DII COE because work done in open system supports the COE goal of achieving
interoperable systems.

Index Categories

This technology is classified under the following categories. Select a category for a list of related
topics.

Name of technology Defense Information Infrastructure Common Operating Environment

Application category Software Architecture Models (AP.2.1.1)

Quality measures category Interoperability (QM.4.1)
Reusability (QM.4.4)
Portability (QM.4.2)

Computing reviews category not available

References and Information Sources

[DII COE
96a]

Defense Information Infrastructure (DII) Common Operating Environment (COE)
Integration and Runtime Specification (I&RTS) [online]. Available WWW
<URL: http://spider.osfl.disa.mil/dii> (1996).

[DII COE
96b]

DII COE Style Guide, Version 2.0 [online]. Available WWW
<URL: http://spider.osfl.disa.mil/dii> (1996).

[ECMA 93] Reference Model for Frameworks of Software Engineering Environments, 3rd
Edition (NIST Special Publication 500-211/Technical Report ECMA TR/55).
Prepared jointly by NIST and the European Computer Manufacturers Association
(ECMA). Washington, DC: U.S. Government Printing Office, 1993.

http://www.sei.cmu.edu/str/descriptions/diicoe.html (6 of 7)7/28/2008 11:27:38 AM

http://spider.osfl.disa.mil/dii
http://spider.osfl.disa.mil/dii

Defense Information Infrastructure Common Operating Environment (DII COE)

[HP 96] Integrated Solutions Catalog for the SoftBench Product Family. Palo Alto, CA:
Hewlett-Packard, 1996.

[JTA 96] U.S. Department of Defense. Joint Technical Architecture (JTA) [online]. Available
WWW
<URL: http://www-jta.itsi.disa.mil/>(1996).

[Perry 96] Perry, Frank. Defense Information Infrastructure Common Operating Environment
(briefing). April 17, 1996. Arlington, VA: Defense Information Systems Agency.

Current Author/Maintainer

Darleen Sadoski, GTE

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the U.S.
Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/diicoe_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/diicoe.html (7 of 7)7/28/2008 11:27:38 AM

http://www-jta.itsi.disa.mil/
http://www.sei.cmu.edu/about/disclaimer.html

Multi-Level Secure One Way Guard With Random Acknowledgment

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Multi-Level Secure One Way Guard with Random
Acknowledgment

Status

Draft

Note

We recommend Computer System Security--An Overview as prerequisite
reading for this technology description.

Purpose and Origin

Multi-level secure (MLS) systems are composed of low systems and high
systems. Low systems can transmit data to a high system, but high systems
cannot transmit data to a low system. That is called write down and it is not
allowed by multi-level security models, not even to acknowledge (ACK) receipt of
data from the low system. This rule exists to prevent a covert timing channel
from the high system to the low system. If data integrity and reliable
communications are to occur in a system, then messages must be
acknowledged. MLS one way guard with random ACK is a form of information
flow controls to be imbedded in operational systems that provides a means of
acknowledging data without providing a covert path. This technology was first
developed (theoretically) in 1993 as an interface between one source and one
destination. In 1995 the concept was expanded to address a network of several
source low and destination high systems.

Technical Detail

This technology employs a one way guard that buffers a message from a low
system and passes it on to the high system. When the high system ACKs the
message, the one way guard holds the ACK for a bounded random length of
time until passing the ACK to the low system. This destroys any possible covert
timing channel as the high system has no control of the timing to the low system.
The algorithm to determine the length of time to delay the ACK considers the
effect on throughput of delaying multiple sources of data for each destination
and the combined throughput to the destination. The algorithm therefore
becomes more complex as more sources and destinations are considered.
There will be a small negative performance influence on individual messages
that could require upgraded interfaces if they are close to capacity. A benefit of

http://www.sei.cmu.edu/str/descriptions/mlsone.html (1 of 4)7/28/2008 11:27:39 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/mlsone_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Multi-Level Secure One Way Guard With Random Acknowledgment

this technology is that it allows reliable transmission over an MLS network
because messages that are not ACKed are recognized as not received and can
then be retransmitted by the sending system.

Usage Considerations

Sending processes using this technology must account for the maximum
possible delay in an ACK before retransmitting a message. Increased buffer
space must be provided in the one way guard to hold messages until they can
be ACKed. The amount of time and amount of buffer space required are a
function of the number of sources and destinations involved and the size and
rate of messages. Using this technology in a network of mixed security systems
provides for no lost messages and no duplication of messages.

Maturity

This technology is new but is an incremental development of one way security
guards that have been in use since the 1960s. This technology has been
modeled and prototyped but has not been used in an operational system.

Costs and Limitations

Using this technology will require knowledge of security architectures, the
recognition of covert timing channels and means to eliminate them, and
Designated Approving Authority (DAA) requirements for assurance.1

Dependencies

Successful use of this technology in a system requires that an ACK protocol be
employed by the nodes that sends another message only after the last
transmitted message has been ACKed.

Alternatives

Other approaches to transferring data through a one way guard to enhance
reliability involve multiple transmissions of a message without acknowledging
receipt or manual accounting of messages and requests for transmission. These
alternatives lead to increased traffic over the network because of duplicate
messages or increased operator interaction.

Complementary Technologies

A complimentary technology is covert channel analysis in MLS systems

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

http://www.sei.cmu.edu/str/descriptions/mlsone.html (2 of 4)7/28/2008 11:27:39 AM

Multi-Level Secure One Way Guard With Random Acknowledgment

Name of technology Multi-Level Secure One Way Guard with
Random Acknowledgment

Application category System Security (AP.2.4.3)

Quality measures category Vulnerability (QM.2.1.4.1)
Security (QM.2.1.5)

Computing reviews category Computer-Communications Networks Security
and Protection (C.2.0)
Security and Protection (K.6.5)

References and Information Sources

[IEEE
95]

Proceedings of the 1995 IEEE Symposium on Security and Privacy.
Oakland, CA, May 8-10, 1995. Los Alamitos, CA: IEEE Computer
Society Press, 1995.

Modifications

10 Jan 97 (original)

Footnotes

1 The DAA is the security official with the authority to say a system is secure and
is permitted to be used.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/mlsone_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

http://www.sei.cmu.edu/str/descriptions/mlsone.html (3 of 4)7/28/2008 11:27:39 AM

http://www.sei.cmu.edu/about/disclaimer.html

Multi-Level Secure One Way Guard With Random Acknowledgment

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/mlsone.html (4 of 4)7/28/2008 11:27:39 AM

Network Management -- An Overview

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Network Management--An Overview

Status

Advanced

Purpose and Origin

In the early 1980s computer networks began to grow and be interconnected. As the
size of these networks grew, they became harder to manage and maintain, thus the
need for network management was realized. One of the oldest forms of network
management is the use of the remote login to monitor or configure a network device;
however, today more sophisticated network management tools are available. Network
management is a requirement for anyone who wants to control and monitor their
networks.

Technical Detail

Functional Areas of Network Management. Network management is the ability to
control and monitor a computer network from a central location. The International
Organization for Standardization (ISO)1 defined a conceptual model for describing the
key functional areas of network management which are described below [X.700 96]:

Note: In general, network management systems available from vendors today do not
support all the key functional areas, and in a supported functional area, the coverage
may be incomplete even though support is claimed.

● Fault Management: Provides facilities that allow network managers to discover
faults in managed devices,2 the network, and network operation, to determine
their cause and to take remedial action. To enable this, fault management
provides mechanisms to:

❍ Report the occurrence of faults
❍ Log reports
❍ Perform diagnostic tests
❍ Correct faults (possibly automatically)

● Configuration Management: Monitors network configuration information so that
the effects of specific hardware and software can be managed and tracked. It
may provide the ability to initialize, reconfigure, operate and shut down
managed devices.

● Accounting: Measures network utilization of individual users or groups to:
❍ Provide billing information

http://www.sei.cmu.edu/str/descriptions/network.html (1 of 6)7/28/2008 11:27:40 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/network_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Network Management -- An Overview

❍ Regulate users or groups
❍ Help keep network performance at an acceptable level

● Performance Management: Measures various aspects of network performance
including the gathering and analysis of statistical data about the system so that
it may be maintained at an acceptable level. Performance management
provides the ability to:

❍ Obtain the utilization and error rates of network devices
❍ Provide a consistent level of performance by ensuring that devices have

a sufficient capacity.
● Security Management: Controls access to network resources so that

information can not be obtained without authorization by:
❍ Limiting access to network resources
❍ Providing notification of security breaches and attempts

Network Management Architecture. In general, network management systems have
the same basic architecture, as shown in Figure 27.

Figure 27: Typical Network Management Architecture [Cisco 96]

The architecture consists of the following elements:

● Network Management Station(s): The network management station3 runs the
network management application4 that gathers information about managed
devices from the management agent5 which resides within a managed device.
The network management application typically must process large amounts of
data, react to events, and prepare relevant information for display. It usually has
a control console with a GUI interface which allows the operator to view a

http://www.sei.cmu.edu/str/descriptions/network.html (2 of 6)7/28/2008 11:27:40 AM

Network Management -- An Overview

graphical representation of the network, control managed devices on the
network and program the network management application. Some network
management applications can be programmed to react to information collected
from management agents and/or set thresholds with the following actions:

❍ Perform tests and automatic corrective actions (reconfiguration,
shutdown of a managed device)

❍ Logging network events
❍ Present status information and alerts to operator

● Managed Devices: A managed device can be any type of node residing on a
network, such as a computer, printer or router. Managed devices contain a
management agent.

● Management agents: Provides information about the managed device to the
network management application(s) and may also accept control information.

● Network management protocol: Protocol used by the network management
application(s) and the management agent to exchange management
information.

● Management Information: The information that is exchanged between the
network management application(s) and the management agents that allows
the monitoring and control of a managed device.

Network management software (network management applications and agents) is
usually based upon a particular network management protocol and the network
management capabilities provided with the software are usually based upon the
functionality supported by the network management protocol. Most systems use open
protocols; however, some network management software is based upon vendor
specific proprietary protocols. The selection of network management software is driven
by the following factors:

● Network environment (scope and nature of the network)
● Network management requirements
● Cost
● Operating systems involved

The two most common network management protocols are the

● Simple Network Management Protocol
● Common Management Information Protocol

SNMP is by far the most widely used network management protocol and use is
widespread in LAN environments. CMIP is used extensively in telecommunication
environments, where networks tend to be large and complex.

Usage Considerations

A considerable amount of time is usually required to effectively deploy and learn to use
network management software. This is because network managers must be extremely
familiar with the network management protocol and the data structures associated with
the network management information. Network management protocols and the data
structures associated with the network management information are typically complex.

Many network management implementations do not provide support for network

http://www.sei.cmu.edu/str/descriptions/network.html (3 of 6)7/28/2008 11:27:40 AM

Network Management -- An Overview

devices which use vendor specific protocols.

A network management system for a small isolated network may not be cost effective
or needed. This of course depends on functionality, reliability and performance
requirements of the network and attached systems.

Maturity

Network management software often lacks the functionality needed to effectively
manage a network. Some of this can be attributed to the deficiencies in the network
management protocols.

Numerous network management packages are available from a wide variety of
vendors. Some packages are simple and provide network management facilities for a
single network, others can be complex and handle multiple types of networks. New
products and enhancements to existing network management packages are
announced frequently.

Costs and Limitations

Network management systems can be quite expensive, and are often complex.
Personnel with specialized training are often required to effectively configure, maintain
and operate the network management system.

Index Categories

This technology is classified under the following categories. Select a category for a list
of related topics.

Name of technology Network Management

Application category Protocols (AP.2.2.3)
Network Management (AP.2.2.2)

Quality measures category Openness (QM.4.1.2)
Interoperability (QM.4.1)
Maintainability (QM.3.1)
Scalability (QM.4.3)
Security (QM.2.1.5)

Computing reviews category Network Operations (C.2.3)
Distributed Systems (C.2.4)

References and Information Sources

http://www.sei.cmu.edu/str/descriptions/network.html (4 of 6)7/28/2008 11:27:40 AM

Network Management -- An Overview

[Cisco 96] Internetworking Technology Overview / Network Management Basics
[online]. Available WWW
<URL: http://cio.cisco.com/univercd/data/doc/cintrnet/ito/55018.htm>
(1996).

[Stallings
93]

Stallings, William. SNMP, SNMPv2, and CMIP: The Practical Guide to
Network Management Standards. Reading, MA: Addison-Wesley, 1993.

[Vallillee
96]

Vallillee, Tyler. SNMP & CMIP: An Introduction To Network
Management [online]. Available WWW
<URL: http://www.inforamp.net/~kjvallil/t/snmp.html> (1996).

[X.700 96] X.700 and Other Network Management Services [online]. Available
WWW
<URL: http://ganges.cs.tcd.ie/4ba2/x700/index.html> (1996).

Current Author/Maintainer

Dan Plakosh, SEI

Modifications

9 February 98: Minor modifications

19 June 97 (original)

Footnotes

1 A voluntary, non-treaty organization founded in 1946 which is responsible for
creating international standards in many areas, including computers and
communications. Its members are the national standards organizations of the 89
member countries, including ANSI for the U.S.

2 A managed device is any type of node residing on a network, such as a computer,
printer or routers that contain a management agent.

3 The network management station is the system that hosts the network management
application.

4 The network management application is the application that provides the ability to
monitor and control the network.

5 The network management agent is the software that resides in a managed device
that allows the device to be monitored and/or controlled by a network management
application.

The Software Engineering Institute (SEI) is a federally funded research and development center

http://www.sei.cmu.edu/str/descriptions/network.html (5 of 6)7/28/2008 11:27:40 AM

http://cio.cisco.com/univercd/data/doc/cintrnet/ito/55018.htm
http://www.inforamp.net/~kjvallil/t/snmp.html
http://ganges.cs.tcd.ie/4ba2/x700/index.html

Network Management -- An Overview

sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/network_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/network.html (6 of 6)7/28/2008 11:27:40 AM

http://www.sei.cmu.edu/about/disclaimer.html

Nonrepudiation in Network Communications

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Nonrepudiation in Network Communications

Status

Draft

Note

We recommend Computer System Security--An Overview as prerequisite
reading for this technology description.

Purpose and Origin

The goal of nonrepudiation is to prove that a message has been sent and
received. This is extremely important in C4I networks where commands and
status must be issued and responded to, in banking networks where financial
transactions must be verifiably completed, and in legal networks where signed
contracts are transmitted. The Trusted Network Interpretation of the Trusted
Computer System Evaluation Criteria (the Red Book) defines the requirement for
the military environment. Current technology to accomplish this involves a
central authority that verifies and time stamps digital signatures. The
technologies for digital signatures have existed since the development of Public
Key Cryptography in the late 1970s.

Technical Detail

Three parties are involved in current nonrepudiation schemes: the message
sender, the message arbitrator, and the message receiver. The sender creates a
message and creates and appends a public key encryption based digital
signature to the message. The sender appends identifying data to the message
and signs it again. The sender then transmits the message over the network to
the arbitrator. The arbitrator verifies the sender's signature and identifying data.
The arbitrator then adds a time stamp to the message and signs it. The message
is then sent to both the sender and the receiver. The receiver verifies the
arbitrator's signature and the sender's signature. The sender verifies the
message transmitted by the arbitrator as a copy of the one the sender originally
sent. If it does not verify or the sender did not send an original message, the
arbitrator is notified immediately. This prevents someone from pretending to be
the sender and transmitting a message to the receiver. The arbitrator keeps a
record of expired or compromised secret keys to use in the verification process.
This whole technology process assures the receiver that the message came

http://www.sei.cmu.edu/str/descriptions/nonrep.html (1 of 4)7/28/2008 11:27:40 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/nonrep_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Nonrepudiation in Network Communications

from the indicated source and records the time that the message was sent from
the sender to the receiver. The sender can not claim to not have sent the
message nor that a lost cryptographic key was used. The message sender,
arbitrator, and receiver can be implemented in software in different parts of the
network.

Usage Considerations

This technology introduces considerable overhead in the processing of
messages. Not only are there creation and verification additions at each end of
the transmission but the third party arbitrator processing adds additional
overhead and delay. The additional overhead should be considered in the
design of the system that uses the technology. This technology may provide the
only assured means to identify a source of a message on a network and
associate it with a time. The same technology can be used to validate an
acknowledgment message.

Maturity

The components of this technology are mature and are used in networks
consisting of PCs, workstations, or mainframes.

Costs and Limitations

Using this technology requires knowledge of digital signature algorithms, public
key encryption, one-way hashing algorithms and the means of protecting the
related keys from inadvertent or malicious compromise.

Dependencies

Successful use of this technology requires the generation and distribution of
public keys and the generation and protection of secret keys.

Alternatives

A less secure alternative is to use a time stamp in the senders signature without
using a central arbitrator. This is less secure because the sender could claim
that someone else sent the message with a stolen or lost key.

Complementary Technologies

Complementary technologies include one-way hashing, digital signatures, and
public key cryptography.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

http://www.sei.cmu.edu/str/descriptions/nonrep.html (2 of 4)7/28/2008 11:27:40 AM

Nonrepudiation in Network Communications

Name of technology Nonrepudiation in Network Communications

Application category System Security (AP.2.4.3)

Quality measures category Integrity (QM.2.1.4.1.1)
Trustworthiness (QM.2.1.4)

Computing reviews category Computer-Communications Networks Security
and Protection (C.2.0)
Security and Protection (K.6.5)

References and Information Sources

[Abrams 95] Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J.
Information Security An Integrated Collection of Essays. Los
Alamitos, CA: IEEE Computer Society Press, 1995.

[Schneier
96]

Schneier, Bruce. Applied Cryptography. New York, NY: John
Wiley & Sons, 1996.

[White 96] White, Gregory B.; Fisch, Eric A.; & Pooch, Udo W. Computer
System and Network Security. Boca Raton, FL: CRC Press, 1996.

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/nonrep_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes

http://www.sei.cmu.edu/str/descriptions/nonrep.html (3 of 4)7/28/2008 11:27:41 AM

http://www.sei.cmu.edu/about/disclaimer.html

Nonrepudiation in Network Communications

● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/nonrep.html (4 of 4)7/28/2008 11:27:41 AM

Object-Oriented Analysis

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Object-Oriented Analysis

Status

In review

Purpose and Origin

Object-oriented analysis (OOA) is concerned with developing software
engineering requirements and specifications that expressed as a system's object
model (which is composed of a population of interacting objects), as opposed to
the traditional data or functional views of systems. OOA can yield the following
benefits: maintainability through simplified mapping to the real world, which
provides for less analysis effort, less complexity in system design, and easier
verification by the user; reusability of the analysis artifacts which saves time and
costs; and depending on the analysis method and programming language,
productivity gains through direct mapping to features of Object-Oriented
Programming Languages [Baudoin 96].

Technical Detail

An object is a representation of a real-life entity or abstraction. For example,
objects in a flight reservation system might include: an airplane, an airline flight,
an icon on a screen, or even a full screen with which a travel agent interacts.
OOA specifies the structure and the behavior of the object- these comprise the
requirements of that object. Different types of models are required to specify the
requirements of the objects. The information or object model contains the
definition of objects in the system, which includes: the object name, the object
attributes, and object relationships to other objects. The behavior or state model
describes the behavior of the objects in terms of the states the object exists in,
the transitions allowed between objects, and the events that cause objects to
change states. These models can be created and maintained using CASE tools
that support representation of objects and object behavior.

OOA views the world as objects with data structures and behaviors and events
that trigger operations, or object behavior changes, that change the state of
objects. The idea that a system can be viewed as a population of interacting
objects, each of which is an atomic bundle of data and functionality, is the
foundation of object technology and provides an attractive alternative for the
development of complex systems. This is a radical departure from prior methods
of requirements specification, such as functional decomposition and structured

http://www.sei.cmu.edu/str/descriptions/ooanalysis.html (1 of 5)7/28/2008 11:27:41 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/ooanalysis_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Object-Oriented Analysis

analysis and design [Yourdon 79].

Usage Considerations

This technology works best when used in new development. The experiences of
Hewlett-Packard in trying to recapture the requirements of legacy systems using
OOA suggests that the process can be accomplished only when legacy systems
are projected to be long-lived and frequently updated [Malan 95].

Maturity

Numerous OOA methods have been described since 1988. These OOA
methods include: Shlaer-Mellor, Jacobson, Coad-Yourdon, and Rumbaugh
[Baudoin 96]. The results of implementing these methods range from
tremendous successes at AT&T Bell Labs [Kamath 93] to a mixture of
successes and partial failures on other projects. AT&T Bell Labs realized
benefits from OOA on a large project called the Call Attempt Data Collection
System (CADCS). Additionally, they found during the development of two
releases of the CADCS that use of the OOA techniques resulted in an 8%
reduction in requirements specification time and a 30% reduction in
requirements staff effort [Kamath 93]. Other OOA efforts have not been able to
reproduce these successes for reasons such as the lack of completed pilot
projects, and the lack of formal OOA training [Malan 95].

Costs and Limitations

The use of this technology requires a commitment to formal training in OOA
methods. A method of training that has produced desired results is to initiate
pilot projects, conduct formal classes, employ OOA mentors, and conduct team
reviews to train properly both the analysis and development staff as well as the
program management team [Kamath 93]. There are almost no reported
successes using OOA methods on the first application without this type of
training program [Kamath 93]. Projects with initial and continuing OOA training
programs realize that the benefits of this technology depend upon the training
and experience levels of their staffs. Purchase of CASE tools that support object-
oriented methods may significantly enhance OOA- this is another cost to
consider.

Alternatives

Alternative technologies that are used for developing software engineering
requirements and specifications include functional decomposition, essential
systems analysis, and structured analysis [Yourdon 79].

Complementary Technologies

There is a strong relationship between OOA and other object-oriented
technologies (see Object-Oriented Database, Object-Oriented Design, and

http://www.sei.cmu.edu/str/descriptions/ooanalysis.html (2 of 5)7/28/2008 11:27:41 AM

Object-Oriented Analysis

Object-Oriented Programming Languages). This is especially true of object-
oriented design- certain object-oriented methods combine particular analysis and
design methods that work well together. In fact, the seamless use of objects
throughout the analysis, design, and programming phases provides the greatest
benefit. Use of OOA alone, without transition into OOD, would be a severely
limited approach.

Combining object-oriented methods with Cleanroom (with its emphasis on rigor,
formalisms, and reliability) can define a process capable of producing results
that are reusable, predictable, and high-quality. Thus, object-oriented methods
can be used for front-end domain analysis and design, and Cleanroom can be
used for life-cycle application engineering [Ett 96].

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Object-Oriented Analysis

Application category Define and Develop Requirements (AP.1.2.2.1)
Analyze Functions (AP.1.2.1.1)
Reengineering (AP.1.9.5)

Quality measures category Maintainability (QM.3.1)
Reusability (QM.4.4)

Computing reviews category Software Engineering Requirements and Specifications
(D.2.1)
Software Engineering Tools and Techniques (D.2.2)
Software Engineering Design (D.2.10)

References and Information Sources

[Baudoin
96]

Baudoin, Claude & Hollowell, Glenn. Realizing the Object-Oriented
Lifecycle. Upper Saddle River, NJ: Prentice Hall, 1996.

[Embley 95] Embley, David W.; Jackson, Robert B.; & Woodfield, Scott N. "OO
Systems Analysis: Is it or Isn't it?" IEEE Software 12, 2 (July 1995): 19-
33.

http://www.sei.cmu.edu/str/descriptions/ooanalysis.html (3 of 5)7/28/2008 11:27:41 AM

Object-Oriented Analysis

[Ett 96] Ett, William & Trammell, Carmen. A Guide to Integration of Object-
Oriented Methods and Cleanroom Software Engineering [online].
Originally available WWW
<URL: http://www.asset.com/stars/loral/cleanroom/oo/guidhome.htm>
(1996).

[Kamath 93] Kamath, Y. H.; Smilan, R. E.; & Smith, J. G. "Reaping Benefits With
Object-Oriented Technology." AT&T Technical Journal 72, 5
(September/October 1993): 14-24.

[Malan 95] Malan, R.; Coleman, D.; & Letsinger, R. "Lessons Learned from the
Experiences of Leading-Edge Object Technology Projects in Hewlett-
Packard," 33-46. Proceedings of Tenth Annual Conference on Object-
Oriented Programming Systems Languages and Applications. Austin,
TX, October 15-19, 1995. Palo Alto, CA: Hewlett-Packard, 1995.

[Yourdon 79] Yourdon, E. & Constantine, L. Structured Design. Englewood Cliffs, NJ:
Prentice Hall, 1979.

Current Author/Maintainer

Mike Bray, Lockheed-Martin Ground Systems

Modifications

27 Oct 97: updated URL for [Ett 96]
10 Jan 97: original

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/ooanalysis_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes

http://www.sei.cmu.edu/str/descriptions/ooanalysis.html (4 of 5)7/28/2008 11:27:41 AM

http://www.sei.cmu.edu/about/disclaimer.html

Object-Oriented Analysis

● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/ooanalysis.html (5 of 5)7/28/2008 11:27:41 AM

Object-Oriented Database

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Object-Oriented Database

Status

In review

Purpose and Origin

Object-oriented databases (OODBs) evolved from a need to support object-
oriented programming and to reap the benefits, such as system maintainability,
from applying object orientation to developing complex software systems. The
first OODBs appeared in the late 1980s. Martin provides a complete list of these
early OODBs [Martin 93]. OODBs are based on the object model and use the
same conceptual models as Object-Oriented Analysis, Object-Oriented Design
and Object-Oriented Programming Languages. Using the same conceptual
model simplifies development; improves communication among users, analysts,
and programmers; and lessens the likelihood of errors [Martin 93].

Technical Detail

OODBs are designed for the purpose of storing and sharing objects; they are a
solution for persistent object handling. Persistent data are data that remain after
a process is terminated.

There is no universally-acknowledged standard for OODBs. There is, however,
some commonality in the architecture of the different OODBs because of three
necessary components: object managers, object servers, and object stores.
Applications interact with object managers, which work through object servers to
gain access to object stores.

OODBs provide the following benefits:

● OODBs allow for the storage of complex data structures that can not be
easily stored using conventional database technology.

● OODBs support all the persistence necessary when working with object-
oriented languages.

● OODBs contain active object servers that support not only the distribution
of data but also the distribution of work (in this context, relational
database management systems (DBMS) have limited capabilities)
[Vorwerk 94].

http://www.sei.cmu.edu/str/descriptions/oodatabase.html (1 of 4)7/28/2008 11:27:42 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/oodatabase_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Object-Oriented Database

In addition, OODBs were designed to be well integrated with object-oriented
programming languages such as C++ and Smalltalk. They use the same object
model as these languages. With OODBs, the programmer deals with transient
(temporary) and persistent (permanent) objects in a uniform manner. The
persistent objects are in the OODB, and thus the conceptual walls between
programming and database are removed. As stated earlier, the employment of a
unified conceptual model greatly simplifies development [Tkach 94].

Usage Considerations

The type of database application should dictate the choice of database
management technology. In general, database applications can be categorized
into two different applications:

1. Data collection applications focus on entering data into a database and
providing queries to obtain information about the data. Examples of these
kinds of database applications are accounts payable, accounts
receivable, order processing, and inventory control. Because these types
of applications contain relatively simple data relationships and schema
design, relational database management systems (RDBMs) are better
suited for these applications.

2. Information analysis applications focus on providing the capability to
navigate through and analyze large volumes of data. Examples of these
applications are CAD/CAM/CAE, production planning, network planning,
and financial engineering. These types of applications are very dynamic
and their database schemas are very complex. This type of application
requires a tightly-coupled language interface and the ability to handle the
creation and evolution of schema of arbitrary complexity without a lot of
programmer intervention. Object-oriented databases support these
features to a great degree and are therefore better suited for the
information analysis type of applications [Desanti 94].

OODBs are also used in applications handling BLOBs (binary large objects)
such as images, sound, video, and unformatted text. OODBs support diverse
data types rather than only the simple tables, columns and rows of relational
databases.

Maturity

Claims have been made that OODBs are not used in mainstream applications,
are not scalable, and represent an immature technology [Object 96]. Two
examples to the contrary include the following:

● Northwest Natural Gas uses an OODB for a customer information
system. The system stores service information on 400,000 customers and
is accessed by 250 customer service representatives in seven district
offices in the Pacific Northwest.

● Ameritech Advanced Data Services uses an OODB for a comprehensive
management information system that currently includes accounting, order
entry, pricing, and pre-sales support and is accessed by more than 200

http://www.sei.cmu.edu/str/descriptions/oodatabase.html (2 of 4)7/28/2008 11:27:42 AM

Object-Oriented Database

people dispersed in a five state region.

Both of these applications are mainstream and represent databases well over a
gigabyte in size; this highlights the fact that OODBs do work well with large
numbers of users in large applications [Object 96].

Costs and Limitations

The costs of implementing OODB technology are dependent on the required
platforms and numbers of licenses required. The costs of the actual OODB
software are comparable to relational database management systems on similar
platforms. The use of OODBs requires an educational change among the
software developers and database maintainers and requires a corporate
commitment to formal training in the proper use of the OODB features.

Alternatives

An alternative is relational database management systems (RDBMs).

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Object-Oriented Database

Application category Database Design (AP.1.3.2)
Database Administration (AP.1.9.1)
Databases (AP.2.6)

Quality measures category Maintainability (QM.3.1)

Computing reviews category Database Management (H.2)

References and Information Sources

[Desanti 94] Desanti, Mike & Gomsi, Jeff. "A Comparison of Object and
Relational Database Technologies." Object Magazine 3, 5
(January 1994): 51-57.

[Martin 93] Martin, James. Principles of Object-Oriented Analysis and Design.
Englewood Cliffs, NJ: Prentice Hall, 1993.

http://www.sei.cmu.edu/str/descriptions/oodatabase.html (3 of 4)7/28/2008 11:27:42 AM

Object-Oriented Database

[Object 96] "Focus on ODBMS Debunking the Myths." Object Magazine 5, 9
(February 1996): 21-23.

[Tkach 94] Tkach, Daniel & Puttick, Richard. Object Technology in
Application Development. Redwood City, CA: Benjamin/
Cummings Publishing Company, 1994.

[Vorwerk
94]

Vorwerk, Raymond. "Towards a True OBBMS." Object Magazine
3, 5 (January 1994): 38-39.

Current Author/Maintainer

Mike Bray, Lockheed-Martin Ground Systems

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/oodatabase_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/oodatabase.html (4 of 4)7/28/2008 11:27:42 AM

http://www.sei.cmu.edu/about/disclaimer.html

Object-Oriented Design

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Object-Oriented Design

Status

In review

Purpose and Origin

Object-oriented design (OOD) is concerned with developing an object-oriented
model of a software system to implement the identified requirements. Many
OOD methods have been described since the late 1980s. The most popular
OOD methods include Booch, Buhr, Wasserman, and the HOOD method
developed by the European Space Agency [Baudoin 96]. OOD can yield the
following benefits: maintainability through simplified mapping to the problem
domain, which provides for less analysis effort, less complexity in system design,
and easier verification by the user; reusability of the design artifacts, which
saves time and costs; and productivity gains through direct mapping to features
of Object-Oriented Programming Languages [Baudoin 96].

Technical Detail

OOD builds on the products developed during Object-Oriented Analysis (OOA)
by refining candidate objects into classes, defining message protocols for all
objects, defining data structures and procedures, and mapping these into an
object-oriented programming language (OOPL) (see Object-Oriented
Programming Languages). Several OOD methods (Booch, Shlaer-Mellor, Buhr,
Rumbaugh) describe these operations on objects, although none is an accepted
industry standard. Analysis and design are closer to each other in the object-
oriented approach than in structured analysis and design. For this reason,
similar notations are often used during analysis and the early stages of design.
However, OOD requires the specification of concepts nonexistent in analysis,
such as the types of the attributes of a class, or the logic of its methods.

Design can be thought of in two phases. The first, called high-level design, deals
with the decomposition of the system into large, complex objects. The second
phase is called low-level design. In this phase, attributes and methods are
specified at the level of individual objects. This is also where a project can
realize most of the reuse of object-oriented products, since it is possible to guide
the design so that lower-level objects correspond exactly to those in existing
object libraries or to develop objects with reuse potential. As in OOA, the OOD
artifacts are represented using CASE tools with object-oriented terminology.

http://www.sei.cmu.edu/str/descriptions/oodesign.html (1 of 5)7/28/2008 11:27:43 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/oodesign_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Object-Oriented Design

Usage Considerations

OOD techniques are useful for development of large complex systems. AT&T
Bell Labs used OOD and realized the benefits of reduced product development
time and increased reuse of both code and analysis/design artifacts on a large
project called the Call Attempt Data Collection System (CADCS). This large
project consisted of over 350,000 lines of C++ code that ran on a central
processor with over 100 remote systems distributed across the United States.
During the development of two releases of the CADCS they found that use of the
OOD techniques resulted in a 30% reduction in development time and a 20%
reduction in development staff effort as compared to similarly sized projects
using traditional software development techniques [Kamath 93]. However, these
successes were realized only after thorough training and completion of three- to
six-month pilot projects by their development staff [Kamath 93].

Experiences from other organizations show costly learning curves and few
productivity improvements without thoroughly-trained designers and developers.
Additionally, OOD methods must be adapted to the project since each method
contains object models that may be too costly, or provide little value, for use on a
specific project [Malan 95].

The maximum impact from OOD is achieved when used with the goal of
designing reusable software systems. For objects without significant reuse
potential, OOD techniques were more costly than traditional software
development methodologies. This was because of the costs associated with
developing objects and the software to implement these objects for a one-time
use [Maring 96].

Maturity

Many OOD methods have been used in industry since the late 1980s. OOD has
been used worldwide in many commercial, Department of Defense (DoD), and
government applications. There exists a wealth of documentation and training
courses for each of the various OOD methods, along with commercially-
available CASE tools with object-oriented extensions that support these OOD
methods.

Costs and Limitations

One reason for the mixed success reviews on OOD techniques is that the use of
this technology requires a corporate commitment to formal training in the OOD
methods and the purchase of CASE tools with capabilities that support these
methods. The method of training that produces the best results is to initiate pilot
projects, conduct formal classes, employ OOD mentors, and conduct team
reviews to train properly both the analysis and development staff as well as the
program management team [Kamath 93]. There are few, if any, reported
successes using OOD methods on the first application without this type of
training program [Maring 96]. Projects with initial and continuing OOD training
programs realize that the benefits of this technology depend upon the training

http://www.sei.cmu.edu/str/descriptions/oodesign.html (2 of 5)7/28/2008 11:27:43 AM

Object-Oriented Design

and experience levels of their staffs.

Dependencies

The use of OOD technology requires the development of object requirements
using OOA techniques, and CASE tools to support both the drawing of objects
and the description of the relationships between objects. Also, the final steps of
OOD, representing classes and objects in programming constructs, are
dependent on the object-oriented programming language (OOPL) chosen. For
example, if the OOPL is Ada 95, a package-based view of the implementation
should be used; if C++ is the OOPL, then a class-based view should be used.
These different views require different technical design decisions and
implementation considerations.

Alternatives

An alternative technology that can be used for developing a model of a software
system design to implement the identified requirements is a traditional design
approach such as Yourdon and Constantine's Structured Design [Yourdon 79].
This method, used successfully for many different types of applications, is
centered around design of the required functions of a system and does not lend
itself to object orientation.

Complementary Technologies

Combining object-oriented methods with Cleanroom (with its emphasis on rigor,
formalisms, and reliability) can define a process capable of producing results
that are reusable, predictable, and high-quality. Thus, object-oriented methods
can be used for front-end domain analysis and design, and Cleanroom can be
used for life-cycle application engineering [Ett 96].

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Object-Oriented Design

Application category Detailed Design (AP.1.3.5)
Reengineering (AP.1.9.5)

Quality measures category Maintainability (QM.3.1)
Reusability (QM.4.4)

http://www.sei.cmu.edu/str/descriptions/oodesign.html (3 of 5)7/28/2008 11:27:43 AM

Object-Oriented Design

Computing reviews category Object-Oriented Programming (D.1.5)
Software Engineering Design (D.2.10)

References and Information Sources

[Baudoin 96] Baudoin, Claude & Hollowell, Glenn. Realizing the Object-Oriented
Lifecycle. Upper Saddle River, NJ: Prentice Hall, 1996.

[Ett 96] Ett, William & Trammell, Carmen. A Guide to Integration of Object-
Oriented Methods and Cleanroom Software Engineering [online].
Originally available WWW
<URL: http://www.asset.com/stars/loral/cleanroom/oo/guidhome.htm>
(1996).

[Kamath 93] Kamath, Y. H.; Smilan, R. E.; & Smith, J. G. "Reaping Benefits With
Object-Oriented Technology." AT&T Technical Journal 72, 5
(September/October 1993): 14-24.

[Malan 95] Malan, R.; Coleman, D.; & Letsinger, R. "Lessons Learned from the
Experiences of Leading-Edge Object Technology Projects in Hewlett-
Packard," 33-46. Proceedings of Tenth Annual Conference on Object-
Oriented Programming Systems Languages and Applications. Austin,
TX, October 15-19, 1995. Palo Alto, CA: Hewlett-Packard, 1995.

[Maring 96] Maring, B. "Object-Oriented Development of Large Applications." IEEE
Software 13, 3 (May 1996): 33-40.

[Yourdon 79] Yourdon, E. & Constantine, L. Structured Design. Englewood Cliffs, NJ:
Prentice Hall, 1979.

Current Author/Maintainer

Mike Bray, Lockheed-Martin Ground Systems

Modifications

27 Oct 97: updated URL for [ETT 96]
10 Jan 97: original

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University

http://www.sei.cmu.edu/str/descriptions/oodesign.html (4 of 5)7/28/2008 11:27:43 AM

Object-Oriented Design

Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/oodesign_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/oodesign.html (5 of 5)7/28/2008 11:27:43 AM

http://www.sei.cmu.edu/about/disclaimer.html

Object-Oriented Programming Languages

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Object-Oriented Programming Languages

Status

In review

Purpose and Origin

Object-oriented programming languages (OOPLs) are the natural choice for
implementation of an Object-Oriented Design because they directly support the
object notions of classes, inheritance, information hiding, and dynamic binding.
Because they support these object notions, OOPLs make an object-oriented
design easier to implement [Baudoin 96]. An object-oriented system
programmed with an OOPL results in less complexity in the system design and
implementation, which can lead to an increase in maintainability [Baudoin 96].
The genesis of this technology dates back to the early 1960s with the work of
Nygaard and Dahl in the development of the first object-oriented language called
Simula 67. Research progressed through the 1970s with the development of
Smalltalk at Xerox. Current OOPLs include C++, Objective C, Smalltalk, Eiffel,
Common LISP Object System (CLOS), Object Pascal, Java, and Ada 95
[Baudoin 96].

Technical Detail

Object-oriented (OO) applications can be written in either conventional
languages or OOPLs, but they are much easier to write in languages especially
designed for OO programming. OO language experts divide OOPLs into two
categories, hybrid languages and pure OO languages. Hybrid languages are
based on some non-OO model that has been enhanced with OO concepts. C++
(a superset of C), Ada 95, and CLOS (an object-enhanced version of LISP) are
hybrid languages. Pure OO languages are based entirely on OO principles;
Smalltalk, Eiffel, Java, and Simula are pure OO languages.

In terms of numbers of applications, the most popular OO language in use is C+
+. One advantage of C++ for commercial use is its syntactical familiarity to C,
which many programmers already know and use; this lowers training costs.
Additionally, C++ implements all the concepts of object orientation, which include
classes, inheritance, information hiding, polymorphism, and dynamic binding.
One disadvantage of C++ is that it lacks the level of polymorphism and dynamics
most OO programmers expect. Ada 95 is a reliable, standardized language well-
suited for developing large, complex systems that are reliable [Tokar 96].

http://www.sei.cmu.edu/str/descriptions/oopl.html (1 of 4)7/28/2008 11:27:44 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/oopl_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Object-Oriented Programming Languages

The major alternative to C++ or Ada 95 is Smalltalk. Its advantages are its
consistency and flexibility. Its disadvantages are its unfamiliarity (causing an
added training cost for developers), and its inability to work with existing systems
(a major benefit of C++) [Tokar 96].

Usage Considerations

OOPLs are strongly recommended to complete the implementation of Object-
Oriented Analysis (OOA) and Object-Oriented Design (OOD) technologies.
AT&T Bell Labs used OOD and OOPLs and realized the benefits of reduced
product development time and increased reuse of both code and analysis/design
artifacts on a large project called Call Attempt Data Collection System (CADCS).
This large project consisted of over 350,000 lines of C++ code that ran on a
central processor with over 100 remote systems distributed across the United
States. During the development of two releases of the CADCS, the use of the
OOD techniques and subsequent implementation in OOPL resulted in an 30%
reduction in development time and a 20% reduction in development staff effort
as compared to similarly-sized projects using traditional software development
techniques and languages [Kamath 93].

Organizations such as Bell Labs have found that through the introduction of OO
programming techniques in pilots and training courses, the developers were able
to learn properly and experiment with the OOPL constructs. This resulted in
increased object-oriented expertise such that much of the CADCS software
(objects) was reused on a similar project [Kamath 93].

OOPLs such as Ada 95 and C++ can also be used to develop traditional non-
object-oriented software. These applications can be developed by avoiding the
use of the object-oriented language features. There are many commercial,
Department of Defense (DoD), and government applications of this type in
existence today.

For applications where OOPL code is to be generated by a CASE tool,
developers must decide which programming language to generate: C++, Ada 95,
Smalltalk, Java, or CLOS. The choice of an OOPL can limit the choices of CASE
tools because the tools may not support the chosen language. However, if
language generation is not a consideration, then CASE tools can be chosen
based on features and design capabilities without regard to the OOPL chosen
for implementation.

Since different OOPLs support different levels of 'objectiveness' (e.g.,
inheritance), different OOD constructs may or may not map directly to OOPL
constructs. Therefore, the choice of an OOPL is affected by a design captured
using OOD techniques. Where OOD is not present, any OOPL can be used,
depending upon the training of the developers.

Maturity

OOPLs have been used worldwide on many commercial, DoD, and government

http://www.sei.cmu.edu/str/descriptions/oopl.html (2 of 4)7/28/2008 11:27:44 AM

Object-Oriented Programming Languages

applications/projects. There exists a wealth of documentation and training
courses for each of the various OOPLs.

Costs and Limitations

The use of OOPL technology requires a corporate commitment to formal training
in the proper use of the OOPL features and the purchase of the language
compiler. The costs of completely training a development staff implies that the
insertion of this technology should be undertaken only on new developments
(instead of maintenance of legacy systems), and only after pilot project(s) are
successfully completed [Malan 95].

Alternatives

Both object-oriented and non-object-oriented applications can be written in either
traditional languages or OOPLs. To fully realize the benefits of an object
orientation, it is much easier to write the implementations in languages
especially designed for OO programming.

Complementary Technologies

Combining object-oriented methods with Cleanroom (with its emphasis on rigor,
formalisms, and reliability) can define a process capable of producing results
that are reusable, predictable, and high-quality. Thus, OOPLs can be used for
implementation of an object-oriented design and Cleanroom can be used for life-
cycle application engineering.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Object-Oriented Programming Languages

Application category Programming Language (AP.1.4.2.1)

Quality measures category Maintainability (QM.3.1)

Computing reviews category Object-Oriented Programming (D.1.5)
Programming Language Classifications (D.3.2)

References and Information Sources

http://www.sei.cmu.edu/str/descriptions/oopl.html (3 of 4)7/28/2008 11:27:44 AM

Object-Oriented Programming Languages

[Baudoin
96]

Baudoin, Claude & Hollowell, Glenn. Realizing the Object-
Oriented Lifecycle. Upper Saddle River, NJ: Prentice Hall, 1996.

[Kamath
93]

Kamath, Y. H.; Smilan, R. E.; & Smith, J. G. "Reaping Benefits
With Object-Oriented Technology." AT&T Technical Journal 72, 5
(September/October 1993): 14-24.

[Malan 95] Malan, R.; Coleman, D.; & Letsinger, R. "Lessons Learned from
the Experiences of Leading-Edge Object Technology Projects in
Hewlett-Packard," 33-46. Proceedings of Tenth Annual Conference
on Object-Oriented Programming Systems Languages and
Applications. Austin, TX, October 15-19, 1995. Palo Alto, CA:
Hewlett-Packard, 1995.

[Tokar 96] Tokar, Joyce L. "Ada 95: The Language for the 90's and Beyond."
Object Magazine 6, 4 (June 1996): 53-56.

Current Author/Maintainer

Mike Bray, Lockheed-Martin Ground Systems

Modifications

10 Jan 97: (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/oopl_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/oopl.html (4 of 4)7/28/2008 11:27:44 AM

http://www.sei.cmu.edu/about/disclaimer.html

Object Request Broker

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Object Request Broker

Status

Complete

Note

We recommend Middleware, as prerequisite reading for this technology
description.

Purpose and Origin

An object request broker (ORB) is a middleware technology that manages
communication and data exchange between objects. ORBs promote
interoperability of distributed object systems because they enable users to build
systems by piecing together objects- from different vendors- that communicate
with each other via the ORB [Wade 94]. The implementation details of the ORB
are generally not important to developers building distributed systems. The
developers are only concerned with the object interface details. This form of
information hiding enhances system maintainability since the object
communication details are hidden from the developers and isolated in the ORB
[Cobb 95].

Technical Detail

ORB technology promotes the goal of object communication across machine,
software, and vendor boundaries. The relevant functions of an ORB technology
are

● interface definition
● location and possible activation of remote objects
● communication between clients and object

An object request broker acts as a kind of telephone exchange. It provides a
directory of services and helps establish connections between clients and these
services [CORBA 96, Steinke 95]. Figure 21 illustrates some of the key ideas.

http://www.sei.cmu.edu/str/descriptions/orb.html (1 of 6)7/28/2008 11:27:45 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/orb_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Object Request Broker

Figure 21: Object Request Broker

The ORB must support many functions in order to operate consistently and
effectively, but many of these functions are hidden from the user of the ORB. It is
the responsibility of the ORB to provide the illusion of locality, in other words, to
make it appear as if the object is local to the client, while in reality it may reside
in a different process or machine [Reddy 95]. Thus the ORB provides a
framework for cross-system communication between objects. This is the first
technical step toward interoperability of object systems.

The next technical step toward object system interoperability is the
communication of objects across platforms. An ORB allows objects to hide their
implementation details from clients. This can include programming language,
operating system, host hardware, and object location. Each of these can be
thought of as a "transparency,"1 and different ORB technologies may choose to
support different transparencies, thus extending the benefits of object orientation
across platforms and communication channels.

There are many ways of implementing the basic ORB concept; for example,
ORB functions can be compiled into clients, can be separate processes, or can
be part of an operating system kernel. These basic design decisions might be
fixed in a single product; or there might be a range of choices left to the ORB
implementer.

There are two major ORB technologies:

● The Object Management Group's (OMG) Common Object Request
Broker Architecture (CORBA) specification

● Microsoft's Component Object Model (see Component Object Model
(COM), DCOM, and Related Capabilities)

An additional, newly-emerging ORB model is Remote Method Invocation (RMI);
this is specified as part of the Java language/virtual machine. RMI allows Java
objects to be executed remotely. This provides ORB-like capabilities as a native
extension of Java [RMI 97].

A high-level comparison of ORB technologies is available in Table 8. Details are
available in the referenced technology descriptions.

http://www.sei.cmu.edu/str/descriptions/orb.html (2 of 6)7/28/2008 11:27:45 AM

Object Request Broker

Usage Considerations

Successful adoption of ORB technology requires a careful analysis of the current
and future software architectural needs of the target application and analysis of
how a particular ORB will satisfy those needs [Abowd 96]. Among the many
things to consider are platform availability, support for various programming
languages, as well as implementation choices and product performance
parameters. After performing this analysis, developers can make informed
decisions in choosing the ORB best suited for their application's needs.

Table 8: Comparison of ORB Technologies

ORB
Platform
Availability

Applicable
to

Mechanism Implementations

COM/
DCOM

originally PC
platforms, but
becoming
available on
other platforms

"PC-centric"
distributed
systems
architecture

APIs to
proprietary
system2

one3

CORBA

platform-
independent and
interoperability
among platforms

general
distributed
system
architecture

specification of
distributed
object technology

many4

Java/
RMI

wherever Java
virtual machine
(VM) executes

general
distributed
system
architecture
and Web-
based
Intranets

implementation
of distributed
object technology

various5

Maturity

As shown in Table 8, there are a number of commercial ORB products available.
ORB products that are not compliant with either CORBA or OLE also exist;
however, these tend to be vendor-unique solutions that may affect system
interoperability, portability, and maintainability.

Major developments in commercial ORB products are occurring, with life cycles
seemingly lasting only four to six months. In addition, new ORB technology
(Java/RMI) is emerging, and there are signs of potential "mergers" involving two
of the major technologies. The continued trend toward Intranet- and Internet-
based applications is another stimulant in the situation. Whether these

http://www.sei.cmu.edu/str/descriptions/orb.html (3 of 6)7/28/2008 11:27:45 AM

Object Request Broker

commercial directions are fully technically viable and will be accepted by the
market is unknown.

Given the current situation and technical uncertainty, potential users of ORB
technologies need to determine

● what new features ORB technologies add beyond technologies currently
in use in their organizations

● the potential benefits from using these new features
● the key risks involved in adopting the technology as a whole
● how much risk is acceptable to them

One possible path would be to undertake a disciplined and "situated" technology
evaluation. Such an evaluation, as described by Brown and Wallnau, focuses on
evaluating so-called "innovative" technologies and can provide technical
information for adoption that is relative to the current/existing approaches in use
by an organization [Brown 96, Wallnau 96]. Such a technology evaluation could
include pilot projects focusing on model problems pertinent to the individual
organization.

Costs and Limitations

The license costs of the ORB products from the vendors listed above are
dependent on the required operating systems and the types of platform. ORB
products are available for all major computing platforms and operating systems.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Object Request Broker

Application category Client/Server (AP.2.1.2.1),
Client/Server Communication
(AP.2.2.1)

Quality measures category Interoperability (QM.4.1),
Maintainability (QM.3.1)

Computing reviews category Distributed systems (C.2.4),
Object-Oriented programming (D.1.5)

References and Information Sources

[Abowd 96] Abowd, Gregory, et al. "Architectural Analysis of ORBs." Object
Magazine 6, 1 (March 1996): 44-51.

[Brown 96] Brown, A. & Wallnau, K. "A Framework for Evaluating Software
Technology." IEEE Software 13, 5 (September 1996): 39-49.

http://www.sei.cmu.edu/str/descriptions/orb.html (4 of 6)7/28/2008 11:27:45 AM

Object Request Broker

[Cobb 95] Cobb, Edward E. "TP Monitors and ORBs: A Superior Client/
Server Alternative." Object Magazine 4, 9 (February 1995): 57-61.

[CORBA 96] The Common Object Request Broker: Architecture and
Specification, Version 2.0. Framingham, MA: Object Management
Group, 1996. Also available [online] WWW
<URL: http://www.omg.org> (1996).

[Reddy 95] Reddy, Madhu. "ORBs and ODBMSs: Two Complementary Ways
to Distribute Objects." Object Magazine 5, 3 (June 1995): 24-30.

[RMI 97] Remote Method Invocation [online]. Available WWW
<URL: http://java.sun.com/products/jdk/1.1/docs/guide/rmi>
(1997).

[Steinke 95] Steinke, Steve. "Middleware Meets the Network." LAN: The
Network Solutions Magazine 10, 13 (December 1995): 56.

[Tkach 94] Tkach, Daniel & Puttick, Richard. Object Technology in
Application Development. Redwood City, CA: Benjamin/
Cummings Publishing Company, 1994.

[Wade 94] Wade, Andrew E. "Distributed Client-Server Databases." Object
Magazine 4, 1 (April 1994): 47-52.

[Wallnau
96]

Wallnau, Kurt & Wallace, Evan. "A Situated Evaluation of the
Object Management Group's (OMG) Object Management
Architecture (OMA)," 168-178. Proceedings of the OOPSLA'96.
San Jose, CA, October 6-10, 1996. New York, NY: ACM, 1996.
Presentation available [online] FTP.
<URL: ftp://ftp.sei.cmu.edu/pub/corba/OOPSLA/present> (1996).

Current Author/Maintainer

Kurt Wallnau, SEI
John Foreman, SEI

External Reviewers

Ed Morris, SEI
Richard Soley, VP, Chief Technical Officer, Object Management Group

Modifications

25 June 97: modified/updated OLE/COM reference to COM/DCOM; added notes
to Table 8
9 April 97: minor edits and reorganization; no meaningful content changes
10 Jan 97 (original): Mike Bray, Lockheed-Martin Ground Systems

Footnotes

1 transparency: making something invisible to the client

http://www.sei.cmu.edu/str/descriptions/orb.html (5 of 6)7/28/2008 11:27:45 AM

http://www.omg.org/
http://java.sun.com/products/jdk/1.1/docs/guide/rmi
ftp://ftp.sei.cmu.edu/pub/corba/OOPSLA/present

Object Request Broker

2 COM/DCOM specifications have been turned over to the Open Group, but the
outcome of this standardization activity remains unclear.

3 Microsoft maintains the only implementation of PC platforms, and is working
closely with selected vendors to migrate technology to alternate platforms.

4 Examples include ORBIX by IONA Technology, NEO by SunSoft, VisiBroker
by VisiGenic, PowerBroker by Expersoft, SmallTalkBroker by DNS
Technologies, Object Director by Fujitsu, DSOM by IBM, DAIS by ICL, SORBET
by Siemens Nixdorf, and NonStop DOM by Tandem.

5 Implementations of the Java VM have been ported to various platforms.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/orb_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/orb.html (6 of 6)7/28/2008 11:27:45 AM

http://www.sei.cmu.edu/about/disclaimer.html

Organization Domain Modeling

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Organization Domain Modeling

Status

Complete

Note

We recommend Domain Engineering and Domain Analysis as prerequisite
reading for this technology description.

Purpose and Origin

Organization domain modeling (ODM) was developed to provide a formal,
manageable, and repeatable approach to domain engineering. The ODM
method evolved and was subsequently formalized by Mark Simos (Organon
Motives, Inc.) with collaboration and sponsorship from Hewlett-Packard
Company, Lockheed-Martin,1 and the DARPA STARS2 program [Simos 96].
ODM affects the maintainability, understandability, and reusability characteristics
of a system or family of systems.

Technical Detail

ODM was developed and refined as part of the overall reuse/product line
approaches developed under the STARS program. The STARS reuse approach
decomposes reuse technologies into several levels or layers of abstraction,
specifically: Concepts, Processes, Methods, and Tools. An example of a
"concept" is the Conceptual Framework for Reuse Processes (CFRP), a
conceptual foundation and framework for understanding domain-specific reuse
in terms of the processes involved [STARS 93]. An example of a "process" is the
Reuse-Oriented Software Evolution (ROSE) process model, which is based on
the CFRP life-cycle process model; it partitions software development into
domain engineering, asset management, and application engineering; and
emphasizes the role of reuse in software evolution. ODM is an example of a
"method" compatible with the CFRP framework.

The primary goal of ODM is the systematic transformation of artifacts (e.g.,
requirements, design, code, tests, and processes) from multiple legacy systems
into assets that can be used in multiple systems. The method can also be
applied to requirements for new systems; the key element is to ground domain

http://www.sei.cmu.edu/str/descriptions/odm.html (1 of 6)7/28/2008 11:27:46 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/odm_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Organization Domain Modeling

models empirically by explicit consideration of multiple exemplars, which
determine the requisite range of variability that the models must encompass.
ODM stresses the use of legacy artifacts and knowledge as a source of domain
knowledge and potential resources for reengineering/reuse. However, one of its
objectives is to avoid embedding hidden constraints that may exist in legacy
systems into the domain models and assets.

Domain Engineering and Domain Analysis identifies three areas where domain
analysis methods can be differentiated. Distinguishing features for ODM are:

Primary product of the analysis. The result of ODM is a knowledge
representation framework populated with a domain architecture and a flexible
asset base. It can be thought of as a reuse library designed to support
systematic reuse in a prescribed context; however, the method supports the use
of diverse implementation techniques such as generators in the asset base.

Focus of analysis

● ODM is structured in terms of a core domain engineering life cycle, which
is distinct from and orthogonal to the system engineering life cycle. The
ODM life cycle is divided into three phases:

❍ plan domain: selecting, scoping, and defining target domains
❍ model domain: modeling the range of variability that can exist

within the scope of the domain
❍ engineer asset base: engineering an asset base that satisfies

some subset of the domain variability, based on the needs of
specific target customers [Simos 96]

● Iterative scoping. The approach to systematic scoping involves structuring
the ODM life cycle as a series of incremental scoping steps; each step
builds upon and validates the previous step.

● Stakeholder focus. The ODM life cycle provides an up-front analysis of
the organizational stakeholders and objectives. The stakeholder focus is
carried throughout the life cycle with tasks to reconsider the strategic
interests of stakeholders at critical points.

● Exemplar-based modeling. ODM works from a set of explicit examples,
called exemplars, of the domain rather than a single, generalized
example or speculation about a "general" solution.

● Emphasis on descriptive modeling. ODM places heavy emphasis on
studying a set of example systems for the domain in order to derive the
shape of the domain space.

● Explicit modeling of variability. ODM encourages modelers to maximize
variability in the descriptive phase of modeling. This is to generate as
much insight as possible about the potential range of variability in the
domain.

● Methods for context recovery. ODM emphasizes identifying contextual
information (e.g., language, values, assumptions, dependencies, history)
embedded within an artifact to make them more dependable and
predictable. (Note: This activity does not remove dependencies. This
occurs during the engineering asset base phase.)

● Prescriptive asset base engineering. After descriptive modeling takes
place, the prescriptive modeling phase begins. Initially, the range of
functionality to be supported by the reusable assets are re-scoped and

http://www.sei.cmu.edu/str/descriptions/odm.html (2 of 6)7/28/2008 11:27:46 AM

Organization Domain Modeling

commitments are made to a real set of customers. Prescriptive features
are mapped onto the structure of the asset base and to sets of
specifications for particular assets. Traceability from the features back to
exemplar artifacts are maintained to enable the retrieval of additional
information (e.g., existing prototypes, history).

Representation Techniques. Although ODM encompasses all of domain
engineering, the core method focuses on activities that are unique to domain
engineering. Other activities that fall within, but are not specific to domain
engineering are supported through "supporting methods." This means that ODM
can be integrated with a variety of existing methods (e.g., system and taxonomic
modeling techniques) to support unique constraints or preferences of an
organization or domain. Examples of supporting methods are the methods
associated with the Reuse Library Framework (RLF) [STARS 96c], Canvas
[STARS 96a], Domain Architecture-Based Generation for Ada Reuse (DAGAR)
[Klinger 96, STARS 96b], and the Knowledge Acquisition for Preservation of
Tradeoffs and Underlying Rationales (KAPTUR) Tool, which is described as a
part of Argument-Based Design Rationale Capture Methods for Requirements
Tracing.

Usage Considerations

ODM was developed primarily to support domain engineering projects for
domains that are mature, reasonably stable, and economically viable. Although
all of the criteria do not need to be met, ODM is most successful when all are
present. ODM can be applied in reuse programs that are in their infancy or very
mature. ODM does not assume application within an established reuse program,
and in fact includes some risk-reduction steps (such as up-front stakeholder
analysis) that enable the use of domain analysis as a first step in establishing
such a program.

However, it is recommended that the first application of ODM be on a pilot
project in a relatively small domain. ODM supports evolution to larger domains or
a broader reuse program.

Maturity

ODM has been applied on small-scale and relatively large-scale projects. The
following are examples:

● Hewlett-Packard developed a domain engineering workbook by tailoring
aspects of an early version of the ODM process model to their
organizational objectives. The workbook is being used on numerous
internal domain engineering projects within their divisions [Cornwell 96,
Simos 96].

● The Air Force CARDS Program applied ODM in several different areas:
as a means of structuring a comparative study on architecture
representation languages; on the automated message handling system
(AMHS) domain analysis effort; and for product-line analysis as part of
the Hanscom AFB Domain Scoping effort.

http://www.sei.cmu.edu/str/descriptions/odm.html (3 of 6)7/28/2008 11:27:46 AM

Organization Domain Modeling

● ODM formed the basis for the domain engineering approach of the Army
STARS Demonstration Project. ODM processes were integrated closely
with the CFRP [STARS 93] as a higher level planning guide, and with
RLF as a domain modeling representation technology [Lettes 96].

Costs and Limitations

Before incorporating ODM into the overall reuse plan, an organization should
consider the following:

● The core ODM method does not directly address the ongoing
management of domain models and assets, or the use of the assets by
application development projects. These activities are part of a larger
reuse program described in the CFRP [STARS 93].

● ODM does not encompass the overall reuse program planning including
the establishment of producer-consumer relationships between domain
engineering projects and other efforts, such as system reengineering
projects or planned new projects.

● ODM may not be applicable within organizations that are not prepared to
commit to, or at least experiment with, systematic reuse (i.e., reuse of
assets that were developed using a software engineering process that is
specifically structured for reuse).

● ODM requires that an organization adopt the level of modeling rigor, the
modeling styles, or approaches recommended within ODM.

● The use of ODM necessitates a technology infrastructure and level of
technical expertise sufficient to support ODM modeling needs [Simos 96].

Complementary Technologies

A complimentary technology is generation techniques.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Organization Domain Modeling

Application category Domain Engineering (AP.1.2.4)

Quality measures category Reusability (QM.4.4)
Maintainability (QM.3.1)
Understandability (QM.3.2)

http://www.sei.cmu.edu/str/descriptions/odm.html (4 of 6)7/28/2008 11:27:46 AM

Organization Domain Modeling

Computing reviews category Software Engineering Tools and Techniques
(D.2.2)

References and Information Sources

[Cornwell
96]

Cornwell, Patricia Collins. "HP Domain Analysis: Producing
Useful Models for Reusable Software." HP Journal (August
1996): 46-55.

[Klinger 96] Klinger, Carol & Solderitsch, James. DAGAR: A Process for
Domain Architecture Definition and Asset Implementation
[online]. Available WWW
<URL: http://source.asset.com/stars/darpa/Papers/ArchPapers.
html> (1996).

[Lettes 96] Lettes, Judith A. & Wilson, John. Army STARS Demonstration
Project Experience Report (STARS-VC-A011/003/02). Manassas,
VA: Loral Defense Systems-East, 1996.

[Simos 94] Simos, M. "Juggling in Free Fall: Uncertainty Management
Aspects of Domain Analysis Methods," 512-521. Fifth
International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems. Paris,
France, July 4-8, 1994. Berlin, Germany: Springer-Verlag, 1995.

[Simos 96] Simos, M., et al. Software Technology for Adaptable Reliable
Systems (STARS) Organization Domain Modeling (ODM)
Guidebook Version 2.0 (STARS-VC-A025/001/00). Manassas,
VA: Lockheed Martin Tactical Defense Systems, 1996.

[STARS 93] Conceptual Framework for Reuse Processes Volume I,
Definition, Version 3.0 (STARS-VC-A018/001/00). Reston, VA:
Software Technology for Adaptable Reliable Systems, 1993.

[STARS
96a]

Canvas Knowledge Acquisition Guide Book Version 1.0 (STARS-
PA29-AC01/001/00) Reston, VA: Software Technology for
Adaptable, Reliable Systems, 1996.

[STARS
96b]

Domain Architecture-Based Generation for Ada Reuse (DAGAR)
Guidebook Version 1.0. Manassas, VA: Lockheed Martin Tactical
Defense Systems, 1996.

[STARS
96c]

Open RLF (STARS-PA31-AE08/001/00). Manassas, VA:
Lockheed Martin Tactical Defense Systems, 1996.

Current Author/Maintainer

Liz Kean, Air Force Rome Laboratory

External Reviewers

http://www.sei.cmu.edu/str/descriptions/odm.html (5 of 6)7/28/2008 11:27:46 AM

http://source.asset.com/stars/darpa/Papers/ArchPapers.html
http://source.asset.com/stars/darpa/Papers/ArchPapers.html

Organization Domain Modeling

Dick Creps, Lockheed Martin, Manassas, VA
Teri Payton, Lockheed Martin, Manassas, VA
Mark Simos, Organon Motives, Inc., Belmont, MA

Modifications

10 Jan 97 (original)

Footnotes

1 formerly Unisys Defense Systems, Reston, VA

2 Defense Advanced Research Projects Agency (DARPA) Software Technology
for Adaptable, Reliable Systems (STARS)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/odm_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/odm.html (6 of 6)7/28/2008 11:27:46 AM

http://www.sei.cmu.edu/about/disclaimer.html

People Capability Maturity Model (People CMM)

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

People Capability Maturity Model® (People CMM®)

Status

Complete

Purpose and Origin

The People Capability Maturity Model (People CMM) is an organizational
change model designed on the premise that improved workforce practices will
not survive unless an organization's behavior changes to support them. It was
developed to guide systems and software organizations in attracting, motivating,
and retaining talented technical staff. The practices in the model help an
organization develop the workforce required to execute business strategies,
characterize the maturity of workforce practices, set priorities for improving
workforce capability, integrate improvements in process and workforce
capability, and become an employer of choice.

Employing the process maturity framework of the CMM for Software (SW-CMM),
the People CMM describes best practices for managing and developing an
organization's entire workforce. It was developed as a companion to the SW-
CMM when organizations attempting to conduct improvement efforts discovered
that the workforce practices required for enabling software projects were
organizational in scope and required specific attention in order to remove
barriers to achieving higher levels of SW-CMM maturity.

Although it still supports the SW-CMM, the People CMM has adopted some of
the advances made in the CMM IntegrationSM (CMMISM) and has tried to ensure
that People CMM improvement programs can integrate with improvement
programs guided by the CMMI models. Enhancing the focus on process abilities
in workforce competencies at maturity level 3, and quantitative performance
management practices at maturity level 4, makes integrating these various
models much easier. Also because of its subject matter, the People CMM
presents a more detailed framework for the development of workgroups (or
teams) which support the use of CMMI models having Integrated Product and
Process Development (IPPD) extensions.

People CMM is intended for executives and managers, systems and software
professionals, those responsible for improving workforce management practices,
human resource professionals, Software Engineering Process Group members
who want to accelerate the achievement of higher CMM maturity levels, and
those who aspire to be managers of technical professionals.

http://www.sei.cmu.edu/str/descriptions/pcmm.html (1 of 8)7/28/2008 11:27:47 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/pcmm_body.html?owner=sal
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

People Capability Maturity Model (People CMM)

Technical Detail

The primary objective of the People CMM is to improve the capability of the
entire workforce. This can be defined as the level of knowledge, skills, and
process abilities available for performing an organization's current and future
business activities.

The People CMM consists of five maturity levels. Each maturity level is an
evolutionary plateau at which one or more domains of the organization's
processes are transformed to achieve a new level of organizational capability.
The five levels are as follows:

Maturity Level Focus Process areas

5
Optimizing

Continuously
improve and align
personal,
workgroup, and
organizational
capability

● Continuous Workforce
Innovation

● Organizational Performance
Alignment

● Continuous Capability
Improvement

4
Predictable

Empower and
integrate workforce
competencies and
manage
performance
quantitatively.

● Mentoring
● Organizational Capability

Management
● Quantitative Performance

Management
● Competency-Based Assets
● Empowered Workgroups
● Competency Integration

3
Defined

Develop workforce
competencies and
workgroups, and
align with business
strategy and
objectives

● Participatory Culture
● Workgroup Development
● Competency-Based Practices
● Career Development
● Competency Development
● Workforce Planning
● Competency Analysis

2
Managed

Managers take
responsibility for
managing and
developing their
people.

● Compensation
● Training and Development
● Performance Management
● Work Environment
● Communication and

Coordination
● Staffing

http://www.sei.cmu.edu/str/descriptions/pcmm.html (2 of 8)7/28/2008 11:27:47 AM

People Capability Maturity Model (People CMM)

1
Initial

Workforce practices
applied
inconsistently.

Process Areas of the People CMM

At Level 1, an organization has no consistent way of performing workforce
practices. Most workforce practices are applied without analysis of impact.

At Level 2, organizations establish a foundation on which they deploy common
workforce practices across the organization. The goal of Level 2 is to have
managers take responsibility for managing and developing their people. For
example, the first benefit an organization experiences as it achieves Level 2 is a
reduction in voluntary turnover. The turnover costs that are avoided by improved
workforce retention more than pay for the improvement costs associated with
achieving Level 2.

At Level 3, the organization identifies and develops workforce competencies and
aligns workforce and workgroup competencies with business strategies and
objectives. For example, the workforce practices that were implemented at Level
2 are now standardized and adapted to encourage and reward growth in the
organization's workforce competencies.

At Level 4, the organization empowers and integrates workforce competencies
and manages performance quantitatively. For example, the organization is able
to predict its capability for performing work because it can quantify the capability
of its workforce and of the competency-based processes they use in performing
their assignments.

At Level 5, the organization continuously improves and aligns personal,
workgroup, and organizational capability. For example, at Maturity Level 5,
organizations treat continuous improvement as an orderly business process to
be performed in an orderly way on a regular basis.

Usage Considerations

The People CMM was designed initially for knowledge-intense organizations and
workforce management processes. However, it can be applied in almost any
organizational setting, either as a guide in implementing workforce improvement
activities or as a vehicle for assessing workforce practices.

The companion product suite for the People CMM includes:

● A three-day Introduction to the People CMM course
● The People CMM Assessment Method Description
● Two Maturity Questionnaires - one for managers and one for individual

contributors

To ensure useful and credible results are obtained from People CMM

http://www.sei.cmu.edu/str/descriptions/pcmm.html (3 of 8)7/28/2008 11:27:47 AM

People Capability Maturity Model (People CMM)

assessments, a certification and authorization process has been developed for
People CMM Lead Assessors.

Several types of People CMM-based assessments can be performed. Each type
of assessment method is most appropriate for distinct situations. Organizations
select the type and class of assessment appropriate to their needs.

Assessment
Type

People
CMM-Based
Assessment
Method

Joint
Assessment

Questionnaire-
Based
Assessment

Gap Analysis

Assessment
Class

Class A Class A Class B Class C

Usage Mode 1. Rigorous
and in-depth
investigation
of workforce
practices

2. Basis for
improvement
activities

1. Rigorous
and in-depth
investigation
of practices,
both for
workforce
practices and
the process in
the joint
domain

2. Basis for
improvement
activities

1. Initial (first-
time)

2. Incremental
(partial)

3. Self-
assessment

1. Initial (first-
time)

2. Self-
assessment

Advantages Thorough
coverage;
strengths and
weak-nesses
for each PA
investigated;
robust-ness
of method
with
consistent,
repeatable
results;
provides
objective
view

Thorough
coverage;
strengths and
weak-nesses
for each PA
investigated
across
multiple
domains;
robustness of
method with
consistent,
repeatable
results;
provides
objective
view

Organization
gains insight
into own
capability;
focuses on areas
that need most
attention; pro-
motes
awareness and
buy-in

Organization
gains insight
into own
capability;
provides a
starting point to
focus on areas
that need most
attention;
promotes buy-
in and
ownership of
results through
participation in
analysis and
planning;
typically
inexpensive;
short duration;
rapid feed-back

http://www.sei.cmu.edu/str/descriptions/pcmm.html (4 of 8)7/28/2008 11:27:47 AM

People Capability Maturity Model (People CMM)

Disadvantages Demands
significant
resources

Demands
significant
resources

Does not
emphasize
depth of
coverage and
rigor and cannot
be used for
maturity level
rating

Risk of
participant
biases
influencing
results; not
enough depth to
ensure
completeness;
does not
emphasize rigor
and cannot be
used for
maturity level
rating

Sponsor Executive
management
of the
organization

Executive
management
of the
organization

Any internal
manage

Any internal
manager
sponsoring an
improvement
effort

Team Size 4-10 persons
+ assessment
team leader

4-10 persons
per domain +
assessment
team leader(s)

1-6 persons +
assessment
team leader

3-12
(recommended)
+ facilitator

Team
Qualifications

Experienced Experienced Moderately
experienced

Limited
experience,
except for the
facilitator

Assessment
Team Leader
Requirements

Lead assessor Lead
Assessors

Lead assessor Person trained
in People CMM
and method

Characteristics of People CMM Assessment Classes

From the perspective of the People CMM, an organization's maturity is derived
from the workforce practices it routinely performs, and the extent to which these
practices have been institutionalized. A maturity level is, therefore, an
evolutionary plateau at which existing processes have been transformed to
achieve a level of organizational ability. The transformation and implementation
methods may be different at each maturity level, but moving to the next maturity
level always requires capabilities established at earlier levels. Consequently,
each maturity level establishes a foundation on which higher levels of maturity
are built.

Maturity

Since its initial release in 1995, the People CMM has been used throughout the
United States, Canada, Europe, Australia, and India to guide and conduct
organizational improvement activities. Small and large commercial
organizations, as well as government organizations are using People CMM.

http://www.sei.cmu.edu/str/descriptions/pcmm.html (5 of 8)7/28/2008 11:27:47 AM

People Capability Maturity Model (People CMM)

Moreover, once executives identify an organization's strategic objectives, the
People CMM provides guidance that improves the organization's ability to satisfy
those objectives through a competent, capable workforce.

Costs and Limitations

There are several concerns or issues that should be addressed by anyone
considering People CMM. When a company reaches Level 3, it has developed
workforce competencies and workgroups that are aligned with its business
strategies. Without constant updating and renewal, workforce competencies can
become obsolete and no longer match business strategies. Therefore, it is
imperative to maintain an active program of competency definition and
development even if higher maturity levels are not attained.

Another issue is the temptation to skip maturity levels. Although tempting,
experience indicates that this practice normally leads to a failed improvement
program. In fact, it can actually damage the organization if the workforce builds
expectations that are not met because foundational process areas have not
been adequately addressed.

Finally, some organizations get "level fever." In these cases, attaining a
particular maturity level becomes more important than achieving the business
benefits attained through improved practices. Organizations must ensure that
the practices implemented in pursuit of higher maturity levels create beneficial
change. Otherwise, the organization is just adding a level of bureaucracy that
will eventually have to be dismantled.

Complementary Technologies

Complimentary technologies of the People CMM include: CMMI, SW-CMM,
Integrated Product Process Development (IPPD), Integrated Project
Management (IPM), Integrated Teaming, Organizational Environment for
Integration, and Total Quality Management (TQM).

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology People Capability Maturity Model® (P-CMM®)

Application category Not Applicable

Quality measures category Organizational Measures (QM.5)

http://www.sei.cmu.edu/str/descriptions/pcmm.html (6 of 8)7/28/2008 11:27:47 AM

People Capability Maturity Model (People CMM)

Computing reviews category Organizational Impacts (K.4.3)
Project and People Management (K.6.1)
The Computing Profession (K.7)

References and Information Sources

[CMMI 00] CMMI Product Development Team. CMMISM for Systems
Engineering/Software Engineering/Integrated Product and Process
Development, Version 1.02, Staged Representation (CMU/SEI-2000-TR-030).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2000.
http://www.sei.cmu.edu/publications/documents/00.reports/00tr030.html

[Curtis 95] Curtis, B.; Hefley, W.E.; & Miller S. People Capability Maturity Model
(CMU/SEI-95-MM-002), Pittsburgh, PA: Software Engineering Institute. Carnegie
Mellon University, Sept. 1995.
http://www.sei.cmu.edu/publications/documents/95.reports/95.mm.002.html

[Curtis 01] Curtis, Bill; Hefley, W.E; & Miller, SA. The People Capability Maturity
Model: Guidelines for Improving the Workforce, Reading, MA: Addison-Wesley,
2001.

[Hefley 98] Hefley, W. E. & Curtis, B. People CMM-Based Assessment Method
Description (CMM/SEI-98-TR-012 ADA354685). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1998.
http://www.sei.cmu.edu/publications/documents/98.
reports/98tr012/98tr012abstract.html

[Paulk 95] Paulk, M.C.; Weber, C.; Curtis, B.; & Chrissis, M.B. The Capability
Maturity Model: Guidelines for Improving the Software Process. Reading, MA:
Addison-Wesley, 1995.

Current Author/Maintainer

For more information about the People Capability Maturity Model contact

Sally Miller
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
E-mail: sal@sei.cmu.edu

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University

http://www.sei.cmu.edu/str/descriptions/pcmm.html (7 of 8)7/28/2008 11:27:47 AM

http://www.sei.cmu.edu/publications/documents/00.reports/00tr030.html
http://www.sei.cmu.edu/publications/documents/95.reports/95.mm.002.html
http://www.sei.cmu.edu/publications/documents/98.reports/98tr012/98tr012abstract.html
http://www.sei.cmu.edu/publications/documents/98.reports/98tr012/98tr012abstract.html
mailto:sal@sei.cmu.edu?Subject=P-CMM/STR Web

People Capability Maturity Model (People CMM)

Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/pcmm_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/pcmm.html (8 of 8)7/28/2008 11:27:47 AM

http://www.sei.cmu.edu/about/disclaimer.html

Personal Software Process for Module-Level Development

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Personal Software Process for Module-Level Development

Status

Complete

Purpose and Origin

The Personal Software Process (PSP)1 is a set of advanced process and quality
techniques to help software engineers improve their performance in their
organizations through a step-by-step, disciplined approach to measuring and
analyzing their work. Software engineers that use the PSP can substantially
improve their ability to estimate and plan their work and significantly improve the
quality, i.e., reduce the defects, in the code they develop. PSP is a result of
research by Watts Humphrey into applying process principles to the work of
individual software engineers and small software teams [Humphrey 95]. The
objective was to transfer the quality concepts of the Capability Maturity Model
(CMM)2 for Software [Paulk 95] to the individual and team processes. The PSP
provides the foundational skills necessary for individuals to participate on teams
using the Team Software Process (TSP)3.

Technical Detail

The foundations of PSP are the advanced process and quality methods that
have been used in manufacturing to improve all forms of production. These
concepts include the following:

● definition of the processes
● use of the defined processes
● measurement of the effects of the processes on product
● analysis of the effects on the product
● continuous refinement of the processes based on analysis

Some of the engineering methods used in PSP are data gathering, size and
resource estimating, defect management, yield management, and cost of quality
and productivity analysis. The basic data gathered in PSP are

● the time the engineer spends in each process phase
● the defects introduced and found in each phase
● the size of the developed product

http://www.sei.cmu.edu/str/descriptions/psp.html (1 of 6)7/28/2008 11:27:48 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/psp_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Personal Software Process for Module-Level Development

All PSP process quality measures are derived from this basic set of data. Size
and resource estimating is done using a proxy-based estimating method,
PROBE [Humphrey 96b], that uses the engineer's personal data and statistical
techniques to calculate a new item's most likely size and development time, and
the likely range of these estimates. A key PSP tenet is that defect management
is an engineer's personal responsibility. By analyzing the data gathered on the
defects they injected, engineers refine their personal process to minimize
injecting defects, and devise tailored checklists and use personal reviews to
remove as many defects as possible. Yield, the principal PSP quality measure,
is used to measure the effectiveness of review phases. Yield is defined as the
percentage of the defects in the product at the start of the review that were found
during the review phase. The basic cost-of-quality measure in PSP is the
appraisal-to-failure-ratio (A/FR), which is the ratio of the cost of the review and
evaluation phases to the cost of the diagnosing and repair phases. PSP-trained
engineers learn to relate productivity and quality, i.e., that defect-free (or nearly
so) products require much less time in diagnosing and repair phases, so their
projects will likely be more productive.

The PSP (and the courses based on it) concentrates on applying PSP to the
design, code, and Unit Test phases, i.e. module-level development phases of
software development [Humphrey 95]. As such, an instance of PSP for module-
level development is created. In PSP for module-level development, the
individual process phases are planning, design, design review, code, code
review, compile, test, and postmortem. Size is measured in lines of code and
size/resource estimating is done using functions or objects as the proxies for the
PROBE method. Engineers build individually tailored checklists for design review
and code review based on the history of the defects they inject most frequently.
Yield is the percentage of defects found before the first compile, engineers are
taught to strive for a 100% yield and can routinely achieve yields in the range of
70%. A/FR is the ratio of the time spent in design review and code review
phases to the time spent in compile and test phases, and engineers are
encouraged to plan for an A/FR of 2 or higher, which has been shown to
correlate well with high yield.

The PSP substantially improves engineering performance on estimating
accuracy, defect injection, and defect removal. Class data from 104 engineers
that have taken the PSP course shows reductions of 58% in the average number
of defects injected (and found in development) per 1,000 lines of code (KLOC),
and reductions of 72% in the average number of defects per KLOC found in test.
Estimating and planning accuracy also improved with an average 26% reduction
in size estimating error and an average 46% reduction in time estimating error.
Average productivity of the group went up slightly [Humphrey 96a].

Usage Considerations

The PSP is applicable to new development and enhancement work on whole
systems or major subunits. The PSP has been demonstrated and used in
organizations at all levels of the CMM. Because PSP emphasizes early defect
removal, i.e., spending time in the design through code review phases to prevent
and remove as many defects as possible before the first compile, PSP
introduction will likely be difficult in organizations that are concerned primarily
with schedule and not with product quality.

http://www.sei.cmu.edu/str/descriptions/psp.html (2 of 6)7/28/2008 11:27:48 AM

Personal Software Process for Module-Level Development

PSP is an individual development process; however, it can be used by small
teams if all members are PSP-trained and team conventions are established for
code counting and defect types. PSP does not require sophisticated tools or
software development environments; however, simple spreadsheet-based tools
can significantly help individual engineers reduce the effort needed to track and
analyze their personal data. For teams to apply these principles, the TSP should
be applied.

The principles of PSP can be applied to other areas such as developing
documentation, handling maintenance, conducting testing, and doing
requirements analysis. Humphrey describes how the PSP can be adapted to
these and other areas [Humphrey 95].

Maturity

PSP is a relatively new technology. It is already being taught in a number of
universities, but industrial introduction has just begun and only limited results are
available. Early industrial results are similar to the PSP course results, showing
reduced defects and improved quality. Work on industrial transition methods,
support tools, and operational practices is ongoing.

Costs and Limitations

PSP training (class room instruction, programming exercises, and personal data
analysis reports) requires approximately 10 days of instruction on the part of
each engineer. Through the use of 10 programming exercises and 5 reports,
engineers are led through a progressive sequence of software processes, taking
them from their current process to the full-up PSP for module-level development
process. By doing the exercises, engineers learn to use the methods and by
analyzing their own data, engineers see how the methods work for them.

Based on demonstrated benefits from course data, it is projected that the costs
of training will be recovered by an organization within one year through reduced
defects, reduced testing time, improved cycle time, and improved product quality.

Attempts by engineers to learn PSP methods by reading the book and then
trying to apply the techniques on real projects have generally not worked. Until
they have practiced PSP methods and have become convinced of their
effectiveness, engineers are not likely to apply them on the job.

PSP introduction requires strong management commitment because of the
significant effort required to learn PSP. It is also recommended that you follow
TSP into strategy. Management must provide engineers the time to learn PSP
and track their training progress to ensure the training is completed.

Complementary Technologies

The TSP is a follow-up approach to Humphrey's work on PSP. The TSP was
designed to provide both a strategy and a set of operational procedures for using

http://www.sei.cmu.edu/str/descriptions/psp.html (3 of 6)7/28/2008 11:27:48 AM

Personal Software Process for Module-Level Development

disciplined software process methods at the individual and team levels. The TSP
has been used with software-only teams and with mixed teams composed of
hardware, software, systems, and test professionals. The TSP can be used on
teams that typically range in size from 2 to about 150 individuals. The TSP has
been used for both new development and enhancement, and on applications
ranging from commercial software to embedded real-time systems. It is also
applicable in maintenance and support environments. The TSP is being
developed for a wider range of project applications, including large multi-teams,
geographically distributed teams, and functional teams [McAndrews 00].

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Personal Software Process for Module-Level
Development

Application category Detailed Design (AP.1.3.5)
Code (AP.1.4.2)
Unit Testing (AP.1.4.3.4)
Component Testing (AP.1.4.3.5)
Reapply Software Life Cycle (AP.1.9.3)
Reengineering (AP.1.9.5)

Quality measures category Reliability (QM.2.1.2)
Availability (QM.2.1.1)
Maintenance Control (QM.5.1.2.3)
Productivity (QM.5.2)

Computing reviews category Management (D.2.9)

References and Information Sources

[Humphrey 95] Humphrey, Watts. A Discipline for Software Engineering. Reading,
MA: Addison-Wesley Publishing Company, 1995.

[Humphrey
96a]

Humphrey, Watts. "Using a Defined and Measured Personal
Software Process." IEEE Software 13, 3 (May 1996): 77-88.

[Humphrey 96b] Humphrey, Watts. "The PSP and Personal Project Estimating."
American Programmer 9, 6 (June 1996): 2-15.

http://www.sei.cmu.edu/str/descriptions/psp.html (4 of 6)7/28/2008 11:27:48 AM

Personal Software Process for Module-Level Development

[Humphrey 00] Humphrey, Watts. The Team Software ProcessSM (TSPSM) (CMU/
SEI-2000-TR-023). Pittsburgh, Pa.: Software Engineering Institute,
Carnegie Mellon University, 2000.

[McAndrews
00]

McAndrews, Donald R. The Team Software ProcessSM (TSPSM): An
Overview and Preliminary Results of Using Disciplined Practices
(CMU/SEI-2000-TR-015). Pittsburgh, Pa.: Software Engineering
Institute, Carnegie Mellon University, 2000.

[Paulk 95] Paulk, Mark C. The Capability Maturity Model: Guidelines for
Improving the Software Process. Reading, MA: Addison-Wesley
Publishing Company, 1995.

Current Author/Maintainer

Dan Burton, SEI

External Reviewers

Archie Andrews, SEI
Watts Humphrey, SEI
Mark Paulk, SEI

Modifications

10 Jan 97 (original)
1 June 01 (updated)

Footnotes

1 Personal Software Process and PSP are service marks of Carnegie Mellon
University.

2 Capability Maturity Model and CMM are service marks of Carnegie Mellon
University.

3 Team Software Process and TSP are service marks of Carnegie Mellon
University.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use

http://www.sei.cmu.edu/str/descriptions/psp.html (5 of 6)7/28/2008 11:27:48 AM

http://www.sei.cmu.edu/publications/documents/00.reports/00tr023.html
http://www.sei.cmu.edu/publications/documents/00.reports/00tr023.html
http://www.sei.cmu.edu/publications/documents/00.reports/00tr015.html
http://www.sei.cmu.edu/about/disclaimer.html

Personal Software Process for Module-Level Development

URL: http://www.sei.cmu.edu/str/descriptions/psp_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/psp.html (6 of 6)7/28/2008 11:27:48 AM

Public Key Cryptography

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Public Key Cryptography

Status

Draft

Purpose and Origin

Cryptography is an algorithmic process of converting a plain text (or clear text)
message to a cipher text (or cipher) message based on an algorithm that both
the sender and receiver know, so that the cipher text message can be returned
to its original, plain text form. In its cipher form, a message cannot be read by
anyone but the intended receiver. The act of converting a plain text message to
its cipher text form is called enciphering. Reversing that act (i.e., cipher text form
to plain text message) is deciphering. Enciphering and deciphering are more
commonly referred to as encryption and decryption, respectively.

There are a number of algorithms for performing encryption and decryption, but
comparatively few such algorithms have stood the test of time. The most
successful algorithms use a key. A key is simply a parameter to the algorithm
that allows the encryption and decryption process to occur. There are many
modern key-based cryptographic techniques [Schneier 96]. These are divided
into two classes: symmetric and asymmetric (also called public/private) key
cryptography. In symmetric key cryptography, the same key is used for both
encryption and decryption. In asymmetric key cryptography, one key is used for
encryption and another, mathematically related key, is used for decryption.

Symmetric Key Cryptography

The most widely used symmetric key cryptographic method is the Data
Encryption Standard (DES) [NIST 93]. Although originally published in 1977 by
the National Bureau of Standards (reprinted in [Beker+ 82]), DES has not yet
been replaced by any other symmetric-key approach. DES uses a fixed length,
56-bit key and an efficient algorithm to quickly encrypt and decrypt messages.
DES can be easily implemented in hardware, making the encryption and
decryption process even faster. In general, increasing the key size makes the
system more secure. A variation of DES, called Triple-DES or DES-EDE
(encrypt-decrypt-encrypt), uses three applications of DES and two independent
DES keys to produce an effective key length of 168 bits [ANSI 85].

The International Data Encryption Algorithm (IDEA) was invented by James
Massey and Xuejia Lai of ETH Zurich, Switzerland in 1991 and is patented and

http://www.sei.cmu.edu/str/descriptions/publickey.html (1 of 8)7/28/2008 11:27:50 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/publickey_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Public Key Cryptography

registered by the Swiss Ascom Tech AG, Solothurn [Lai 92]. IDEA uses a fixed
length, 128-bit key (larger than DES but smaller than Triple-DES). It is also
faster than Triple-DES. In the early 1990s, Don Rivest of RSA Data Security,
Inc., invented the algorithms RC2 and RC4. These use variable length keys and
are claimed to be even faster than IDEA. However, implementations may be
exported from the U.S. only if they use key lengths of 40 bits or fewer.

Although symmetric key cryptography works, it has a fundamental weak spot-
key management. Since the same key is used for encryption and decryption, it
must be kept secure. If an adversary knows the key, then the message can be
decrypted. At the same time, the key must be available to the sender and the
receiver and these two parties may be physically separated. Symmetric key
cryptography transforms the problem of transmitting messages securely into that
of transmitting keys securely. This is a step forward, because keys are much
smaller than messages, and the keys can be generated beforehand.
Nevertheless, ensuring that the sender and receiver are using the same key and
that potential adversaries do not know this key remains a major stumbling block.
This is referred to as the key management problem.

Public/Private Key Cryptography

Asymmetric key cryptography overcomes the key management problem by
using different encryption and decryption key pairs. Having knowledge of one
key, say the encryption key, is not sufficient enough to determine the other key -
the decryption key. Therefore, the encryption key can be made public, provided
the decryption key is held only by the party wishing to receive encrypted
messages (hence the name public/private key cryptography). Anyone can use
the public key to encrypt a message, but only the recipient can decrypt it.

James Ellis, Malcolm Williamson, and Clifford Cocks first investigated public/
private key cryptography at the British Government Communications
Headquarters (GCHQ) in the early 1970s [Ellis 87]. The first public discussion of
public/private key cryptography was by Whitfield Diffie and Martin Hellman in
1976 [Diffie+ 76].

A widely used public/private key algorithm is RSA, named after the initials of its
inventors, Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman [RSA 91].
RSA depends on the difficulty of factoring the product of two very large prime
numbers. Although used for encrypting whole messages, RSA is much less
efficient than symmetric key algorithms such as DES. ElGamal is another public/
private key algorithm [El Gamal 85]. It uses a different arithmetic algorithm than
RSA, called the discrete logarithm problem. An extensive discussion of public/
private key cryptography, including much of the mathematical detail, can be
found in the book, Public Key Cryptography [Salomaa 96].

Technical Detail

The mathematical relationship between the public/private key pair permits a
general rule: any message encrypted with one key of the pair can be
successfully decrypted only with that key's counterpart. To encrypt with the
public key means you can decrypt only with the private key. The converse is also

http://www.sei.cmu.edu/str/descriptions/publickey.html (2 of 8)7/28/2008 11:27:50 AM

Public Key Cryptography

true - to encrypt with the private key means you can decrypt only with the public
key.

The decision as to which key is kept private and which is made public is not
arbitrary. In the case of RSA, the public key uses exponents that are relatively
small (in comparison to the private key) making the process of encryption and
digital signature verification (discussed later) faster.

Figure 1 illustrates the proper and intended used of public/private key
cryptography for sending confidential messages. In the illustration, a user, Bob,
has a public/private key pair. The public portion of that key pair is placed in the
public domain (for example in a Web server). The private portion is guarded in a
private domain, for example, on a digital key card or in a password-protected file.

Figure 1: Proper Use of Public Key Cryptography

For Alice to send a secret message to Bob, the following process needs to be
followed:

1. Alice passes the secret message and Bob's public key to the appropriate
encryption algorithm to construct the encrypted message.

2. Alice transmits the encrypted message (perhaps via e-mail) to Bob.
3. Bob decrypts the transmitted, encrypted message with his private key and

the appropriate decryption algorithm.

Bob can be assured that Alice's encrypted secret message was not seen by
anyone else since only his private key is capable of decrypting the message.

Since we know that a private key can also be used to encrypt messages, Bob
could technically respond in secret to Alice's original message by using the same
public/private key pair as illustrated in Figure 2.

http://www.sei.cmu.edu/str/descriptions/publickey.html (3 of 8)7/28/2008 11:27:50 AM

Public Key Cryptography

Figure 2: Improper Use of Public Key Cryptography

In this scenario:

1. Bob passes the secret reply and his private key to the encryption
algorithm to construct the encrypted reply.

2. Bob transmits the encrypted reply to Alice.
3. Alice decrypts the transmitted, encrypted reply with Bob's public key and

the decryption algorithm to read this reply.

Unfortunately, Bob's message will not be confidential because anyone with
access to the encrypted reply and Bob's public key (which is in the public
domain) can decrypt the reply and see the text of the message. However, if Alice
had her own public/private key pair, then Bob and Alice could communicate
confidentially. In this case, Bob would send messages encrypted with Alice's
public key (which only Alice could decrypt by using her private key), and Alice
would send messages to Bob encrypted with Bob's public key (which only he
could decrypt using his private key).

Usage Considerations

Public key cryptography is especially useful in situations where there is a need
for confidentiality, integrity, and non-repudiation. That is, in situations where the
messages being passed are intended to only be shared by the sending and
receiving parties. Further, public key cryptography is used in situations where
the recipient of a message must have confidence that the message received
was received as intended by the sender and has not been altered or forged in
any manner.

Confidentiality assures that unintended third parties can not view information
sent between two communicating parties. Encryption is the most widely used
mechanism for providing confidentiality over an insecure medium.

Integrity is knowing that the message you receive was exactly what was sent
and it was unaltered or damaged during transmission. Digital signatures are

http://www.sei.cmu.edu/str/descriptions/publickey.html (4 of 8)7/28/2008 11:27:50 AM

Public Key Cryptography

used to seal a message as a means to warn if the integrity of a message has
been compromised. Today, Web content that executes on local workstations is
commonly downloaded. Knowing that the content has not been surreptitiously
modified is critical if you are to trust the content. If the content is from a trusted
source and it is unmodified, your confidence in that content is higher - because
the content has integrity. If the content is from an unknown source or you cannot
tell if it has been modified, the content cannot be trusted. Mechanisms such as
digital signatures and certificates help maintain the integrity of exchanged
products and services.

Non-repudiation is the inability to disavow an act. In other words, evidence exists
that prevents a person from denying an act. For example, you log in to a
computer system by presenting a user name and password. Most software
applications consider this sufficient evidence to permit access, but could it be
proved that it was really you that was logged in? You could argue that someone
else obtained your password, possibly using snooping techniques. Now,
suppose that a computer system requires a fingerprint or retinal image to gain
access. Contesting the fact now becomes more difficult.

Finally, as opposed to symmetric key cryptography, public key cryptography is a
useful means of getting around issues dealing with key distribution and
management.

Maturity

Public key cryptography has been in use for more than 30 years. Secure
Sockets Layer (SSL) defined by Netscape is a popular application of public key
cryptography found in Web-enabled applications requiring secure
communications and authentication. Pretty Good Privacy (or PGP) is another
popular application of public key cryptography used to send confidential
electronic mail and digitally signing electronic documents.

Further, a number of commercial companies have become third party providers
of public key cryptography software including, but not limited to, RSA Security,
Inc, Sun Microsystems, Microsoft, Entrust, Inc., and VeriSign, Inc.

Costs and Limitations

Cost to implement public key cryptography in a system vary according to size
and scope. Characteristics that can determine costs include the number of pair-
wise keys that need to be created for the purposes of confidentiality and
integrity. For example, securing all corporate email will require that employers to
issue public keys to all of its employees and enforce the use of those key when
communicating corporate ideas and correspondence. Systems are available to
support such wide use but come at a cost. A counter-example of this would be a
corporate "portal" or web site available to the public from which the public may
be asked to place orders. In such a case, the corporation may only be required
to acquire public key cryptography for the one or more server(s) that will be used
to interact with the public, this is typically a annual cost from security providers
such as VeriSign, Inc.

http://www.sei.cmu.edu/str/descriptions/publickey.html (5 of 8)7/28/2008 11:27:50 AM

Public Key Cryptography

Using this technology may require network management personnel with
knowledge of public key cryptography and the use of software that implements
public key cryptography and digital signature algorithms especially if an outside
provider for public key infrastructures is NOT used. It also requires security
personnel and software that can generate, distribute, and control encryption/
decryption keys and respond to the loss or compromise of keys.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Public Key Cryptography

Application category Information Security (AP.2.4)

Quality measures category Security (QM.2.1.5)

Computing reviews category Operating Systems Security & Protection (D.4.6),
Security & Protection (K.6.5),
Computer-Communications Networks Security
and Protection (C.2.0)

References and Information Sources

[Abrams 95] Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J.
Information Security An Integrated Collection of Essays. Los
Alamitos, CA: IEEE Computer Society Press, 1995.

[Schneier 96] Bruce Schneier, Applied Cryptography: Protocols, Algorithms,
and Source Code in C, 2nd editon by , John Wiley & Sons, ISBN
0471128457, 1996.

[NIST 93] Data Encryption Standard (DES) (FIPS PUB 46-2). Gaithersburg,
Md.: National Institute of Standards and Technology, January,
1993. Available WWW: <URL: http://www.nist.gov/itl/div897/
pubs/fip46-2.htm>.

[Beker+ 82] Beker, H. & Piper, F. Cipher Systems. London: Northwood
Books, 1982.

http://www.sei.cmu.edu/str/descriptions/publickey.html (6 of 8)7/28/2008 11:27:50 AM

http://www.nist.gov/itl/div897/pubs/fip46-2.htm
http://www.nist.gov/itl/div897/pubs/fip46-2.htm

Public Key Cryptography

[ANSI 85] ANSI X9.17-1985, American National Standard, Financial
Institution Key Management (Wholesale), American Bankers
Association, Section 7.2. New York: American National
Standards Institute, 1985.

[Lai 92] Lai, X. ETH Series on Information Processing (J.L. Massey, ed.).
Vol. 1, On the Design and Security of Block Ciphers. Konstanz,
Switzerland: Hartung-Gorre Verlag, 1992.

[Ellis 87] Ellis, J.H. ìThe Story of Non-Secret Encryption.î Cheltenham,
UK: Communications Electronics Security Group, 1987.
Available WWW: <URL: http://www.cesg.gov.uk/about/nsecret/
ellis.htm>

[Diffie+] Diffie, W. & Hellman, M.E. ìNew Directions in Cryptography.î
IEEE Transactions on Information Theory, IT-22, Vol. 6, pp. 644-
654, 1976.

[RSA 91] PKCS #1: RSA Encryption Standard, Version 1.4. San Mateo,
Ca.: RSA Data Security, Inc., 1991.

[El Gamal 85] El Gamal, T. ìA Public Key Cryptosystem and Signature Scheme
Based on Discrete Logarithms.î IEEE Transactions on
Information Theory, IT-31, pp. 469-473, 1985.

[Salomaa 96] Salomaa, A. Public-Key Cryptography, 2nd edition. Berlin:
Springer-Verlag, 1996.

Current Author/Maintainer

Scott A. Hissam, SEI

External Reviewers

Modifications

9 Dec 01 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

http://www.sei.cmu.edu/str/descriptions/publickey.html (7 of 8)7/28/2008 11:27:50 AM

http://www.cesg.gov.uk/about/nsecret/ellis.htm
http://www.cesg.gov.uk/about/nsecret/ellis.htm

Public Key Cryptography

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/publickey_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/publickey.html (8 of 8)7/28/2008 11:27:50 AM

http://www.sei.cmu.edu/about/disclaimer.html

Public Key Digital Signatures

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Public Key Digital Signatures

Status

Advanced

Note

We recommend Computer System Security- an Overview as prerequisite reading for this
technology description.

Purpose and Origin

Public key digital signature techniques provide data integrity and source authentication capabilities
to enhance data trustworthiness in computer networks. This technology uses a combination of a
message authentication code (MAC) to guarantee the integrity of data and unique features of paired
public and private keys associated with public key cryptography to uniquely authenticate the sender
[Schneier 96, Abrams 95]. This technology was first defined in the early 1980s with the
development of public key cryptography but has received renewed interest as an authentication
mechanism on the Internet.

Technical Detail

Trustworthiness of data received by a computer from another computer is a function of the security
capabilities of both computers and the communications between them. One of the fundamental
objectives of computer security is data integrity [White 96]. Two aspects of data integrity are
improved by public key digital signature techniques. These are sender authentication and data
integrity verification. Positive authentication of the message source is provided by the unique
relationship of the two encryption keys used in public key cryptography. Positive verification of
message integrity is provided by the use of a message authentication code (sometimes called a
manipulation detection code or a cryptographic checksum) that is produced by a message digest
(sometimes called a data hashing) function. The use of a message authentication code and public
key cryptography are combined in the public key digital signature techniques technology.

Sender authentication. Public key cryptography uses two paired keys. These are the public key
and the private key (sometimes called the secret key), which are related to each other
mathematically. The public key is distributed to anyone that needs to encrypt a message destined
for the holder of the private key. The private key is not known to anyone but the holder of the private
key. Because of the mathematical relationship of the keys, data encrypted with the public key can
only be decrypted with the private key. Another feature of the paired key relationship is that if a
message can be successfully decrypted with the public key then it must have been encrypted with
the private key. Therefore, any message decrypted by a holder of the public key must have been
sent by the holder of the private key. This is used to authenticate the source of a message. Public

http://www.sei.cmu.edu/str/descriptions/pkds.html (1 of 5)7/28/2008 11:27:51 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/pkds_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Public Key Digital Signatures

key cryptography can use one of several algorithms but the most common one is the Revest,
Shamir, and Adleman (RSA) algorithm. It is used to produce the paired keys and to encrypt or
decrypt data using the appropriate key.

Data integrity verification. Message digest functions produce a single large number called the
message authentication code (MAC) that is unique1 to the total combination and position of
characters in the message being digested. The message digest function distributed with RSA is
called the MD5 message digest function. It produces a unique 128 bit number for each different
message digested. If even one character is changed in the message, a dramatically-different 128 bit
number is generated.

The overall process for using Public Key Digital Signatures to verify data integrity is shown in Figure
22.

Figure 22: Public Key Digital Signatures

The Digital Signature of a message is produced in two steps:

1. The sender of the message uses the message digest function to produce a message
authentication code (MAC).

2. This MAC is then encrypted using the private key and the public key encryption algorithm.
This encrypted MAC is attached to the message as the digital signature.

The receiver of the message uses the public key to decrypt the digital signature. If it is decrypted
successfully, the receiver of the message knows it came from the holder of the private key. The
receiver then uses the message digest function to calculate the MAC associated with the received
message contents. If this number compares to the one decrypted from the Digital Signature, the
message was received unaltered and data integrity is assured. Together, this technique provides
data source authentication and verification of message content integrity.

There are many message digest functions and public key encryption algorithms that may be used in
developing the public key digital signature technique. A discussion of these alternative algorithms
and their merits is in Schneier [Schneier 96].

Usage Considerations

This technology is most likely to be used in networks of computers where all the communication
paths can not be physically protected and where the integrity of data and sender authenticity

http://www.sei.cmu.edu/str/descriptions/pkds.html (2 of 5)7/28/2008 11:27:51 AM

Public Key Digital Signatures

aspects of trustability are essential. Military C4I networks and banking networks that are on a
widespread local area network or a wide area network are prime examples of this use.

Implementation of the public key digital signature techniques establishes additional requirements on
a network. The same message digest functions and public key cryptography algorithm used to
process the digital signature must be used by both the sender and receiver. Public/private key pairs
must be generated and maintained. Public keys must be distributed (or accessible in a public forum)
and private keys protected.

Maturity

The components of this technology, public key encryption and message digest functions, have been
in use since the early 1980s. The combined technology is mature and is available in
implementations that range from small networks of PCs to protection of data being transferred over
the Internet.

The algorithms supporting public key digital signatures have historically consumed large amounts of
processing power. However, given recent advances in processors used in PCs and workstations;
this is no longer a concern in most circumstances of use.

Costs and Limitations

Using this technology requires network management personnel with knowledge of public key
cryptography and the use of software that implements public key cryptography and digital signature
algorithms. It also requires security personnel and software that can generate, distribute, and
control encryption/decryption keys and respond to the loss or compromise of keys.

Dependencies

Public key cryptography and message digest functions.

Alternatives

Data integrity and authentication can be provided by a combination of dedicated circuits, integrity
protocols, and procedural control of sources and destinations. These approaches are not foolproof
and can be expensive. Data integrity and authentication can also be provided using private key
encryption and a third party arbitrator. This approach has the disadvantage that a third party must
be trusted and the data must be encrypted and decrypted twice with two separate private keys.

Index Categories

This technology is classified under the following categories. Select a category for a list of related
topics.

Name of technology Public Key Digital Signatures

Application category System Security (AP.2.4.3)

http://www.sei.cmu.edu/str/descriptions/pkds.html (3 of 5)7/28/2008 11:27:51 AM

Public Key Digital Signatures

Quality measures category Trustworthiness (QM.2.1.4)

Computing reviews category Computer-Communication Networks Security and Protection (C.2.0)
Security and Protection (K.6.5)

References and Information Sources

[Abrams 95] Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J. Information Security An
Integrated Collection of Essays. Los Alamitos, CA: IEEE Computer Society Press,
1995.

[Garfinkel
95]

Garfinkel, Simpson. PGP: Pretty Good Privacy. Sebastopol, CA: O'Reilly &
Associates, 1995.

[Russel 91] Russel, Deborah & Gangemi, G.T. Sr. Computer Security Basics. Sebastopol, CA:
O'Reilly & Associates, Inc., 1991.

[Schneier
96]

Schneier, Bruce. Applied Cryptography. New York, NY: John Wiley & Sons, 1996.

[White 96] White, Gregory B.; Fisch, Eric A.; & Pooch, Udo W. Computer System and Network
Security. Boca Raton, FL: CRC Press, 1996.

Current Author/Maintainer

Tom Mills, Lockheed Martin

External Reviewers

Jim Ellis, SEI
Scott A. Hissam, SEI

Modifications

4 Nov 03 (typo correction) 26 Jun 00 (references to "secret key" changed to "private key")

10 Jan 97 (original)

Footnotes

1 Of course they are not absolutely unique. We say unique here because it is extremely unlikely
statistically for two files to have the same MAC and, more importantly, it is extremely difficult for an
attacker/malicious user to create/craft two files having the same MAC.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the U.S.
Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University

http://www.sei.cmu.edu/str/descriptions/pkds.html (4 of 5)7/28/2008 11:27:51 AM

Public Key Digital Signatures

Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/pkds_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/pkds.html (5 of 5)7/28/2008 11:27:51 AM

http://www.sei.cmu.edu/about/disclaimer.html

Rate Monotonic Analysis

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Rate Monotonic Analysis

Status

Complete

Purpose and Origin

Rate Monotonic Analysis (RMA) is a collection of quantitative methods and
algorithms that allows engineers to specify, understand, analyze, and predict the
timing behavior of real-time software systems, thus improving their dependability
and evolvability.

RMA grew out of the theory of fixed priority scheduling. A theoretical treatment of
the problem of scheduling periodic tasks was first discussed by Serlin in 1972
[Serlin 72] and then more comprehensively treated by Liu and Layland in 1973
[Liu 73]. They studied an idealized situation in which all tasks are periodic, do
not synchronize with one another, do not suspend themselves during execution,
can be instantly preempted by higher priority tasks, and have deadlines at the
end of their periods. The term "rate monotonic" originated as a name for the
optimal task priority assignment in which higher priorities are accorded to tasks
that execute at higher rates (that is, as a monotonic function of rate). Rate
monotonic scheduling is a term used in reference to fixed priority task scheduling
that uses a rate monotonic prioritization.

During the 1980s the limitations of the original theory were overcome and the
theory was generalized to the point of being practicable for a large range of
realistic situations encountered in the design and analysis of real-time systems
[Sha 91a]. RMA can be used by real-time system designers, testers,
maintainers, and troubleshooters, as it provides

● mechanisms for predicting real-time performance
● structuring guidelines to help ensure performance predictability
● insight for uncovering subtle performance problems in real-time systems

This body of theory and methods is also referred to as generalized rate
monotonic scheduling (GRMS), a codification of which can be found in Klein
[Klein 93].

Technical Detail

http://www.sei.cmu.edu/str/descriptions/rma.html (1 of 6)7/28/2008 11:27:52 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/rma_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Rate Monotonic Analysis

RMA provides the analytical foundation for understanding the timing behavior of
real-time systems that must manage many concurrent threads of control. Real-
time systems often have stringent latency requirements associated with each
thread that are derived from the environmental processes with which the system
is interacting. RMA provides the basis for predicting whether such latency
requirements can be satisfied. Some of the important factors that are used in
RMA calculations include:

● the worst-case execution time of each thread of control
● the minimum amount of time between successive invocations of each

thread
● the priority levels associated with the execution of each thread
● sources of overhead such as those due to an operating system
● delays due to interprocess communication and synchronization
● allocation of threads of control to physical resources such as CPUs,

buses, and networks

These factors and other aspects of the system design are used to calculate
worst-case latencies for each thread of control. These worst-case latencies are
then compared to each thread's timing requirements to determine if the
requirement can be satisfied.

A problem commonly revealed as a result of rate monotonic analysis is priority
inversion. Priority inversion is a state in which the execution of a higher priority
thread is forced to wait for a resource while a lower priority thread is using the
resource. Not all priority inversion can be avoided but proper priority
management can reduce priority inversion. For example, priority inheritance is a
useful technique for reducing priority inversion in cases where threads must
synchronize [Rajkumar 91].

Since RMA is an analytic approach that can be used before system integration
to determine if latency requirements will be met, it can result in significant
savings in both system resources and development time.

Usage Considerations

RMA is most suitable for systems dominated by a collection of periodic or
sporadic processes (i.e., processes with minimum inter-arrival intervals), for
which the processing times can be bounded and are without excessive
variability. RMA is also primarily focused on hard deadlines rather than soft.
However, soft deadlines can be handled through the use of server mechanisms
that allocate time to tasks with soft deadlines in a manner that ensures that hard
deadlines are still met. Still, with soft deadline tasks, the aperiodic server
predictions work best when the workload is primarily periodic.

Systems in which worst-case executions are realized very infrequently or in
which there is no minimum inter-arrival interval between thread invocations
might not be suitable for RMA analysis. For example, consider multimedia
applications where voice and data transmissions involve a great deal of
variability. Principles of RMA, such as priority representation, priority arbitration,
and priority inheritance, can be used in multimedia systems to reduce response

http://www.sei.cmu.edu/str/descriptions/rma.html (2 of 6)7/28/2008 11:27:52 AM

Rate Monotonic Analysis

times and meet deadlines at relatively high levels of use. However, deadlines in
such environments may not be hard, and execution times can be stochastic, two
requirements that are not currently handled well in the RMA framework. When
most of the workload is aperiodic, one needs to move to queueing theory.

Maturity

Indicators of RMA maturity include the following:

● In 1989 IBM applied RMA to a sonar training system, allowing them to
discover and correct performance problems [Lucas 92].

● Since 1990, RMA was recommended by IBM Federal Sector Division
(now Lockheed Martin) for its real-time projects.

● RMA was successfully applied to active and passive sonar of a major
submarine system of US Navy.

● RMA was selected by the European Space Agency as the baseline theory
for its Hard Real-Time Operating System Project.

● The applicability of RMA to a typical avionics application was
demonstrated [Locke 91].

● RMA was adopted in 1990 by NASA for development of real-time
software for the space station data management subsystem. In 1992
Acting Deputy Administrator of NASA, Aaron Cohen stated, "Through the
development of rate monotonic scheduling, we now have a system that
will allow (Space Station) Freedom's computers to budget their time to
choose [among] a variety of tasks, and decide not only which one to do
first but how much time to spend in the process."

● Magnavox Electronics Systems Company incorporated RMA into real-
time software development [Ignace 94].

● RMA principles have influenced the design and development of the
following standards:

❍ IEEE Futurebus+ [Sha 91b]
❍ POSIX
❍ Ada 95

● Tool vendors provide the capability to analyze real-time designs using
RMA. RMA algorithms, such as priority inheritance, have been used by
operating system and Ada compiler vendors.

Costs and Limitations

Case studies of RMA adoption show that "While RMA does require engineers to
re-frame their understanding of scheduling issues to a more abstract level, only
moderate training is required for people to be effective in using the
technology" [Fowler 93]. A short (1-2 day) tutorial is usually sufficient to gain a
working knowledge of RMA.

Additionally, the studies found "RMA can be incorporated into software
engineering processes with relative ease over a period of several months....
RMA can be adopted incrementally; its adoption can range from application to
an existing system by one engineer to application across an entire division as
standard practice in designing new systems" [Fowler 93].

http://www.sei.cmu.edu/str/descriptions/rma.html (3 of 6)7/28/2008 11:27:52 AM

Rate Monotonic Analysis

RMA can be applied with varying degrees of detail. Qualitative analysis through
the application of design and trouble shooting heuristics can be very effective.
Simple quantitative analysis using back-of-the-envelope calculations quickly
yields insight into system timing behavior. More precise quantitative analysis can
be performed as more precise system measurements become available during
the development activity.

Dependencies

Application performance is influenced by system components such as operating
systems networks and communication protocols. Therefore, it is important for
such system components to be designed with RMA in mind.

Complementary Technologies

Simulation is often used to gain insight into a system's performance. Simulation
can be used to corroborate RMA's performance predictions. Queueing theory is
complementary to RMA. Whereas RMA is used to predict worst-case latencies
when bounds can be placed on arrival dates and execution times, queueing
theory can be used to predict average-case behavior when arrival rates and
execution times are described stochastically. Together RMA and queuing theory
solve a wide set of performance problems.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Rate Monotonic Analysis

Application category Detailed Design (AP.1.3.5)
System Analysis and Optimization (AP.1.3.6)
Code (AP.1.4.2)
Performance Testing (AP.1.5.3.5)
Reapply Software Life Cycle (AP.1.9.3)
Reengineering (AP.1.9.5)

Quality measures category Real-Time Responsiveness/Latency (QM.2.2.2)
Maintainability (QM.3.1)
Reliability (QM.2.1.2)

Computing reviews category Real-Time Systems (C.3)

References and Information Sources

http://www.sei.cmu.edu/str/descriptions/rma.html (4 of 6)7/28/2008 11:27:52 AM

Rate Monotonic Analysis

[Audsley 95] Audsley, N.C., et al. "Fixed Priority Pre-Emptive Scheduling:
An Historical Perspective." Real Time Systems 8, 2-3. (March-
May 1995): 173-98.

[Fowler 93] Fowler, P. & Levine, L. Technology Transition Push: A Case
Study of Rate Monotonic Analysis Part 1 (CMU/SEI-93-TR-29).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 1993.

[Ignace 94] Ignace, S. J.; Sedlmeyer, R. L.; & Thuente, D. J. "Integrating
Rate Monotonic Analysis into Real-Time Software
Development," 257-274. IFIP Transactions, Diffusion, Transfer
and Implementation of Information Technology (A-45).
Pittsburgh, PA, October 11-13, 1993. The Netherlands:
International Federation of Information Processing, 1994.

[Klein 93] Klein, M.H., et al. A Practitioners' Handbook for Real-Time
Analysis: Guide to Rate Monotonic Analysis for Real-Time
Systems. Boston, MA: Kluwer Academic Publishers, 1993.

[Lehoczky 94] Lehoczky, J.P. "Real-Time Resource Management Techniques,"
1011-1020. Encyclopedia of Software Engineering. New York,
NY: J. Wiley & Sons, 1994.

[Liu 73] Liu, C. L. & Layland, J. W. "Scheduling Algorithms for Multi-
Programming in a Hard Real-Time Environment." Journal of
the Association for Computing Machinery 20, 1 (January 1973):
40-61.

[Locke 91] Locke, C.D.; Vogel, D.R.; & Mesler, T.J. "Building a
Predictable Avionics Platform in Ada: a Case Study," 181-189.
Proceedings of the Twelfth Real-Time Systems Symposium. San
Antonio, TX, December 4-6, 1991. Los Alamitos, CA: IEEE
Computer Society Press, 1991.

[Lucas 92] Lucas, L. & Page, B. "Tutorial on Rate Monotonic Analysis."
Ninth Annual Washington Ada Symposium. McLean, VA, July
13-16, 1992. New York, NY: Association for Computing
Machinery, 1992.

[Rajkumar
91]

Rajkumar, Ragunathan. Synchronization in Real-Time Systems:
A Priority Inheritance Approach. Boston, MA: Kluwer
Academic Publishers, 1991.

[Serlin 72] Serlin, O. "Scheduling of Time Critical Processes," 925-932.
Proceedings of the Spring Joint Computer Conference. Atlantic
City, NJ, May 16-18, 1972. Montvale, NJ: American Federation
of Information Processing Societies, 1972.

[Sha 91a] Sha, Klein & Goodenough, J. "Rate Monotonic Analysis for
Real-Time Systems," 129-155. Foundations of Real-Time
Computing: Scheduling and Resource Management. Boston,
MA: Kluwer Academic Publishers, 1991.

http://www.sei.cmu.edu/str/descriptions/rma.html (5 of 6)7/28/2008 11:27:52 AM

Rate Monotonic Analysis

[Sha 91b] Sha, L.; Rajkumar, R.; & Lehoczky, J. P. "Real-Time
Computing with IEEE Futurebus+." IEEE Micro 11, 3 (June
1991): 30-38.

Current Author/Maintainer

Mark Klein, SEI

External Reviewers

Mike Gagliardi, SEI
John Goodenough, SEI
John Lehoczky, Professor, Statistics Department, Carnegie Mellon University
Ray Obenza, SEI
Raj Rajkumar, Carnegie Mellon University
Lui Sha, SEI

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/rma_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/rma.html (6 of 6)7/28/2008 11:27:52 AM

http://www.sei.cmu.edu/about/disclaimer.html

Reference Models, Architectures, Implementations--An Overview

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Reference Models, Architectures, Implementations--An Overview

Status

Advanced

Purpose and Origin

Much confusion exists regarding the definition, applicability, and scope of the terms reference model,
architecture, and implementation. Understanding these terms facilitates understanding legacy system
designs and how to migrate them to more open systems. The purpose of this technology description is
to provide definitions, and more importantly, to describe how the terms are related.

Technical Detail

Reference model. A reference model is a description of all of the possible software components,
component services (functions), and the relationships between them (how these components are put
together and how they will interact). Examples of commonly-known reference models include the
following:

● the Technical Architecture for Information Management (TAFIM) reference model (see TAFIM
Reference Model)

● the Reference Model for Frameworks of Software Engineering Environments [ECMA 93]
● Project Support Environment Reference Model (PSERM)
● the Tri-Service Working Group Open Systems Reference Model

Architecture. An architecture is a description of a subset of the reference model's component services
that have been selected to meet a specific system's requirements. In other words, not all of the
reference model's component services need to be included in a specific architecture. There can be
many architectures derived from the same reference model. The associated standards and guidelines
for each service included in the architecture form the open systems architecture and become the criteria
for implementing the system.

Implementation. The implementation is a product that results from selecting (e.g., commercial-off-the-
shelf), reusing, building and integrating software components and component services according to the
specified architecture. The selected, reused, and/or built components and component services must
comply 100% with the associated standards and guidelines for the implementation to be considered
compliant.

Usage Considerations

Figure 23 attempts to show the interrelationships of these concepts using the TAFIM as an example.
TAFIM provides the reference model and a number of specific architectures can be derived from the
TAFIM reference model based on specific program requirements. From there a number of
implementations may be developed based on the products selected to meet the architecture's services,

http://www.sei.cmu.edu/str/descriptions/refmodels.html (1 of 3)7/28/2008 11:27:53 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/refmodels_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Reference Models, Architectures, Implementations--An Overview

so long as these products meet the required standards and guidelines. For instance, in one
implementation, the product ORACLE might be selected and used to meet some of the data
management services. In another implementation, the product Sybase might be selected and used.

Figure 23: Reference Model, Architecture, and Implementation

Index Categories

This technology is classified under the following categories. Select a category for a list of related topics.

Name of technology Reference Models, Architectures, Implementations - An Overview

Application category Software Architecture Models (AP.2.1.1)
Software Architecture (AP.2.1)

Quality measures category Maintainability (QM.3.1)
Interoperability (QM.4.1)
Portability (QM.4.2)

Computing reviews category Distributed Systems (C.2.4)
Software Engineering Design (D.2.10)

References and Information Sources

http://www.sei.cmu.edu/str/descriptions/refmodels.html (2 of 3)7/28/2008 11:27:53 AM

Reference Models, Architectures, Implementations--An Overview

[ECMA
93]

Reference Model for Frameworks of Software Engineering Environments, 3rd Edition
(NIST Special Publication 500-211/Technical Report ECMA TR/55). Prepared jointly by
NIST and the European Computer Manufacturers Association (ECMA). Washington, DC:
U.S. Government Printing Office, 1993.

[Meyers
96]

Meyers, Craig & Oberndorf, Tricia. Open Systems: The Promises and the Pitfalls.
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 1996.

Current Author/Maintainer

Darleen Sadoski, GTE

External Reviewers

Tricia Oberndorf, SEI

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the U.S.
Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/refmodels_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/refmodels.html (3 of 3)7/28/2008 11:27:53 AM

http://www.sei.cmu.edu/about/disclaimer.html

Remote Procedure Call

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Remote Procedure Call

Status

Advanced

Note

We recommend Middleware as prerequisite reading for this technology
description.

Purpose and Origin

Remote Procedure Call (RPC) is a client/server infrastructure that increases the
interoperability, portability, and flexibility of an application by allowing the
application to be distributed over multiple heterogeneous platforms. It reduces
the complexity of developing applications that span multiple operating systems
and network protocols by insulating the application developer from the details of
the various operating system and network interfaces--function calls are the
programmer's interface when using RPC [Rao 1995].

The concept of RPC has been discussed in literature as far back as 1976, with
full-scale implementations appearing in the late 1970s and early 1980s [Birrell
84].

Technical Detail

In order to access the remote server portion of an application, special function
calls, RPCs, are embedded within the client portion of the client/server
application program. Because they are embedded, RPCs do not stand alone as
a discreet middleware layer. When the client program is compiled, the compiler
creates a local stub for the client portion and another stub for the server portion
of the application. These stubs are invoked when the application requires a
remote function and typically support synchronous calls between clients and
servers. These relationships are shown in Figure 32 [Steinke 95].

By using RPC, the complexity involved in the development of distributed
processing is reduced by keeping the semantics of a remote call the same
whether or not the client and server are collocated on the same system.
However, RPC increases the involvement of an application developer with the

http://www.sei.cmu.edu/str/descriptions/rpc.html (1 of 5)7/28/2008 11:27:54 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/rpc_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Remote Procedure Call

complexity of the master-slave nature of the client/server mechanism.

RPC increases the flexibility of an architecture by allowing a client component of
an application to employ a function call to access a server on a remote system.
RPC allows the remote component to be accessed without knowledge of the
network address or any other lower-level information. Most RPCs use a
synchronous, request-reply (sometimes referred to as "call/wait") protocol which
involves blocking of the client until the server fulfills its request. Asynchronous
("call/nowait") implementations are available but are currently the exception.

Figure 32: Remote Procedure Calls

RPC is typically implemented in one of two ways:

1. within a broader, more encompassing propriety product
2. by a programmer using a proprietary tool to create client/server RPC

stubs

Usage Considerations

RPC is appropriate for client/server applications in which the client can issue a
request and wait for the server's response before continuing its own processing.
Because most RPC implementations do not support peer-to-peer, or
asynchronous, client/server interaction, RPC is not well-suited for applications
involving distributed objects or object-oriented programming (see Object-
Oriented Programming Languages).

Asynchronous and synchronous mechanisms each have strengths and
weaknesses that should be considered when designing any specific application.
In contrast to asynchronous mechanisms employed by Message-Oriented
Middleware, the use of a synchronous request-reply mechanism in RPC requires
that the client and server are always available and functioning (i.e., the client or
server is not blocked). In order to allow a client/server application to recover from
a blocked condition, an implementation of a RPC is required to provide
mechanisms such as error messages, request timers, retransmissions, or
redirection to an alternate server. The complexity of the application using a RPC
is dependent on the sophistication of the specific RPC implementation (i.e., the

http://www.sei.cmu.edu/str/descriptions/rpc.html (2 of 5)7/28/2008 11:27:54 AM

Remote Procedure Call

more sophisticated the recovery mechanisms supported by RPC, the less
complex the application utilizing the RPC is required to be). RPCs that
implement asynchronous mechanisms are very few and are difficult (complex) to
implement [Rao 1995].

When utilizing RPC over a distributed network, the performance (or load) of the
network should be considered. One of the strengths of RPC is that the
synchronous, blocking mechanism of RPC guards against overloading a
network, unlike the asynchronous mechanism of Message-Oriented Middleware
(MOM). However, when recovery mechanisms, such as retransmissions, are
employed by an RPC application, the resulting load on a network may increase,
making the application inappropriate for a congested network. Also, because
RPC uses static routing tables established at compile-time, the ability to perform
load balancing across a network is difficult and should be considered when
designing an RPC-based application.

Maturity

Tools are available for a programmer to use in developing RPC applications over
a wide variety of platforms, including Windows (3.1, NT, 95), Macintosh, 26
variants of UNIX, OS/2, NetWare, and VMS [Steinke 1995]. RPC infrastructures
are implemented within the Distributed Computing Environment (DCE) , and
within Open Network Computing (ONC), developed by Sunsoft, Inc. These two
RPC implementations dominate the current Middleware market [Rao 1995].

Costs and Limitations

RPC implementations are nominally incompatible with other RPC
implementations, although some are compatible. Using a single implementation
of a RPC in a system will most likely result in a dependence on the RPC vendor
for maintenance support and future enhancements. This could have a highly
negative impact on a system's flexibility, maintainability, portability, and
interoperability.

Because there is no single standard for implementing an RPC, different features
may be offered by individual RPC implementations. Features that may affect the
design and cost of a RPC-based application include the following:

● support of synchronous and/or asynchronous processing
● support of different networking protocols
● support for different file systems
● whether the RPC mechanism can be obtained individually, or only

bundled with a server operating system

Because of the complexity of the synchronous mechanism of RPC and the
proprietary and unique nature of RPC implementations, training is essential even
for the experienced programmer.

Alternatives

http://www.sei.cmu.edu/str/descriptions/rpc.html (3 of 5)7/28/2008 11:27:54 AM

Remote Procedure Call

Other middleware technologies that allow the distribution of processing across
multiple processors and platforms are

● Object Request Brokers (ORB)
● Distributed Computing Environment (DCE)
● Message-Oriented Middleware (MOM)
● COM/DCOM (see Component Object Model (COM), DCOM, and Related

Capabilities)
● Transaction Processing Monitor Technology
● Three Tier Software Architectures

Complementary Technologies

RPC can be effectively combined with Message-Oriented Middleware (MOM)-
MOM can be used for asynchronous processing.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Remote Procedure Call

Application category Client/Server (AP.2.1.2.1)
Client/Server Communication (AP.2.2.1)

Quality measures category Maintainability (QM.3.1)
Interoperability (QM.4.1)
Portability (QM.4.2)
Complexity (QM.3.2.1)

Computing reviews category Distributed Systems (C.2.4)

References and Information Sources

[Birrell 84] Birrell, A.D. & Nelson, B.J. "Implementing Remote Procedure
Calls." ACM Transactions on Computer Systems 2, 1 (February
1984): 39-59.

[Rao 95] Rao, B.R. "Making the Most of Middleware." Data
Communications International 24, 12 (September 1995): 89-96.

[Steinke 95] Steinke, Steve. "Middleware Meets the Network." LAN: The
Network Solutions Magazine 10, 13 (December 1995): 56.

http://www.sei.cmu.edu/str/descriptions/rpc.html (4 of 5)7/28/2008 11:27:54 AM

Remote Procedure Call

[Thekkath
93]

Thekkath, C.A. & Levy, H.M. "Limits to Low-Latency
Communication on High-Speed Networks." ACM Transactions on
Computer Systems 11, 2 (May 1993): 179-203.

Current Author/Maintainer

Cory Vondrak, TRW, Redondo Beach, CA

Modifications

25 June 97: modified/updated OLE/COM reference to COM/DCOM
10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/rpc_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/rpc.html (5 of 5)7/28/2008 11:27:54 AM

http://www.sei.cmu.edu/about/disclaimer.html

Requirements Tracing--An Overview

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Requirements Tracing--An Overview

Status

Advanced

Purpose and Origin

The development and use of requirements tracing techniques originated in the
early 1970s to influence the completeness, consistency, and traceability of the
requirements of a system. They provide an answer to the following questions:

● What mission need is addressed by a requirement?
● Where is a requirement implemented?
● Is this requirement necessary?
● How do I interpret this requirement?
● What design decisions affect the implementation of a requirement?
● Are all requirements allocated?
● Why is the design implemented this way and what were the other

alternatives?
● Is this design element necessary?
● Is the implementation compliant with the requirements?
● What acceptance test will be used to verify a requirement?
● Are we done?
● What is the impact of changing a requirement [SPS 94]?

The purpose of this technology description is to introduce the key concepts of
requirements tracing. Detailed discussions of the individual technologies can be
found in the referenced technology descriptions.

Technical Detail

Requirements traceability is defined as the ability to describe and follow the life
of a requirement, in both a forward and backward direction (i.e., from its origins,
through its development and specification, to its subsequent deployment and
use, and through periods of ongoing refinement and iteration in any of these
phases) [Gotel 95]. It can be achieved by using one or more of the following
techniques:

● Cross referencing. This involves embedding phrases like "see section x"
throughout the project documentation (e.g., tagging, numbering, or

http://www.sei.cmu.edu/str/descriptions/reqtracing.html (1 of 6)7/28/2008 11:27:55 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/reqtracing_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Requirements Tracing--An Overview

indexing of requirements, and specialized tables or matrices that track the
cross references).

● Specialized templates and integration or transformation documents.
These are used to store links between documents created in different
phases of development.

● Restructuring. The documentation is restructured in terms of an
underlying network or graph to keep track of requirements changes (e.g.,
assumption-based truth maintenance networks, chaining mechanisms,
constraint networks, and propagation) [Gotel 95].

Usage Considerations

For any given project, a key milestone (or step) is to determine and agree upon
requirements traceability details. Initially, three important questions need to be
answered before embarking on any particular requirements traceability approach:

1. What needs to be traceable?
2. What linkages need to be made?
3. How, when, and who should establish and maintain the resulting

database?

Once the questions are answered, then selection of an approach can be made.
One approach could be the structured use of general-purpose tools (e.g.,
hypertext editors, word processors, and spreadsheets) configured to support
cross-referencing between documents. For large software development projects,
an alternative approach could be the use of a dedicated workbench centered
around a database management system providing tools for documenting,
parsing, editing, decomposing, grouping, linking, organizing, partitioning, and
managing requirements. Table 9 describes the strengths and weaknesses of
each of the approaches.

Table 9: Comparing Requirements Tracing Approaches

Approaches Strengths Weaknesses

General
purpose tools

· readily available

· flexible

· good for small projects

· need to be configured to
support Requirements
Traceability (RT)

· potential high RT maintenance
cost

· limited control over RT
information

· potential limited integration
with other software
development tools

http://www.sei.cmu.edu/str/descriptions/reqtracing.html (2 of 6)7/28/2008 11:27:55 AM

Requirements Tracing--An Overview

Workbenches · fine-grained forward,
backward, horizontal, and
vertical RT

· RT results may facilitate
later development activities (i.
e., testing)

· suitable for large projects

· depend upon stakeholder buy-
in

· manual intervention may be
required

· RT in later development
phases may be difficult

Regardless of the approach taken, requirements tracing requires a combination
of models (i.e., representation forms), methods (i.e., step by step processes),
and/or languages (i.e., semiformal and formal) that incorporate the above
techniques. Some examples of requirements tracing methods are discussed in
the following technology descriptions:

● Feature-Based Design Rationale Capture Method for Requirements
Tracing

● Argument-Based Design Rationale Capture Methods for Requirements
Tracing

Maturity

Every major office tool manufacturer has spreadsheet and/or database
capabilities that can be configured to support requirements tracing. There are at
least ten commercial products that fall in the workbench category and support
some level of requirements traceability [STSC 98]. At a minimum, they provide

● bidirectional requirement linking to system elements
● capture of allocation rationale, accountability, and test/validation
● identification of inconsistencies
● capabilities to view/trace links
● verification of requirements
● history of requirements changes.

Environments to support requirements traceability past the requirements
engineering phase of the system/software life cycle are being researched. Areas
include the development of a common language, method, model, and database
repository structure, as well as mechanisms to provide data exchange between
different tools in the environment. Prototypes exist and at least one commercial
product provides support for data exchange through its object-oriented database
facilities.

Costs and Limitations

In general, the implementation of requirements tracing techniques within an
organization should facilitate reuse and maintainability of the system. However,

http://www.sei.cmu.edu/str/descriptions/reqtracing.html (3 of 6)7/28/2008 11:27:55 AM

Requirements Tracing--An Overview

additional resources (time and manpower) to initially implement traceability
processes (i.e., definition of traceability information, selection of automated tools,
training, etc.) will be required. One case study found that the cost was more than
twice the normal documentation cost associated with the development of a
system of similar size and complexity. However, this was determined to be a one-
time cost and the overall costs to maintain the software system are expected to
be reduced. Almost immediate return was observed in the reduced amount of
time to perform hardware upgrades [Ramesh 95].

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Requirements Tracing

Application category Requirements Tracing (AP.1.2.3)

Quality measures category Completeness (QM.1.3.1)
Consistency (QM.1.3.2)
Traceability (QM.1.3.3)
Effectiveness (QM.1.1)
Reusability (QM.4.4)
Understandability (QM.3.2)
Maintainability (QM.3.1)

Computing reviews category Software Engineering Tools and Techniques
(D.2.2)
Software Engineering Requirements/
Specifications (D.2.1)

References and Information Sources

[Bailin 90] Bailin, S., et al. "KAPTUR: Knowledge Acquisition for
Preservation of Tradeoffs and Underlying Rationale," 95-104.
Proceedings of the 5th Annual Knowledge-Based Software
Assistant Conference. Liverpool, NY, September 24-28, 1990.
Rome, NY: Rome Air Development Center, 1990.

[Gotel 95] Gotel, Orlena. Contribution Structures for Requirements
Traceability. London, England: Imperial College, Department of
Computing, 1995.

http://www.sei.cmu.edu/str/descriptions/reqtracing.html (4 of 6)7/28/2008 11:27:55 AM

Requirements Tracing--An Overview

[Ramesh
92]

Ramesh, Balasubramaniam & Dhar, Vasant. "Supporting Systems
Development by Capturing Deliberations During Requirements
Engineering." IEEE Transactions on Software Engineering 18, 6
(June 1992): 498-510.

[Ramesh
95]

Ramesh, Bala; Stubbs, Lt Curtis; & Edwards, Michael. "Lessons
Learned from Implementing Requirements Traceability."
Crosstalk, Journal of Defense Software Engineering 8, 4 (April
1995): 11-15.

[Shum 94] Shum, Buckingham Simon & Hammond, Nick. "Argumentation-
Based Design Rationale: What Use at What Cost?" International
Journal of Human-Computer Studies 40, 4 (April 1994): 603-652.

[SPS 94] Analysis of Automated Requirements Management Capabilities.
Melbourne, FL: Software Productivity Solutions, 1994.

[STSC 98] Software Technology Support Center. Requirements Management
Tools [online]. Available WWW
<URL:http://www.stsc.hill.af.mil/RED/LIST.HTML> (1998).

Current Author/Maintainer

Liz Kean, Air Force Rome Laboratory

External Reviewers

Brian Gallagher, SEI

Modifications

4 Feb 98: added reference for [STSC 98]
10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/reqtracing_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms

http://www.sei.cmu.edu/str/descriptions/reqtracing.html (5 of 6)7/28/2008 11:27:55 AM

http://www.stsc.hill.af.mil/RED/LIST.HTML
http://www.sei.cmu.edu/about/disclaimer.html

Requirements Tracing--An Overview

● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/reqtracing.html (6 of 6)7/28/2008 11:27:55 AM

Digital Certificates

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Certificates

Status

Draft

Purpose and Origin

Digital certificates, or just certificates, are computer-based files or structures
used to convey information about a user for identification purposes [Gerck 97].
Certificates are based on the ITU-T Recommendation X.509 [ITU-T 97]. There
are a number of different certificates (called end-entity certificates) defined in the
X.509 specification:

● Personal certificates represent individuals, and are typically used to
secure e-mail and access to web servers.

● Server certificates indicate that a server belongs to the company it claims
to belong to.

● Developer certificates are used by developers to sign software or other
objects.

A certificate binds an identity (a name) to a public key. The certificate includes
the name of the person (e.g., Bob), their public key (e.g., Bob's public key), and
a digital signature sealing the data. This information can be verified
(authenticated) by validating the digital signature.

Similar to the signature and stamp of a Notary Public, the digital signature is
added by a trusted third party known as a certificate authority (CA). Certificate
authorities confirm the relationship between identities and their public keys.
Certificate authorities also publish public keys that then verify end-entity
certificates. This process uses the public key of the authority that issued the
certificate to validate the digital signature.

So, how do you get the public key of a certificate authority? In addition to end-
entity certificates, the X.509 specification defines certificate authority certificates.
These special certificates identify third party organizations entrusted to validate
the identity of individuals requesting end-entity certificates. Similar to end-entity
certificates, CA certificates contain a name (the name of the authority), a public
key, and a digital signature sealing the data. CA certificates are critical in
obtaining end-entity certificates and close the circle of trust.

http://www.sei.cmu.edu/str/descriptions/certificates.html (1 of 4)7/28/2008 11:27:55 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/certificates_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Digital Certificates

Technical Detail

Certificates are obtained by sending a request to a certificate authority.
Information about an individual (for personal certificates) a site, or company is
sent to a CA along with a public key. The package sent to the CA is called a
certificate signing request and is also defined in the X.509 specification.

Upon receiving the request, the certificate authority validates the contents
through a process defined and published by the authority. The authority
validates the digital signature placed on the signing request to ensure that it is a
valid public key (i.e., it is part of a public/private key pair). Ultimately, confidence
in the certificate is based on the trust you place on the certificate authority's
assurance mechanism.

If the information contained within the certificate request is recognized as
genuine, the authority generates the requested certificate. In addition, the
authority chains their certificate to the new certificate. This allows an individual
receiving the certificate to identify the authority that issued it, and to consider this
information when deciding to accept or reject the certificate.

As this discussion demonstrates, the mathematical sophistication of public key
encryption (PKI) ultimately rests upon a foundation of public trust. That is, we
trust that a public key belongs to a particular individual, and this trust is vested in
one or more authorities. Alice believes she possesses Bob’s public key because
she trusts the authority that told her so.

Usage Considerations

Certificates are used when it is necessary to positively and uniquely identify and
bind an end-entity for the purposes of non-repudiation, confidentiality, and
integrity in public key encryption systems.

Maturity

In many cases use and application of public key cryptography requires the use
of certificates (such notable exceptions include PGP [Pretty Good Privacy]) so
that the owner of a public key can be known. Certificates are supposed to follow
the X.509 specification which governs the format of certificates. X.509 is now in
version 3 of the specification, commonly known as X.509v3. What is good about
version 3 of the specification is that it permits certificate extensions - allowing
application developers and system designers to embed additional information
within the certificate itself (such as limitations on the specific use of a certificate).
The X.509v3 specification is generally supported by all that report to support
certificates, but known cases of incompatibilities exist between software that
generates certificates and software that parses certificates. In most cases, the
incompatibilities have been traced to poor implementation of the X.509v3
specification either in the generation or parsing of X.509v3 certificates. Some
maturation of certificate technology should be expected.

Costs and Limitations

http://www.sei.cmu.edu/str/descriptions/certificates.html (2 of 4)7/28/2008 11:27:55 AM

Digital Certificates

See Costs and Limitations associated with public key cryptography.

Although the specification of the base certificate (version 1 and version 2) is
fairly mature (as it is backwards compatible), X.509v3 extension can cause
incompatibilities between applications that generate and use certificates.
Although many examples exist it is recommended that those looking into the use
of certificate technology in public key cryptography systems learn about specific
X.509v3 extension that are either required or expected to exist before selecting
certificate management software.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Certificates

Application category Information Security (AP.2.4)

Quality measures category Security (QM.2.1.5)

Computing reviews category Operating Systems Security & Protection (D.4.6),
Security & Protection (K.6.5),
Computer-Communications Networks Security
and Protection (C.2.0)

References and Information Sources

[Abrams 95] Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J.
Information Security An Integrated Collection of Essays. Los
Alamitos, CA: IEEE Computer Society Press, 1995.

[Gerck 97] Gerck, E. Overview of Certification Systems: X.509, CA, PGP and
SKIP, Available WWW: <URL: http://www.mcg.org.br/cert.htm>

[ITU-T 97] ITU-T Recommendation X.509 (1997) | ISO/IEC 9594-8:1995
Information technology - Open Systems Interconnection - The
Directory: Authentication framework.

http://www.sei.cmu.edu/str/descriptions/certificates.html (3 of 4)7/28/2008 11:27:55 AM

http://www.mcg.org.br/cert.htm

Digital Certificates

Current Author/Maintainer

Scott A. Hissam, SEI

External Reviewers

Modifications

9 Dec 01 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/certificates_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/certificates.html (4 of 4)7/28/2008 11:27:55 AM

http://www.sei.cmu.edu/about/disclaimer.html

Distributed/Collaborative Enterprise Architectures

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Distributed/Collaborative Enterprise Architectures

Status

Advanced

Note

We recommend Client/Server Software Architectures as prerequisite reading for
this technology description.

Purpose and Origin

The distributed/collaborative enterprise architecture emerged in 1993. This
software architecture is based on Object Request Broker (ORB) technology, but
goes further than the Common Object Request Broker Architecture (CORBA) by
using shared, reusable business models (not just objects) on an enterprise-wide
scale.1 The benefit of this architectural approach is that standardized business
object models and distributed object computing are combined to give an
organization flexibility, scalability, and reliability and improve organizational,
operational, and technological effectiveness for the entire enterprise. This
approach has proven more cost effective than treating the individual parts of the
enterprise. For detailed information on distributed/collaborative enterprise
architectures see Shelton and Adler [Shelton 93, Adler 95].

Technical Detail

The distributed/collaborative enterprise architecture allows a business to analyze
its internal processes in new ways that are defined by changing business
opportunities instead of by preconceived systems design (such as monolithic
data processing applications). In this architectural design, an object model
represents all aspects of the business; what is known, what the business does,
what are the constraints, and what are the interactions and the relationships. A
business model is used to integrate and migrate parts of legacy systems to meet
the new business profile.

Distributed/collaborative enterprise builds its new business applications on top of
distributed business models and distributed computing technology. Applications
are built from standard interfaces with "plug and play" components. At the core
of this infrastructure is an off-the-shelf, standards-based, distributed object

http://www.sei.cmu.edu/str/descriptions/distcoll.html (1 of 5)7/28/2008 11:27:57 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/distcoll_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Distributed/Collaborative Enterprise Architectures

computing, messaging communication component such as an Object Request
Broker (ORB) that meets Common Object Request Broker Architecture
(CORBA) standards.

This messaging communication hides the following from business applications:

● the implementation details of networking and protocols
● the location and distribution of data, process, and hosts
● production environment services such as transaction management,

security, messaging reliability, and persistent storage

The message communication component links the organization and connects it
to computing and information resources via the organization's local or wide area
network (LAN or WAN). The message communication component forms an
enterprise-wide standard mechanism for accessing computing and information
resources. This becomes a standard interface to heterogeneous system
components.

Usage Considerations

The distributed/collaborative enterprise architecture is being applied in industries
and businesses such as banking, investment, trading, credit-granting, insurance,
policy management and rating, customer service, transportation and logistics
management, telecommunications (long distance, cellular, and operating
company), customer support, billing, order handling, product cross-selling,
network modeling, manufacturing equipment, and automobiles [Shelton 93].

The most common implementations of objects and object models are written in C
++ or Smalltalk. Another popular language for implementing object and object
models is Java.

Available for use in a distributed/collaborative enterprise architecture are
products being built to open system standards, operating systems, database
management systems, transaction processor monitors, and ORBs. These
products are increasingly interchangeable.

Maturity

Since 1993 a number of companies have built and used distributed/collaborative
architectures to address their long-term business needs because this model
adapts to change and is built according to open system standards [Adler 95].

Costs and Limitations

Distributed/collaborative enterprise architectures are limited by the lack of
commercially-available, object-oriented analysis and design method tools that
focus on applications (rather than large scale business modeling).

Dependencies

http://www.sei.cmu.edu/str/descriptions/distcoll.html (2 of 5)7/28/2008 11:27:57 AM

Distributed/Collaborative Enterprise Architectures

The evolution of CORBA (see Common Object Request Broker Architecture)
and COM/DCOM (see Component Object Model (COM), DCOM, and Related
Capabilities), and the results of standards bodies such as X/Open [X/Open 96]
and Object Management Group (OMG) [OMG 96] will affect the evolution of
distributed/collaborative architectures.

Alternatives

Three tier client/server architectures (see Three Tier Software Architectures) are
an alternative approach to distributed/collaborative architectures. However, they
do not address the need to evolve the business model over time as well as the
distributed/collaborative architecture does.

Complementary Technologies

Distributed/collaborative enterprise architectures are enhanced by object-
oriented design technologies (see Object-Oriented Design).

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Distributed/Collaborative Enterprise
Architectures

Application category Client/Server (AP.2.1.2.1)

Quality measures category Scalability (QM.4.3)
Reliability (QM.2.1.2)
Maintainability (QM.3.1)

Computing reviews category Distributed Systems (C.2.4)
Software Engineering Design (D.2.10)

References and Information Sources

[Adler 95] Adler, R. M. "Distributed Coordination Models for Client/Sever
Computing." Computer 28, 4 (April 1995): 14-22.

[Lewis 95] Lewis, T. G. "Where is Client/Server Software Headed?" Computer
28, 4 (April 1995): 49-55.

http://www.sei.cmu.edu/str/descriptions/distcoll.html (3 of 5)7/28/2008 11:27:57 AM

Distributed/Collaborative Enterprise Architectures

[OMG 96] Object Management Group home page [online]. Available WWW
<URL: http://www.omg.org> (1996).

[Shelton
93]

Shelton, Robert E. "The Distributed Enterprise (Shared, Reusable
Business Models the Next Step in Distributed Object Computing)."
Distributed Computing Monitor 8, 10 (October 1993): 1.

[X/Open
96]

X/Open Web Site [online]. Available WWW
<URL: http://www.rdg.opengroup.org/> (1996).

Current Author/Maintainer

Darleen Sadoski, GTE

External Reviewers

Larry Stafford, GTE

Modifications

25 June 97: modified/updated OLE/COM reference to COM/DCOM
20 June 97: updated URLs for [OMG 96] and [X/Open 96]
10 Jan 97 (original)

Footnotes

1 An enterprise is defined as a system comprised of multiple business systems
or multiple subsystems.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/distcoll_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/distcoll.html (4 of 5)7/28/2008 11:27:57 AM

http://www.omg.org/
http://www.rdg.opengroup.org/
http://www.sei.cmu.edu/about/disclaimer.html

Distributed/Collaborative Enterprise Architectures

http://www.sei.cmu.edu/str/descriptions/distcoll.html (5 of 5)7/28/2008 11:27:57 AM

Distributed Computing Environment

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Distributed Computing Environment

Status

Advanced

Note

We recommend Middleware as prerequisite reading for this technology description.

Purpose and Origin

Developed and maintained by the Open Systems Foundation (OSF), the Distributed Computing
Environment (DCE) is an integrated distributed environment which incorporates technology
from industry. The DCE is a set of integrated system services that provide an interoperable and
flexible distributed environment with the primary goal of solving interoperability problems in
heterogeneous, networked environments.

OSF provides a reference implementation (source code) on which all DCE products are based
[OSF 96a].The DCE is portable and flexible- the reference implementation is independent of
both networks and operating systems and provides an architecture in which new technologies
can be included, thus allowing for future enhancements. The intent of the DCE is that the
reference implementation will include mature, proven technology that can be used in parts-
individual services- or as a complete integrated infrastructure.

The DCE infrastructure supports the construction and integration of client/server applications
while attempting to hide the inherent complexity of the distributed processing from the user
[Schill 93]. The OSF DCE is intended to form a comprehensive software platform on which
distributed applications can be built, executed, and maintained.

Technical Detail

The DCE architecture is shown in Figure 10 [Schill 93].

http://www.sei.cmu.edu/str/descriptions/dce.html (1 of 6)7/28/2008 11:27:58 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/dce_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Distributed Computing Environment

Figure 10: Distributed Computing Environment Architecture

DCE services are organized into two categories:

1. Fundamental distributed services provide tools for software developers to create the
end-user services needed for distributed computing. They include

❍ Remote Procedure Call, which provides portability, network independence, and
secure distributed applications.

❍ Directory services, which provide full X.500 support and a single naming model
to allow programmers and maintainers to identify and access distributed
resources more easily.

❍ Time service, which provides a mechanism to monitor and track clocks in a
distributed environment and accurate time stamps to reduce the load on system
administrator.

❍ Security service, which provides the network with authentication, authorization,
and user account management services to maintain the integrity, privacy, and
authenticity of the distributed system.

❍ Thread service, which provides a simple, portable, programming model for
building concurrent applications.

2. Data-sharing services provide end users with capabilities built upon the fundamental
distributed services. These services require no programming on the part of the end user
and facilitate better use of information. They include

❍ Distributed file system, which interoperates with the network file system to
provide a high-performance, scalable, and secure file access system.

❍ Diskless support, which allows low-cost workstations to use disks on servers,
possibly reducing the need/cost for local disks, and provides performance
enhancements to reduce network overhead.

The DCE supports International Open Systems Interconnect (OSI) standards, which are critical

http://www.sei.cmu.edu/str/descriptions/dce.html (2 of 6)7/28/2008 11:27:58 AM

Distributed Computing Environment

to global interconnectivity. It also implements ISO standards such as CCITT X.500, Remote
Operations Service Element (ROSE), Association Control Service Element (ACSE), and the
ISO session and presentation services. The DCE also supports Internet standards such as the
TCP/IP transport and network protocols, as well as the Domain Name System and Network
Time Protocol provided by the Internet.

Usage Considerations

The DCE can be used by system vendors, software developers, and end users. It can be used
on any network hardware and transport software, including TCP/IP, OSI, and X.25. The DCE is
written in standard C and uses standard operating system service interfaces like POSIX and X/
Open guidelines. This makes the DCE portable to a wide variety of platforms. DCE allows for
the extension of a network to large numbers of nodes, providing an environment capable of
supporting networks of numerous low-end computers (i.e., PCs and Macintosh machines),
which is important if downsizing and distributing of processing is desired. Because DCE is
provided in source form, it can be tailored for specific applications if desired [OSF 96a].

DCE works internally with the client/server model and is well-suited for development of
applications that are structured according to this model. Most DCE services are especially
optimized for a structuring of distributed computing systems into a "cell" (a set of nodes/
platforms) that is managed together by one authority.

For DCE, intra-cell communication is optimized and relatively secure and transparent. Inter-cell
communication, however, requires more specialized processing and more complexity than its
intra-cell counterpart, and requires a greater degree of programming expertise.

When using the thread services provided by DCE, the application programmer must be aware
of thread synchronization and shared data across threads. While different threads are mutually
asynchronous up to a static number defined at initialization, an individual thread is
synchronous. The complexity of thread programming should be considered if these services
are to be used.

DCE is being used or is planned for use on a wide variety of applications, including the
following:

● The Common Operating Environment. DCE has been approved by DISA (Defense
Information Systems Agency) as the distributed computing technology for the Common
Operating Environment (COE) (see Defense Information Infrastructure Common
Operating Environment).

● The Advanced Photon Source (APS) system. This is a synchrotron radiation facility
under construction at Argonne National Laboratory.

● The Alaska Synthetic Aperture Radar Facility (ASF). This is the ground station for a set
of earth-observing radar spacecraft, and is one of the first NASA projects to use DCE in
an operational system.

● The Deep Space Network's Communications Complexes Monitor and Control
Subsystem. This project is deploying DCE for subsystem internal communications, with
the expectation that DCE will eventually form the infrastructure of the entire information
system.

● The Multimission Ground Data System Prototype. This project evaluated the
applicability of DCE technology to ground data systems for support of JPL flight projects
(Voyager, Cassini, Mars Global Surveyor, Mars Pathfinder).

● Earth Observing Systems Data Information System. This NASA system is one of the

http://www.sei.cmu.edu/str/descriptions/dce.html (3 of 6)7/28/2008 11:27:58 AM

Distributed Computing Environment

largest information systems ever implemented. The system is comprised of legacy
systems and data, computers of many varieties, networks, and satellites in space.

● Command and control prototypes. MITRE has prototyped command and control (C2)
applications using DCE technology. These applications provide critical data such as unit
strength, supplies, and equipment, and allow staff officers to view maps of areas of
operation [OSF 96b].

Maturity

In early 1992, the OSF released the source code for DCE 1.0. Approximately 12 vendors had
ported this version to their systems and had DCE 1.0 products available by June 1993. Many of
these original products were "developer's kits" that were not robust, did not contain the entire
set of DCE features (all lacked distributed file services), and were suited mostly for UNIX
platforms [Chappell 93].

The DCE continues to evolve, but many large organizations have committed to basing their
next generation systems on the DCE- over 14 major vendors provided DCE implementations
by late 1994, when DCE 1.1 was released.

DCE 1.2.1, released in March 1996, provided the following new features:

● Interface definition language (IDL) support for C++ to include features such as
inheritance and object references in support of object-oriented applications. This feature
supports adoption of any object model or class hierarchy, thus providing developers with
additional flexibility.

● Features to provide for coexistence with other application environments.
● Improvements over DCE 1.1 including enhancements to achieve greater reliability and

better performance [OSF 96a].

Two other approaches to supporting objects are being considered besides the approach
described for DCE 1.2:

1. Installing a CORBA-based product over DCE to provide additional support for distributed
object technologies and a wide range of standardized service interfaces.

2. Integrating Network COM/DCOM (see Component Object Model (COM), DCOM, and
Related Capabilities) into the DCE infrastructure.

Costs and Limitations

DCE was not built to be completely object-oriented. The standard interfaces used by the DCE,
as well as all the source code itself, are defined only in the C programming language. For
object-oriented applications (i.e., applications being developed using an object-oriented
language (see Object-Oriented Programming Languages) such as C++ or Ada 95, it may be
more complex, less productive (thus more expensive), and less maintainable to use a non-
object-oriented set of services like the DCE [Chappell 96].

Object-oriented extensions of the DCE have been developed by industry, but an agreed to
vendor-neutral standard was still being worked in 1996.

Dependencies

http://www.sei.cmu.edu/str/descriptions/dce.html (4 of 6)7/28/2008 11:27:58 AM

Distributed Computing Environment

Dependencies include Remote Procedure Call (RPC).

Alternatives

Alternatives include CORBA (see Common Object Request Broker Architecture), COM/DCOM
(see Component Object Model (COM), DCOM, and Related Capabilities), and message-
oriented middleware (see Message-Oriented Middleware).

Complementary Technologies

DCE, in-part, has been used in building CORBA-compliant (see Common Object Request
Broker Architecture) products as early as 1995. OSF is considering support for objects using
COM/DCOM (see Component Object Model (COM), DCOM, and Related Capabilities).

Index Categories

This technology is classified under the following categories. Select a category for a list of
related topics.

Name of technology Distributed Computing Environment

Application category Distributed Computing (AP.2.1.2)

Quality measures category Interoperability (QM.4.1)
Portability (QM.4.2)
Scalability (QM.4.3)
Security (QM.2.1.5)
Maintainability (QM.3.1)
Complexity (QM.3.2.1)
Throughput (QM.2.2.3)

Computing reviews category Distributed Systems (C.2.4)

References and Information Sources

[Brando 96] Brando, T. "Comparing CORBA & DCE." Object Magazine 6, 1 (March 1996):
52-7.

[Chappell 93] Chappell, David. "OSF's DCE and DME: Here Today?" Business
Communications Review 23, 7 (July 1993): 44-8.

[Chappell
96]

Chappell, David. DCE and Objects [online]. Available WWW
<URL: http://www.opengroup.org/dce/info/dce_objects.htm> (1996).

http://www.sei.cmu.edu/str/descriptions/dce.html (5 of 6)7/28/2008 11:27:58 AM

http://www.opengroup.org/dce/info/dce_objects.htm

Distributed Computing Environment

[OSF 96a] Open Software Foundation. The OSF Distributed Computing Environment
[online]. Available WWW
<URL: http://www.osf.org/dce/> (1996).

[OSF 96b] Open Software Foundation. The OSF Distributed Computing Environment: End-
User Profiles [online]. Available WWW URL:
< http://www.osf.org/comm/lit/dce-eup/> (1996).

[Product 96] DCE Product Survey Report [online]. Available WWW
<URL: http://nsdir.cards.com/Libraries/HTML/PDLC/DCE_prod_surv_rpt.
html> (1996).

[Schill 93] Schill, Alexander. "DCE-The OSF Distributed Computing Environment Client/
Server Model and Beyond," 283. International DCE Workshop. Karlsruhe,
Germany, October 7-8, 1993. Berlin, Germany: Springer-Verlag, 1993.

Current Author/Maintainer

Cory Vondrak, TRW, Redondo Beach, CA

Modifications

25 June 97: modified/updated OLE/COM reference to COM/DCOM
10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the
U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/dce_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/dce.html (6 of 6)7/28/2008 11:27:58 AM

http://www.osf.org/dce/
http://www.osf.org/comm/lit/dce-eup/
http://nsdir.cards.com/Libraries/HTML/PDLC/DCE_prod_surv_rpt.html
http://nsdir.cards.com/Libraries/HTML/PDLC/DCE_prod_surv_rpt.html
http://www.sei.cmu.edu/about/disclaimer.html

Domain Engineering and Domain Analysis

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Domain Engineering and Domain Analysis

Status

Advanced

Purpose and Origin

The term domain is used to denote or group a set of systems or functional areas,
within systems, that exhibit similar functionality. Domain engineering is the
foundation for emerging "product line" software development approaches
[Foreman 96], and affects the maintainability, understandability, usability, and
reusability characteristics of a system or family of similar systems.

The purpose of this technology description is to introduce the key concepts of
domain engineering and provide overview information about domain analysis.
Detailed discussions of individual domain analysis methods can be found in the
referenced technology descriptions.

Technical Detail

Domain engineering and domain analysis are often used interchangeably and/or
inconsistently. Although domain analysis as a term may pre-date domain
engineering, domain engineering is the more inclusive term, and is the process of

● defining the scope (i.e., domain definition)
● analyzing the domain (i.e., domain analysis)
● specifying the structure (i.e., domain architecture development)
● building the components (e.g., requirements, designs, software code,

documentation)

for a class of subsystems that will support reuse [Katz 94].

Figure 11 [Foreman 96] shows the process and products of the overall domain
engineering activity, and shows the relationships and interfaces of domain
engineering to the conventional (individual) system development (application
engineering) process. This has come to be known as the two life cycle model.

http://www.sei.cmu.edu/str/descriptions/deda.html (1 of 8)7/28/2008 11:27:59 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/deda_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Domain Engineering and Domain Analysis

Domain engineering is related to system engineering, which is an integrated set
of engineering disciplines that supports the design, development, and operation
of large-scale systems [Eisner 94]. Domain engineering is distinguished from

system engineering in that it involves designing assets1 for a set or class of
multiple applications as opposed to designing the best solution for a single
application. In addition, system engineering provides the "whole solution,"
whereas domain engineering defines (i.e., limits) the scope of functionality
addressed across multiple systems [Simos 96].

Figure 11: Domain Engineering and Application Engineering (Two Life
Cycles)

Domain engineering supports systems engineering for individual systems by
enabling coherent solutions across a family of systems: simplifying their
construction, and improving the ability to analyze and predict the behavior of
"systems of systems" composed of aggregations of those systems [Randall 96].

Domain analysis. Domain analysis (first introduced in the 1980s) is an activity
within domain engineering and is the process by which information used in
developing systems in a domain is identified, captured, and organized with the
purpose of making it reusable when creating new systems [Prieto-Diaz 90].
Domain analysis focuses on supporting systematic and large-scale reuse (as
opposed to opportunistic reuse, which suffers from the difficulty of adapting
assets to fit new contexts) by capturing both the commonalities and the
variabilities2 of systems within a domain to improve the efficiency of development
and maintenance of those systems. The results of the analysis, collectively
referred to as a domain model, are captured for reuse in future development of
similar systems and in maintenance planning of legacy systems (i.e., migration
strategy) as shown in Figure 12 [Foreman 96].

http://www.sei.cmu.edu/str/descriptions/deda.html (2 of 8)7/28/2008 11:27:59 AM

Domain Engineering and Domain Analysis

Figure 12: Domain Engineering and Legacy System Evolution

One of the major historical obstacles to reusing a software asset has been the
uncertainty surrounding the asset. Questions to be answered included

● How does the software asset behave in its original context?
● How will it behave in a new context?
● How will adaptation affect its behavior [Simos 96]?

Design for reuse techniques (e.g., documentation standards, adaptation
techniques) were developed to answer these questions; however, they did not
provide the total solution, as a software asset's best scope needed to be
determined (i.e., In which set of systems would the software asset be most likely
reused?). Domain engineering and analysis methods were developed to answer
more global questions, such as:

● Who are the targeted customers for the asset base (the designed
collection of assets targeted to a specific domain)?

● Who are the other stakeholders in the domain?
● What is the domain boundary?
● What defines a feature of the domain?
● When is domain modeling complete?
● How do features vary across different usage contexts?
● How can the asset base be constructed to adapt to different usage

contexts?

Goals of domain analysis include the following:

http://www.sei.cmu.edu/str/descriptions/deda.html (3 of 8)7/28/2008 11:27:59 AM

Domain Engineering and Domain Analysis

● Gather and correlate all the information related to a software asset. This
will aid domain engineers in assessing the reusability of the asset. For
example, if key aspects of the development documentation (e.g., chain of
design decisions used in the development process) are available to a
potential reuser, a more cost-effective reuse decision can be made.

● Model commonality and variability across a set of systems. This
comparative analysis can reveal hidden contextual information in software
assets and lead to insights about underlying rationale that would not have
been discovered by studying a single system in isolation. It would answer
questions like the following:

❍ Why did developers make different design tradeoffs in one system
than another?

❍ What aspects of the development context influenced these
decisions?

❍ How can this design history be transformed into more prescriptive
guidance to new developers creating systems within this domain?

● Derive common architectures and specialized languages that can
leverage the software development process in a specific domain.

There is no standard definition of domain analysis; several domain analysis
methods exist. Common themes among the methods include mechanisms to

● define the basic concepts (boundary, scope, and vocabulary) of the
domain that can be used to generate a domain architecture

● describe the data (e.g., variables, constants) that support the functions
and state of the system or family of systems

● identify relationships and constraints among the concepts, data, and
functions within the domain

● identify, evaluate, and select assets for (re-)use
● develop adaptable architectures

Wartik provides criteria for comparing domain analysis methods [Wartik 92].
Major differences between the methods fall into three categories:

● Primary product of the analysis. In the methods, the results of the analysis
and modeling activities may be represented differently. Examples include:
different types of reuse library infrastructures (e.g., structured frameworks
for cataloging the analysis results), application engineering processes, etc.

● Focus of the analysis. The methods differ in the extent they provide
support for

❍ context analysis: the process by which the scope of the domain is
defined and analyzed to identify variability

❍ stakeholder analysis: the process of modeling the set of
stakeholders of the domain, which is the initial step in domain
planning

❍ rationale capture: the process for identifying and recording the
reasoning behind the design of an artifact

http://www.sei.cmu.edu/str/descriptions/deda.html (4 of 8)7/28/2008 11:27:59 AM

Domain Engineering and Domain Analysis

❍ scenario definition: mechanisms to capture the dynamic aspects of
the system

❍ derivation histories: mechanisms for replaying the history of design
decisions

❍ variability modeling: the process for identifying the ways in which
two concepts or entities differ

❍ legacy analysis: the process for studying and analyzing an existing
set of systems

❍ prescriptive modeling: the process by which binding decisions and
commitments about the scope, architecture, and implementation of
the asset base are made

● Representation techniques. An objective of every domain analysis method
is to represent knowledge in a way that is easily understood and machine-
processable. Methods differ in the type of representation techniques they
use and in the ease with which new representation techniques can be
incorporated within the method.

Examples of domain analysis methods include

● Feature-Oriented Domain Analysis (FODA), a domain analysis method
based upon identifying the features of a class of systems, defines three
basic activities: context analysis, domain modeling, and architecture
modeling [Kang 90].

● Organization Domain Modeling (ODM), a domain engineering method that
integrates organizational and strategic aspects of domain planning,
domain modeling, architecture engineering and asset base engineering
[Simos 96].

Randall, Arango, Prieto-Diaz, and the Software Productivity Consortium offer
other domain engineering and analysis methods [Randall 96, Arango 94, Prieto-
Diaz 91, SPC 93].

Usage Considerations

Domain analysis is best suited for domains that are mature and stable, and
where context and rationale for legacy systems can be rediscovered through
analysis of legacy artifacts and through consultation with domain experts. In
general, when applying a domain analysis method, it is important to achieve
independence from architectural and design decisions of legacy systems.
Lessons learned from the design and implementation of the legacy system are
essential; however, the over-reliance on precedented features and legacy
implementations may bias new developments.

Maturity

See individual technologies.

Costs and Limitations

http://www.sei.cmu.edu/str/descriptions/deda.html (5 of 8)7/28/2008 11:27:59 AM

Domain Engineering and Domain Analysis

See individual technologies.

Complementary Technologies

Use of visual programming techniques can provide better understanding of key
software assets like execution patterns, specification and design animations,
testing plans, and systems simulation. Other complementary technologies
include comparative/taxonomic modeling and techniques for the development of
adaptable architectures/implementations (e.g., generation, decision-based
composition).

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Domain Engineering and Domain Analysis

Application category Domain Engineering (AP.1.2.4)

Quality measures category Reusability (QM.4.4)
Maintainability (QM.3.1)
Understandability (QM.3.2)

Computing reviews category Software Engineering Tools and Techniques (D.2.2)

References and Information Sources

[Arango 94] Arango, G. "Domain Analysis Methods," 17-49. Software Reusability.
Chichester, England: Ellis Horwood, 1994.

[Eisner 94] Eisner, H. "Systems Engineering Sciences," 1312-1322. Encyclopedia
of Software Engineering. New York, NY: John Wiley and Sons, 1994.

[Foreman 96] Foreman, John. Product Line Based Software Development-
Significant Results, Future Challenges. Software Technology
Conference, Salt Lake City, UT, April 23, 1996.

[Hayes 94] Hayes-Roth, F. Architecture-Based Acquisition and Development of
Software: Guidelines and Recommendations from the ARPA Domain-
Specific Software Architecture (DSSA) Program. Palo Alto, CA:
Teknowledge Federal Systems, 1994.

http://www.sei.cmu.edu/str/descriptions/deda.html (6 of 8)7/28/2008 11:27:59 AM

Domain Engineering and Domain Analysis

[IESE 98] Fraunhofer Institute for Experimental Software Engineering. Domain
Engineering Bibliography [online]. Originally available WWW
<URL:http://www.iese.fhg.de/ISE/DEbib/domain.html> (1998).

[Kang 90] Kang, K., et al. Feature-Oriented Domain Analysis (FODA)
Feasibility Study (CMU/SEI-90-TR-21, ADA 235785). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University, 1990.

[Katz 94] Katz, S., et al. Glossary of Software Reuse Terms. Gaithersburg, MD:
National Institute of Standards and Technology, 1994.

[Prieto-Diaz
90]

Prieto-Diaz, R. "Domain Analysis: An Introduction." Software
Engineering Notes 15, 2 (April 1990): 47-54.

[Prieto-Diaz 91] Prieto-Diaz, R. Domain Analysis and Software Systems Modeling. Los
Alamitos, CA: IEEE Computer Society Press, 1991.

[Randall 96] Randall, Rick. Space and Warning C2Product Line Domain
Engineering Guidebook, Version 1.0 [online]. Originally available
WWW
<URL: http://source.asset.com/stars/loral/domain/guide/delaunch.htm>

[Simos 96] Simos, M., et al. Software Technology for Adaptable Reliable Systems
(STARS) Organization Domain Modeling (ODM) Guidebook Version
2.0 (STARS-VC-A025/001/00). Manassas, VA: Lockheed Martin
Tactical Defense Systems, 1996.

[SPC 93] Reuse-Driven Software Processes Guidebook Version 2.00.03 (SPC-
92019-CMC). Herndon, VA: Software Productivity Consortium, 1993.

[Svoboda 96] Svoboda, Frank. The Three "R's" of Mature System Development:
Reuse, Reengineering, and Architecture [online]. Available WWW
<URL: http://source.asset.com/stars/darpa/Papers/ArchPapers.html>
(1996).

[Wartik 92] Wartik, S. & Prieto-Diaz, R. "Criteria for Comparing Reuse-Oriented
Domain Analysis Approaches." International Journal of Software
Engineering and Knowledge Engineering 2, 3 (September 1992): 403-
431.

Current Author/Maintainer

Liz Kean, Air Force Rome Laboratory

External Reviewers

http://www.sei.cmu.edu/str/descriptions/deda.html (7 of 8)7/28/2008 11:27:59 AM

http://source.asset.com/stars/loral/domain/guide/delaunch.htm
http://source.asset.com/stars/darpa/Papers/ArchPapers.html

Domain Engineering and Domain Analysis

Jim Baldo, MITRE, Washington, DC
Dick Creps, Lockheed Martin, Manassas, VA
Teri Payton, Lockheed Martin, Manassas, VA
Spencer Peterson, SEI
Rick Randall, Kaman Sciences, Colorado Springs, CO
Mark Simos, Organon Motives, Belmont, MA

Modifications

4 Feb 98: added reference for [IESE 98]
7 Oct 97: minor edits
10 Jan 97: (original)

Footnotes

1 Examples include requirements, design, history of design decisions, source
code, and test information.

2 Commonality and variability refer to such items as functionality, data items,
performance attributes, capacity, and interface protocols.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/deda_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/deda.html (8 of 8)7/28/2008 11:27:59 AM

http://www.sei.cmu.edu/about/disclaimer.html

Feature-Based Design Rationale Capture Method for Requirements Tracing

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Feature-Based Design Rationale Capture Method for
Requirements Tracing

Status

Advanced

Note

We recommend Requirements Tracing--An Overview as prerequisite reading for
this technology description.

Purpose and Origin

A design rationale is a representation of the reasoning behind the design of an
artifact. The purpose of a feature-based design rationale capturing method is to
provide mechanisms to track for each feature of the system; the description of
the engineering decision that the feature represents includes

● the summary of the tradeoffs that were considered in arriving at the
decision

● the ultimate rationale for the decision

The idea for feature-based design rationale capture originated during the
performance of domain analysis in a software development project [Bailin 90].
The need to reverse engineer the rationales for various decisions suggested that
a reuse environment should not simply present to the developer a set of
alternative architectures that have been used on previous systems. It is
necessary to present the rationales and issues involved in choosing among the
alternatives. The feature-based approach evolved from the argumentation-based
design rationale capture methods (see Argument-Based Design Rationale
Capture Methods for Requirements Tracing). The major difference between the
approaches is that the knowledge is organized around distinctive features of a
system (feature-based) rather than around issues raised during the development
process (argument-based).

Replaying the history of design decisions facilitates the understanding of the
evolution of the system, identifies decision points in the design phase where
alternative decisions could lead to different solutions, and identifies dead-end
solution paths. The captured knowledge should enhance the evolvability of the

http://www.sei.cmu.edu/str/descriptions/featbased.html (1 of 5)7/28/2008 11:28:00 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/featbased_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Feature-Based Design Rationale Capture Method for Requirements Tracing

system and the reusability of components in the system.

Technical Detail

In the feature-based design rationale capture method, a feature is any distinctive
or unusual aspect of a system, or a manifestation of a key engineering decision
[Bailin 90]. (Note: The definition of a feature in this context is different from a
feature in Feature-Oriented Domain Analysis(FODA) , in which a feature is a
user-visible aspect or characteristic of the domain [Kang 90].) The features in a
system make this system different from any other system in the domain.
Examples of categories of features are: operational, interface, functional,
performance, development methodology, design, and implementation. Each
feature has a list of tradeoffs and rationale associated with it. Representations of
the set of features may be entity relationship, dataflow, object communication,
assembly, classification, stimulus-response, and state transition diagrams. The
purpose of the multiple representations or views is to add flexibility in responding
to evolving design paradigms, life cycle models, etc. A new way of looking at a
system can be represented by adding a new view or way of looking at the
features of the system. This provides a uniqueness and strength to this method
that does not exist in other design rationale capturing methods. This approach
makes the software engineering process become a process of answering
questions about the features of a system rather than a cookbook-like procedure
defined by a particular development method.

Usage Considerations

The use of this technology is oriented toward the entire organization, rather than
single projects, because the big payoff occurs when a substantial database of
corporate knowledge is organized and maintained. If an organization builds the
same types of systems, the knowledge acquired in previous developments can
be reused. Since the organization of information is around the features of a
system as opposed to the issues that arise during a development project, only
the issues that observably affect the content of the resulting system are saved.

The use of this technology requires the development of a shared, consistent,
and coherent policy by a project team. A procedure for overall coordination must
be developed.

Maturity

To date, there is at least one commercially-available tool to support the feature-
based design rationale capture method. It is not a highly automated tool, but
rather a bookkeeper to support an experience-based, learning-based
development process. The commercial tool is based upon a prototype that has
been used in laboratory experiments. The feature-based design rational capture
method was used on the Software Technology for Adaptable, Reliable Systems
(STARS) program to support the Organization Domain Modeling (ODM) process
[Lettes 96].

http://www.sei.cmu.edu/str/descriptions/featbased.html (2 of 5)7/28/2008 11:28:00 AM

Feature-Based Design Rationale Capture Method for Requirements Tracing

Costs and Limitations

Feature-based design rationale capture methods and supporting tools require
additional time and effort throughout the software life cycle. The system is
described using multiple views that must be generated and maintained
throughout the life of the project. Depending upon the size of the system, the
number of views could be large. There is no integrated view of the system and
this must be accomplished either mentally by the engineers on the project or
through the use of an additional tool/technique. Training for the project team as
well as the potential reuser is essential to make effective use of the method.

Alternatives

There are several alternative approaches to requirements traceability methods.
Examples include Argument-Based Design Rationale Capture Methods for
Requirements Tracing, an approach centered around the debate process (i.e.,
arguments and their resolution) that occurs during requirements analysis, and
the Process Knowledge Method, an extension of the argument-based approach
that includes a formal representation to provide two way traceability between
requirements and artifacts and facilities for temporal reasoning (i.e., mechanisms
to use the captured knowledge).

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Feature-Based Design Rationale Capture Method
for Requirements Tracing

Application category Requirements Tracing (AP.1.2.3)
Domain Engineering (AP.1.2.4)

Quality measures category Completeness (QM.1.3.1)
Consistency (QM.1.3.2)
Traceability (QM.1.3.3)
Effectiveness (QM.1.1)
Reusability (QM.4.4)
Understandability (QM.3.2)
Maintainability (QM.3.1)

Computing reviews category Software Engineering Tools and Techniques
(D.2.2)
Software Engineering Design (D.2.10)

http://www.sei.cmu.edu/str/descriptions/featbased.html (3 of 5)7/28/2008 11:28:00 AM

Feature-Based Design Rationale Capture Method for Requirements Tracing

References and Information Sources

[Bailin 90] Bailin, S., et al. "KAPTUR: Knowledge Acquisition for
Preservation of Tradeoffs and Underlying Rationale," 95-104.
Proceedings of the 5th Annual Knowledge-Based Software
Assistant Conference. Liverpool, NY, September 24-28, 1990.
Rome, NY: Rome Air Development Center, 1990.

[Gotel 95] Gotel, Orlena. Contribution Structures for Requirements
Traceability. London, England: Imperial College, Department of
Computing, 1995.

[Kang 90] Kang, K., et al. Feature-Oriented Domain Analysis (FODA)
Feasibility Study (CMU/SEI-90-TR-21, ADA 235785). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University,
1990.

[Lettes 96] Lettes, Judith A. & Wilson, John. Army STARS Demonstration
Project Experience Report (STARS-VC-A011/003/02). Manassas,
VA: Loral Defense Systems-East, 1996.

[Ramesh
92]

Ramesh, Balasubramaniam & Dhar, Vasant. "Supporting Systems
Development by Capturing Deliberations During Requirements
Engineering." IEEE Transactions on Software Engineering 18, 6
(June 1992): 498-510.

[Shum 94] Shum, Buckingham Simon & Hammond, Nick. "Argumentation-
Based Design Rationale: What Use at What Cost?" International
Journal of Human-Computer Studies 40, 4 (April 1994): 603-652.

Current Author/Maintainer

Liz Kean, Air Force Rome Laboratory

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/featbased_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

http://www.sei.cmu.edu/str/descriptions/featbased.html (4 of 5)7/28/2008 11:28:00 AM

http://www.sei.cmu.edu/about/disclaimer.html

Feature-Based Design Rationale Capture Method for Requirements Tracing

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/featbased.html (5 of 5)7/28/2008 11:28:00 AM

Feature-Oriented Domain Analysis

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Feature-Oriented Domain Analysis

Status

Advanced

Note

Domain Engineering and Domain Analysis provides overview information about
domain analysis.

Purpose and Origin

Feature-oriented domain analysis (FODA) is a domain analysis method based
upon identifying the prominent or distinctive features of a class of systems.
FODA resulted from an in-depth study of other domain analysis approaches
[Kang 90]. FODA affects the maintainability, understandability, and reusability
characteristics of a system or family of systems.

Technical Detail

The FODA methodology was founded on two modeling concepts: abstraction
and refinement. Abstraction is used to create domain products from the specific
applications in the domain. These generic domain products abstract the
functionality and designs of the applications in a domain. The generic nature of
the domain products is created by abstracting away "factors" that make one
application different from other related applications. The FODA method
advocates that applications in the domain should be abstracted to the level
where no differences exist between the applications. Specific applications in the
domain are developed as refinements of the domain products.

Domain Engineering and Domain Analysis identifies three areas to differentiate
between domain analysis methods. Distinguishing features for FODA include the
following:

Primary Product of the Analysis. The primary product of FODA is a structured
framework of related models that catalog the domain analysis results.

Focus of Analysis. The FODA process is divided into three phases:

http://www.sei.cmu.edu/str/descriptions/foda.html (1 of 6)7/28/2008 11:28:01 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/foda_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Feature-Oriented Domain Analysis

● Context analysis. The purpose of context analysis is to define the scope
of a domain. Relationships between the domain and external elements (e.
g., different operating environments, different data requirements, etc.) are
analyzed, and the variabilities are evaluated. The results are documented
in a context model (e.g., block diagram, structure diagram, dataflow
diagram, etc.).

● Domain modeling. Once the domain is scoped, the domain modeling
phase provides steps to analyze the commonalities and differences
addressed by the applications in the domain and produces several
domain models. The domain modeling phase consists of three major
activities:

❍ Feature analysis. During feature analysis, a customer's or end
user's understanding of the general capabilities or features of the
class of systems is captured. The features, which describe the
context of domain applications, the needed operations and their
attributes, and representation variations are important results
because the features model generalizes and parameterizes the
other models produced in FODA. Examples of features include:
function descriptions, descriptions of the mission and usage
patterns, performance requirements, accuracy, time
synchronization, etc. Features may be defined as alternative,
optional, or mandatory. Mandatory features represent baseline
features and their relationships. The alternative and optional
features represent the specialization of more general features (i.e.,
they represent what changes are likely to occur in different
circumstances). For optimal benefit, the resulting features model
should be captured in a tool with access to rule-based language(s)
so dependencies among features can be maintained and
understood.

❍ Information analysis. During information analysis, the domain
knowledge and data requirements for implementing applications in
the domain are defined and analyzed. Domain knowledge includes
relevant scientific theory and engineering practice, capabilities and
uses of existing systems, past system development and
maintenance experience and work products, design rationales,
history of design changes, etc. The purpose of information
analysis is to represent the domain knowledge in terms of domain
entities and their relationships, and to make them available for the
derivation of objects and data definitions during operational
analysis and architecture modeling. The information model may be
of the form of an entity relationship (ER) model, a semantic
network, or an object-oriented (OO) model.

❍ Operational analysis. During operational analysis, the behavioral
characteristics (e.g., dataflow and control-flow commonalities and
differences, finite state machine model) of the applications in a
domain are identified. This activity abstracts and then structures
the common functions found in the domain and the sequencing of
those actions into an operational model. Common features and
information model entities form the basis for the abstract functional
model. Unique features and information model entities complete
the functional model. The control and data flow of an individual
application can be instantiated or derived from the operational
model with appropriate adaptation.

http://www.sei.cmu.edu/str/descriptions/foda.html (2 of 6)7/28/2008 11:28:01 AM

Feature-Oriented Domain Analysis

● Architecture Modeling. This phase provides a software solution for
applications in the domain. An architectural model, which is a high-level
design for applications in a domain, is developed. It focuses on identifying
concurrent processes and domain-oriented common modules. It defines
the process for allocating the features, functions, and data objects defined
in the domain models to the processes and modules.

Representation Techniques. The use of COTS methods or tools must be
integrated on a case-by-case basis. Currently FODA has been integrated with
tools that support object-oriented models, entity relationship models, and
semantic networks.

Usage Considerations

Based upon early pilot projects applying the FODA method [Kang 90, Cohen 92],
the following lessons learned should be considered:

● A clear definition of the users of the domain model is essential. They
should be well-defined during the context analysis phase.

● Early identification of the domain experts and sources of information is
important. Effectively working with domain experts is the best means to
achieving adoption of the domain model by potential users.

● The need for automated support for the domain modeling phase was
identified. No modeling tools that support the FODA approach to ER
modeling (i.e., ER + semantic data modeling) exist. Integration with
existing modeling capabilities is achieved on a case-by-case basis. FODA
was integrated with Hamilton Technologies 001 tool suite [Krut 93]. The
integration was not automatic and there were areas where the 001
capabilities did not meet the FODA requirements. These were resolved
through workarounds and negotiations with Hamilton Technologies.

Maturity

The FODA method is well-defined and has been applied on both commercial
and military applications. It was applied to the

● Army Movement Control Domain [Cohen 92]
● In-Transit Visibility Modernization (ITVMOD) domain analysis effort [Petro

95, Devasirvatham 94]
● Telecommunication Automated Prompt and Response Domain at

NORTEL (Northern Telecom) [Schnell 96]

Training is available.

Costs and Limitations

For small projects, use of the simulation capabilities of a commercial tool like
Statemate was effective during operational analysis in demonstrating the
capabilities of a system; however, for large projects potential users must be

http://www.sei.cmu.edu/str/descriptions/foda.html (3 of 6)7/28/2008 11:28:01 AM

Feature-Oriented Domain Analysis

convinced that the model and tool can be effectively used to specify a new
system of the scale needed. The ability to use a modeling tool that can both
capture the domain model and produce prototype code to simulate a system
based upon feature selection would benefit the FODA method.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Feature-Oriented Domain Analysis

Application category Domain Engineering (AP.1.2.4)

Quality measures category Reusability (QM.4.4)
Maintainability (QM.3.1)
Understandability (QM.3.2)

Computing reviews category Software Engineering Tools and Techniques
(D.2.2)

References and Information Sources

[Cohen 92] Cohen, Sholom G., et al. Application of Feature-Oriented
Domain Analysis to the Army Movement Control Domain
(CMU/SEI-91-TR-28, ADA 256590). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University,
1992.

[Devasirvatham
94]

Devasirvatham, Josiah, et al. In-Transit Visibility
Modernization Domain Scoping Report Comprehensive
Approach to Reusable Defense Software (STARS-VC-
H0002/001/00). Fairmont, WV: Comprehensive Approach
to Reusable Defense Software, 1994.

[Kang 90] Kang, K., et al. Feature-Oriented Domain Analysis (FODA)
Feasibility Study (CMU/SEI-90-TR-21, ADA 235785).
Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 1990.

[Krut 93] Krut, Robert W. Jr. Integrating 001 Tool Support into the
Feature-Oriented Domain Analysis Methodology (CMU/
SEI-93-TR-11, ESC-TR-93-188) Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1993.

http://www.sei.cmu.edu/str/descriptions/foda.html (4 of 6)7/28/2008 11:28:01 AM

Feature-Oriented Domain Analysis

[Krut 96] Krut, R. & Zalman, N. Domain Analysis Workshop Report
for the Automated Prompt & Response System Domain
(CMU/SEI-96-SR-001). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1996.

[Peterson 91] Peterson, A. Spencer & Cohen, Sholom G. A Context
Analysis of Movement Control Domain for the Army
Tactical Command and Control System (CMU/SEI-91-SR-
03). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1991.

[Petro 95] Petro, James J.; Peterson, Alfred S.; & Ruby, William F. In-
Transit Visibility Modernization Domain Modeling Report
Comprehensive Approach to Reusable Defense Software
(STARS-VC-H002a/001/00). Fairmont, WV:
Comprehensive Approach to Reusable Defense Software,
1995.

[Schnell 96] Schnell, K.; Zalman, N.; & Bhatt, Atul. Transitioning
Domain Analysis: An Industry Experience (CMU/SEI-96-
TR-009). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1996.

Current Author/Maintainer

Liz Kean, Air Force Rome Laboratory

External Reviewers

Spencer Peterson, SEI

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/foda_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references

http://www.sei.cmu.edu/str/descriptions/foda.html (5 of 6)7/28/2008 11:28:01 AM

http://www.sei.cmu.edu/about/disclaimer.html

Feature-Oriented Domain Analysis

● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/foda.html (6 of 6)7/28/2008 11:28:01 AM

Firewalls and Proxies

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Firewalls and Proxies

Status

Complete.

Note

We recommend Computer System Security--an Overview as prerequisite reading for
this technology description.

Purpose and Origin

Firewalls were developed in the early 1990s as the use of the Internet rapidly
expanded. Intruders external to an organization often try to break into computers on a
network to gain unauthorized access, obtain information illegally, or cause damage.
Malicious users can also reside internal to an organization on Intranets and Local Area
Networks (LANs). The purpose of a firewall or firewall system (which comprises one or
more computers performing specific functions) is to serve as one element of an
organization's perimeter defense. The perimeter can be defined as what separates the
external world from the internal network or what separates internal sub-networks with
differing access requirements. Ultimately, a firewall implements policy that specifies
constraints on what network traffic is allowed to move between two or more networks.

A proxy is a software program that runs on a firewall system. It handles service
requests between two networks by managing two connections: one between the
requestor and the proxy server and one between the proxy server and the destination
service. It evaluates all incoming and outgoing messages for a given service to
determine if the message should be permitted to continue through to its destination
network or blocked. Proxies are often provided for services such as email, FTP, Telnet,
and World Wide Web (WWW) access.

Technical Detail

Firewall Architectures. A firewall can play several roles. It can be the primary line of
defense against external threats from public networks such as the Internet. It can
implement internal network partitioning to enforce access restrictions and protect
against insider attacks. It can provide protection when interacting with partner networks
and when merging with new organizational units (particularly those operating less
securely). And it can serve as a central point where security policies can be
implemented and logging/monitoring can occur. As shown in the figure below, there are

http://www.sei.cmu.edu/str/descriptions/firewalls.html (1 of 7)7/28/2008 11:28:02 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/firewalls_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Firewalls and Proxies

typically three basic firewall architectures:

Figure: Three Firewall Architectures

The simplest approach is the Basic Border Firewall. The firewall includes a screening
router and it performs certain packet filtering functions. The firewall host can be
configured as a "Bastion Host," that is, a host that is minimally configured (containing
only necessary software/services) and carefully managed to be as secure as possible1.
This architecture is sometimes referred to as a Screened Host.2

The Basic with DMZ Network is a more secure architecture for protecting hosts that
offer public services such as WWW as well as protecting the internal network from
external users accessing public services. The firewall examines all incoming traffic to
determine if it should be passed to the DMZ network (where one or more hosts
providing public services reside) or to the protected network. It examines all outgoing
traffic to determine if it should be passed from the protected network to the DMZ
network (requesting public services), to the protected network from the DMZ network
(responding to public service requests), or to the external world. This firewall
architecture may also be referred to as a Dual-Homed Gateway (due to having two
network connections, one to the DMZ Network and one to the protected network).3

One of the most secure firewall architectures is the Dual Firewalls with DMZ Network,
sometimes referred to as a Sub-Network Firewall. In this architecture, the protected
network is further isolated from the hosts offering public services and the external world
by adding a second firewall host. By protecting the public services network with one
firewall host and the protected network with a second firewall host (creating an
additional DMZ between the two firewalls), traffic between the protected network and
the Internet must traverse two firewalls.

Each firewall architecture can support one or more of the functions described below.

Firewall Functions. Static packet filters are "rules" that permit and deny Internet
Protocol (IP) packets based on the contents of fields in the packet header (such as
source/destination address, source/destination port, and protocol type). Each packet is
processed individually with no reference as to what packets precede or follow. Dynamic
packet filtering takes static packet filtering one step further by maintaining a connection

http://www.sei.cmu.edu/str/descriptions/firewalls.html (2 of 7)7/28/2008 11:28:02 AM

Firewalls and Proxies

table in order to monitor the state or context of a communication session by attempting
to match up outgoing and incoming packets. The information retained in the table
usually includes the source and destination addresses and source and destination
ports. Dynamic packet filtering is useful in handling "connectionless" protocols such as
UDP4 and ICMP5 and is sometimes referred to as stateful filtering or stateful inspection.

A proxy is a software program that runs on a firewall. It understands the service
protocol that it is responsible for processing, it implements protocol/service-specific
security such as access control and levels of authentication, and makes all packet-
forwarding decisions. Proxy servers evaluate the request and decide to permit or deny it
based on a set of rules that apply to the individual network service (e.g., SMTP6 for
email, HTTP7 for WWW, FTP,8 Telnet, etc.) as well as host/user permissions. Proxy
servers mirror the service as if it were running on the destination host [Smith 01].
Proxies provide a greater level of security by ensuring that two connecting hosts never
exchange packets directly. Given they operate at the application layer in the OSI 7-layer
protocol,9 proxies can filter based on packet content, and provide a central point for
more sophisticated and relevant alerts and logging information. Proxies can be
transparent (totally invisible to the end user) or non-transparent (requiring some level of
client knowledge and software configuration).

Network Address Translation (NAT) allows protected network users to gain access to
the external network without allowing outsiders to get in. When a request is sent
through the firewall, the NAT application substitutes its own address for the source
address field. When a reply comes back to the NAT application, it replaces its own
address in the destination field with that of the original client making the request. With
NAT, external hosts cannot find the internal host addresses because they are aware of
only one IP address, the firewall. The ability to attack internal hosts is greatly reduced
using by employing NAT [Ogletree 01], [Smith 01]. Three NAT variations include static,
dynamic, and overloading or port address translation [Tyson/Cisco].

Usage Considerations

In a single-layer architecture (Basic Border Firewall, Basic with DMZ Network), one
network host is allocated all firewall functions and is connected to each network for
which it is to control access. This approach is usually chosen when cost is a primary
factor or when there are only two networks to interconnect. It has the advantage that
everything there is to know about the firewall resides on the firewall host. In cases
where the policy to be implemented is simple and there are few networks being
interconnected, this approach can also be very cost-effective to operate and maintain
over time. The greatest disadvantage of the single layer approach is its susceptibility to
implementation flaws or configuration errors&emdash;depending on the type, a single
flaw or error might allow firewall penetration.

In a multiple-layer architecture (Dual Firewalls with DMZ Network), the firewall functions
are distributed among a small number of hosts, typically connected in series, with DMZ
networks between them. This approach is more difficult to design and operate, but can
provide substantially greater security by diversifying the defenses being implemented.
Although more costly, it is advisable to use different technology in each of these firewall
hosts. This reduces the risk that the same implementation flaws or configuration errors
will exist in every layer.

http://www.sei.cmu.edu/str/descriptions/firewalls.html (3 of 7)7/28/2008 11:28:02 AM

Firewalls and Proxies

With respect to firewall functions, start with implementing static packet filters. Add
dynamic filtering for more accurate policy implementation, greater control, a higher level
of security, and lower risk. Use application proxies for additional policy implementation,
for packet content management, and for controlling application-program-specific/service
access. Most firewalls implement some form of NAT as a default feature.

Maturity

There are a large number of commercial and open source/freeware products available
that implement some or all of the firewall architectures and functions described above.
This is a very mature product market and continues to evolve based on changing
threats to network security. Recent developments include some function merging
between the capabilities of firewalls and intrusion detection systems. One source of
firewall evaluation information is the 2001 ICSA Labs Firewall Buyers Guide available at
http://www.icsalabs.com/html/communities/firewalls/buyers_guide2001/index.shtml.
TruSecure's/ICSA's list of certified firewall products is available at http://www.trusecure.
com/corporate/press/2003/labs012703.shtml.

Costs and Limitations

The major tradeoffs to perform when selecting firewall architectures and functions are
availability, performance, security, and cost. Availability is achieved by a combination of
reliability and redundancy. Start by choosing hardware and software components that
are reliable. If the level of reliability achieved is insufficient, consider using redundant
components to meet availability requirements. Performance analysis is predominantly
based on the anticipated traffic through the firewall system. An organization may need
multiple firewall hosts to distribute the load and handle traffic at an acceptable rate.
With respect to security, weigh the use of single versus dual firewall systems at the
network perimeter. The factors to consider include:

● having outside traffic passing through two firewall systems instead of one
(benefits vs. cost)

● ability to monitor traffic and the monitoring locations
● ability to recover from compromises including disconnecting one firewall system

while keeping the other operational
● number of network ports needed
● performance
● failure characteristics
● expense

The Basic Border firewall is the least expensive to operate and maintain but also the
least secure. Using only one firewall is a point of organizational and network
vulnerability that needs to be managed from a risk perspective. The Basic with DMZ
Network provides an additional level of protection for servers hosting public services but
requires additional effort for ongoing operation and maintenance. The Dual Firewalls
with DMZ Network is the most secure but also the most expensive to maintain and
operate.

Dependencies

http://www.sei.cmu.edu/str/descriptions/firewalls.html (4 of 7)7/28/2008 11:28:02 AM

http://www.icsalabs.com/html/communities/firewalls/buyers_guide2001/index.shtml
http://www.trusecure.com/corporate/press/2003/labs012703.shtml
http://www.trusecure.com/corporate/press/2003/labs012703.shtml

Firewalls and Proxies

Firewall technology is driven by the capabilities of rapidly changing networking
technologies, and the growing sophistication of intruder attack approaches. For
instance, when Java applets became available on the WWW, it was possible to import
malicious code hidden in the applets. To prevent this, it was desirable to block any Java
applet at the firewall. If a proxy was being used in the firewall to filter WWW traffic, the
proxy had to be enhanced to recognize Java applets from the WWW protocol. In
addition, there is a growing number of products that perform email content and
attachment examination and filtering. These products need to be integrated with firewall
technologies so that both can work together effectively to protect organizational
networks and hosts.

Alternatives

The security alternative to using firewalls to prevent theft of data or damage from
malicious users is physical isolation of the networks. Doing so may conflict with mission
performance needs if manual transfer of data from network to network is not
acceptable. Data theft may be prevented through encryption, but that will not stop
malicious damage.

Complementary Technologies

Complementary technologies include intrusion detection systems and content filtering
applications. In a trusted computing environment, network security guards are a
complementary technology as they provide similar functionality.

Index Categories

This technology is classified under the following categories. Select a category for a list
of related topics.

Name of technology Firewalls and Proxies

Application category System Security (AP.2.4.3)

Quality measures category Vulnerability (QM.2.1.4.1)
Security (QM.2.1.5)

Computing reviews category Security & Protection (K.6.5)
Computer-Communications Network Security and
Protection (C.2.0)

References and Information Sources

http://www.sei.cmu.edu/str/descriptions/firewalls.html (5 of 7)7/28/2008 11:28:02 AM

Firewalls and Proxies

[Allen 01] Allen, Julia. The CERT Guide to System and Network Security
Practices. Boston, MA: Addison-Wesley, 2001.

[Fithen 99] Fithen, William, et al. Deploying Firewalls. (CMU/SEI-SIM-
008). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 1999. Online: http://www.cert.org/security-
improvement/modules/m08.html.

[Cheswick 94] Cheswick, Willliam R.; & Bellovin, Steven M. Firewalls and
Internet Security. Reading, MA: Addison-Wesley, 1994.

[Comer 95] Comer, Douglas E. Internetworking with TCP/IP, Vol. 1:
Principles, Protocols,and Architecture. 3rd edition. New York:
Prentice-Hall, 1995.

[Ogletree 00] Ogletree, Terry William. Practical Firewalls. Que, June 2000.

[Ranum 98, Curtin 00] Ranum, Marcus J.; & Curtin, Matt. "Internet Firewalls:
Frequently Asked Questions," 1998, 2000. Available at http://
www.interhack.net/pubs/fwfaq

[Smith 01] Smith, Gary. "A Brief Taxonomy of Firewalls - Great Walls of
Fire." May 18, 2001. Available at http://www.sans.org/
infosecFAQ/firewall/taxonomy.htm

[Stevens 94] Stevens, W. Richard. TCP/IP Illustrated, Vol. 1: The Protocols.
Reading, MA: Addison-Wesley, 1994.

Tyson, Jeff] Tyson, Jeff. "How Network Address Translation Works."
Online: http://www.howstuffworks/nat.htmand Cisco Systems
Inc. "How NAT Works." Online: http://www.cisco.com/warp/
public/556/nat-cisco.shtml

[Zwicky 00] Zwicky, Elizabeth. Cooper, Simon. Chapman, D. Brent.
Building Internet Firewalls, 2d Edition. Sebastopol, CA:
O'Reilly & Associates, June 2000.

Current Author/Maintainer

Julia Allen, Software Engineering Institute

External Reviewers

http://www.sei.cmu.edu/str/descriptions/firewalls.html (6 of 7)7/28/2008 11:28:02 AM

http://www.cert.org/security-improvement/modules/m08.html
http://www.cert.org/security-improvement/modules/m08.html
http://www.interhack.net/pubs/fwfaq
http://www.interhack.net/pubs/fwfaq
http://www.sans.org/infosecFAQ/firewall/taxonomy.htm
http://www.sans.org/infosecFAQ/firewall/taxonomy.htm
http://www.cisco.com/warp/public/556/nat-cisco.shtml
http://www.cisco.com/warp/public/556/nat-cisco.shtml

Firewalls and Proxies

Numerous through review of [Fithen 99] and [Allen 01]

Modifications

10 Jan 1997: Original
12 Mar 2002: Update

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/firewalls_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/firewalls.html (7 of 7)7/28/2008 11:28:02 AM

http://www.sei.cmu.edu/about/disclaimer.html

Function Point Analysis

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Function Point Analysis

Status

Advanced

Purpose and Origin

The function point metric was devised in 1977 by A. J. Albrecht, then of IBM, as
a means of measuring software size and productivity. It uses functional, logical
entities such as inputs, outputs, and inquiries that tend to relate more closely to
the functions performed by the software as compared to other measures, such
as lines of code. Marciniak provides a good capsule introduction to the
application of function point measurement [Marciniak 94].

Function point definition and measurement have evolved substantially; the
International Function Point User Group (IFPUG), formed in 1986, actively
exchanges information on function point analysis (FPA) [IFPUG 96]. The original
metric has been augmented and refined to cover more than the original
emphasis on business-related data processing. FPA has become generally
accepted as an effective way to

● estimate a software project's size (and in part, duration)
● establish productivity rates in function points per hour
● evaluate support requirements
● estimate system change costs
● normalize the comparison of software modules

However, uniformity of application and results are still issues (see Usage
Considerations). For reasons explained below in Technical Detail, FPA has been
renamed functional size measurement, but FPA remains the more commonly
used term.

Technical Detail

Basic function points are categorized into five groups: outputs, inquiries, inputs,
files, and Interfaces. A function point is defined as one end-user business
function, such as a query for an input. This distinction is important because it
tends to make a function point map easily into user-oriented requirements, but it
also tends to hide internal functions, which also require resources to implement.
To make up for this (and other) weaknesses, some refinements to and/or

http://www.sei.cmu.edu/str/descriptions/fpa.html (1 of 5)7/28/2008 11:28:03 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/fpa_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Function Point Analysis

variations of the basic Albrecht definition have been devised, including

● Early and easy function points. Adjusts for problem and data complexity
with two questions that yield a somewhat subjective complexity
measurement; simplifies measurement by eliminating the need to count
data elements.

● Engineering function points. Elements (variable names) and operators (e.
g., arithmetic, equality/inequality, Boolean) are counted. This variation
highlights computational function [Umholtz 94]. The intent is similar to that
of the operator/operand-based Halstead measures (see Halstead
Complexity Measures).

● Bang measure. Defines a function metric based on twelve primitive
(simple) counts that affect or show Bang, defined as "the measure of true
function to be delivered as perceived by the user" [DeMarco 82]. Bang
measure may be helpful in evaluating a software unit's value in terms of
how much useful function it provides, although there is little evidence in
the literature of such application. The use of Bang measure could apply
when reengineering (either complete or piecewise) is being considered,
as discussed in Maintenance of Operational Systems--An Overview.

● Feature points. Adds changes to improve applicability to systems with
significant internal processing (e.g., operating systems, communications
systems). This allows accounting for functions not readily perceivable by
the user, but essential for proper operation.

Usage Considerations

There is a very large user community for function points; IFPUG has more than
1200 member companies, and they offer assistance in establishing a FPA
program. The standard practices for counting and using function points are
found in the IFPUG Counting Practices Manual [IFPUG 96]. Without some
standardization of how the function points are enumerated and interpreted,
consistent results can be difficult to obtain. Successful application seems to
depend on establishing a consistent method of counting function points and
keeping records to establish baseline productivity figures for your specific
systems. Function measures tend to be independent of language, coding style,
and software architecture, but environmental factors such as the ratio of function
points to source lines of code will vary.

The proliferation of refinements and variations of FPA noted in Technical Detail
has led to fragmentation. To remedy this, a Joint Technical Committee (JTC1) of
the International Standards Organization (ISO) has been working since 1993 to
develop ISO standards for sizing methods [Rehesaar 96]. This standardization
effort is now called Functional Size Measurement.

Counting the function points needed for FPA remains largely a manual
operation. This is an impediment to use. Wittig offers an approach to partial
automation of function point counting [Wittig 94].

There are continuing concerns about the reliability and consistency of function
point counts, such as

http://www.sei.cmu.edu/str/descriptions/fpa.html (2 of 5)7/28/2008 11:28:03 AM

Function Point Analysis

● whether two trained human counters will produce the same result for the
same system

● the lack of inter-method reliability resulting from the variations described
in Technical Detail

These reliability questions are addressed in a practical research effort described
in Kemerer [Kemerer 93]. Siddiqee presents FPA as a good measure of
productivity in a large software production environment in Lockheed Corporation
[Siddiqee 93].

Any systematic FPA effort should collect the information into a database for
ongoing analysis as the code is developed and/or modified.

Maturity

FPA is in use in many industrial software companies; IFPUG is large, with more
than 1200 member companies, and offers many resources. As noted above,
however, an ISO-level standard is still in the making.

Costs and Limitations

Currently, function point counting is a time-consuming and largely manual
activity unless tools are built to assist the process. Wittig and Kemerer cite that it
took more than five days to count a 4,000 function point system [Wittig 94,
Kemerer 93]. However, the level of acceptance by software companies indicates
that FPA is useful. Training in FPA is highly recommended; IFPUG can assist in
securing training and locating FPA tools [IFPUG 96].

Alternatives

For estimation of effort, approaches based on lines of code (LOC) are an
alternative. The now-classic COCOMO (constructive cost model) method and its
REVIC (revised intermediate COCOMO) implementation provide a discipline for
using LOC as a software size estimator [Boehm 81].

Complementary Technologies

LOC can also be used in a complementary sense as a check on results. There is
also a technique called Backfiring that consists of a set of bidirectional equations
for converting between function points and LOC [Jones 95]. This is reportedly
useful when using sizing data from a combination of projects, some with metrics
in LOC and some in function points. However, generalizing the Backfiring
technique to yield a simple LOC-per-function point ratio is not advisable.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

http://www.sei.cmu.edu/str/descriptions/fpa.html (3 of 5)7/28/2008 11:28:03 AM

Function Point Analysis

Name of technology Function Point Analysis

Application category Cost Estimation (AP.1.3.7)

Quality measures category Productivity (QM.5.2)

Computing reviews category
Software Engineering Metrics (D.2.8)
Software Engineering Management (D.2.9)

References and Information Sources

[Boehm 81] Boehm, Barry W. Software Engineering Economics. Englewood
Cliffs, NJ: Prentice-Hall, 1981.

[DeMarco 82] DeMarco, Tom. Controlling Software Projects: Management,
Measurement, and Estimation. New York, NY: Yourdon Press,
1982.

[Dreger 89] Dreger, J. Brian. Function Point Analysis. Englewood Cliffs,
NJ: Prentice Hall, 1989.

[Heller 95] Heller, Roger. "An Introduction to Function Point Analysis,"
Crosstalk, Journal of Defense Software Engineering 8, 11
(November/December 1995): 24-26.

[IFPUG 96] The International Function Point Users' Group (IFPUG) Web
site [online]. Available WWW
<URL: http://www.ifpug.org/> (1996).

[Jones 95] Jones, Capers. "Backfiring: Converting Lines of Code to
Function Points." IEEE Computer 28, 11 (November 1995): 87-
8.

[Kemerer 93] Kemerer, Chris. "Reliability of Function Points Measurement: A
Field Experiment." Communications of the ACM 36, 2
(February 1993): 85-97.

[Marciniak
94]

Marciniak, John J., ed. Encyclopedia of Software Engineering,
518-524. New York, NY: John Wiley & Sons, 1994.

[Rehesaar 96] Rehesaar, Hugo. "ISO/IEC Functional Size Measurement
Standards," 311-318. Proceedings of the GUFPI/IFPUG
Conference on Software Measurement and Management. Rome,
Italy, February 5-9, 1996. Westerville, OH: International
Function Point Users Group, 1996.

http://www.sei.cmu.edu/str/descriptions/fpa.html (4 of 5)7/28/2008 11:28:03 AM

http://www.ifpug.org/

Function Point Analysis

[Siddiqee 93] Siddiqee, M. Waheed. "Function Point Delivery Rates Under
Various Environments: Some Actual Results," 259-264.
Proceedings of the Computer Management Group's
International Conference. San Diego, CA, December 5-10,
1993. Chicago, IL: Computer Management Group, 1993.

[Umholtz 94] Umholtz, Donald C. & Leitgeb, Arthur J. "Engineering Function
Points and Tracking Systems."Crosstalk, Journal of Defense
Software Engineering 7, 11 (November 1994): 9-14.

[Wittig 94] Wittig, G. E. & Finnie, G. R. "Software Design for the
Automation of Unadjusted Function Point Counting," 613-623.
Business Process Re-Engineering Information Systems
Opportunities and Challenges, IFIP TC8 Open Conference.
Gold Coast, Queensland, Australia, May 8-11, 1994. The
Netherlands: IFIP, 1994.

Current Author/Maintainer

Edmond VanDoren, Kaman Sciences, Colorado Springs

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/fpa_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/fpa.html (5 of 5)7/28/2008 11:28:03 AM

http://www.sei.cmu.edu/about/disclaimer.html

Graphic Tools for Legacy Database Migration

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Graphic Tools for Legacy Database Migration

Status

Advanced

Purpose and Origin

Graphic tools for legacy database migration are used to aid in the examination of
legacy data in preparation for migration of one or more databases, often as part
of a system migration or reengineering effort. They are intended to enhance
understandability and portability of databases by providing easily-manipulated
views of both content and structure that facilitate analysis [Selfridge 94].

Technical Detail

A graphical tool portrays a database's organization and data in graphical form.
This enhances the understandability of the database(s) by allowing the analyst
to assess the condition and organization of the data, including overlap and
duplication of data items, in preparation for migration. This enhancement is
desirable for several reasons:

1. Databases are typically complex, and may lack adequate documentation.
2. The information to be migrated may be contained in several separate

databases built for different purposes.

The latter usually creates data redundancy, including multiple instances of a
field, and even different representations of the same data (e.g., floating point in
one place, fixed point or text in another). Important legacy information may be
buried in text fields that must be found in order to capture the data's content.
Bennett describes some of these problems [Bennett 95]. Legacy database
migration is usually done to improve a system's maintainability (modifiability,
testability, and/or ease of life cycle evolution). Database migration is typically
performed as part of a larger system reengineering effort. It is a branch of
database design and engineering, and requires the same set of disciplines.

Usage Considerations

A visualization tool is only part of the toolset of interest in migrating legacy data.
Other tools might include the following:

http://www.sei.cmu.edu/str/descriptions/gtldm.html (1 of 4)7/28/2008 11:28:04 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/gtldm_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Graphic Tools for Legacy Database Migration

● data modelers
● data entry and/or query screen translators
● report translators
● data-moving and translation utilities

A migration strategy is required to create a normalized file structure with
referential integrity out of large, multiple databases. The tools must fit the
environment, and the target database must be interfaced with the system and
application software; this implies the need for compatibility with the languages
used. The design of the target database can greatly affect performance and
maintainability; therefore the first goal of the migration effort should be to define
a target schema suitable for the application.

Maturity

Major database vendors offer tools of this type; the tools are typically optimized
toward their database product as the target, but they accept other databases as
input. There are also independent sources of visualization tools, as well as tools
produced by research efforts [Selfridge 94, Gray 94]. Database migration, when
offered as a service, often uses visualization tools to facilitate understanding
between customer and consultant about the migration approach, process, and
results [Ning 94].

Costs and Limitations

The cost of such a tool, including training, should be nominal compared to the
total cost of the target database system's software, and may even be included.
However, the migration itself can be costly in time and training; experience is
required for good, normalized database design.

Dependencies

A migration effort would typically be coincident with a reengineering of the
software that access the data, and would be intimately tied to the approaches
used to do this reengineering.

Alternatives

An alternative to migration of the database is to link existing heterogeneous
databases to each other. This approach eliminates the need to migrate the data,
but also retains all the structural inefficiencies of the current databases, and may
degrade performance. It may also create maintainability problems because each
old database will require a separate knowledge set, and because their platforms
may be not be supportable. The approach requires writing interface software that
act as gateways to the other database management systems (DBMS), file
systems, and/or other existing applications. The Object Request Broker
technology exemplified by the emerging Common Object Request Broker
Architecture (CORBA) standard, as well as products offered by commercial

http://www.sei.cmu.edu/str/descriptions/gtldm.html (2 of 4)7/28/2008 11:28:04 AM

Graphic Tools for Legacy Database Migration

database vendors, offer the capability to link existing heterogeneous databases.
This includes the ability to associate data elements in different databases, and
do JOINS across database boundaries.

Complementary Technologies

Other tools for analyzing data content and structure are available from
commercial vendors and academic and research organizations. Knowledge-
based approaches, for example, may have the ability to infer identity between
multiple, differently-named instances of a data item. Other approaches such as
these can compliment the use of graphical analyzers. Migration is typically done
in the context of open systems (see COTS and Open Systems--An Overview),
which implies a large number of technologies that would be helpful together.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Graphic Tools for Legacy Database Migration

Application category Database Design (AP.1.3.2)
Reengineering (AP.1.9.5)

Quality measures category Understandability (QM.3.2)
Maintainability (QM.3.1)
Testability (QM.1.4.1)
Compatibility (QM.4.1.1)
Throughput (QM.2.2.3)

Computing reviews category Database Management - Logical Design (H.2.1)

References and Information Sources

[Bennett 95] Bennett, K. "Legacy Systems: Coping With Stress." IEEE
Software 12, 1 (January 1995): 19-23.

[Gray 94] Gray, W. A.; Wikramanayake, G. N.; & Fiddian, N. J. "Assisting
Legacy Database Migration," 5/1-3. IEE Colloquium: Legacy
Information System- Barriers to Business Process Re-Engineering
(1994/246). London, UK, December 13, 1994. London, UK: IEE,
1994.

http://www.sei.cmu.edu/str/descriptions/gtldm.html (3 of 4)7/28/2008 11:28:04 AM

Graphic Tools for Legacy Database Migration

[Ning 94] Ning, Jim Q.; Engberts, Andre; & Kozaczynski, W. "Automated
Support for Legacy Code Understanding." Communications of the
ACM 37, 5 (May 1994): 50-57.

[Selfridge
94]

Selfridge, Peter G. & Heineman, George T. "Graphical Support
for Code-Level Software Understanding," 114-24. Ninth
Knowledge-Based Software Engineering Conference. Monterey,
CA, September 1994. Los Alamitos, CA: IEEE Computer Society
Press, 1994.

Current Author/Maintainer

Edmond VanDoren, Kaman Sciences, Colorado Springs

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/gtldm_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/gtldm.html (4 of 4)7/28/2008 11:28:04 AM

http://www.sei.cmu.edu/about/disclaimer.html

Graphical User Interface Builders

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Graphical User Interface Builders

Status

Advanced

Purpose and Origin

Graphical user interface (GUI) builders are software engineering tools developed
to increase the productivity of user interface (UI) development teams, and to
lower the cost of UI code in both the development and maintenance phases.
One study found that an average of 48% of application code is devoted to the UI,
and 50% of the development time required for the entire application is devoted to
the UI portion [Myers 95]. Use of GUI builders can significantly reduce these
numbers. For example, the MacApp system from Apple has been reported to
reduce development time by a factor of four. Another study found that an
application using a popular GUI tool wrote 83% fewer lines of code and took one-
half the time compared to applications written without GUI tools [Myers 95].
Original GUI research was conducted at the Stanford Research Institute, Xerox
Palo Alto Research Center, and Massachusetts Institute of Technology in the
1970s [Myers 95].

Technical Detail

A GUI development tool simplifies the coding of complex UI applications by
providing the developer with building blocks (or widgets) of UI components.
These building blocks are manipulated by the developer into a cohesive UI
allowing a smaller workforce to develop larger amounts of user interface
software in shorter time periods. A GUI builder enhances usability by providing a
development team with a prototyping capability so that proposed UI changes can
be rapidly demonstrated to the end user to secure requirements validation and
acceptance. This aspect can decrease the turnaround time for making UI
changes in the Operations and Maintenance (O&M) phase, which enhances
maintainability as well.

GUI development tools can be broadly categorized into two types:

● Interface Development Tools (IDTs)
● User Interface Management Systems (UIMSs)

IDTs are used for building the interface itself, but nothing more. By contrast,

http://www.sei.cmu.edu/str/descriptions/guib.html (1 of 4)7/28/2008 11:28:04 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/guib_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Graphical User Interface Builders

UIMSs extend the functionality of IDTs to include application development (code
generation tools) or scripting tools. A UIMS also allows the developer to specify
the behavior of an application with respect to the interface. These two types of
GUI builders permit the interactive creation of the front-end GUI using a palette
of widgets, a widget attribute specification form, a menu hierarchy (menu tree
structure), a tool bar, and a view of the form. The UIMS adds the benefits of
code generation tools, which can greatly increase the productivity of the GUI
development staff. After the front-end is created by a UIMS, a code generator is
used to produce C/C++ code, Motif User Interface Language (UIL) code, Ada
code or some combination of C, Ada, and UIL.

Usage Considerations

GUI builders are useful for development of complex user interfaces because
they increase software development speed by providing tools to lay out screens
graphically and automatically generate interface code. Additionally, in
applications that are susceptible to continuing user interface change such as
command and control applications, the use of GUI builders greatly increases the
ability to add/modify user interface functionality in minimal time to support
mission changes or new requirements.

This technology works best when used in new development and reengineering.
To take full advantage of the benefits of using GUI builders, the most desirable
software architecture would be one that ensures the user interface software is
isolated on a single layer as opposed to being embedded within several different
software components. This isolation simplifies the UI portion of the software,
thus making changes during development easier as well as enhancing future
maintainability and evolvability.

Maturity

From the early GUI research started in the 1970s, GUI builder tools have grown
into an estimated $1.2 billion business [Myers 95]. Today there are literally
hundreds of GUI builders on the market supporting platforms ranging from UNIX
to DOS. Virtually all new commercial and government applications use some
form of UI builder tool. GUI builders have been successfully used on legacy
systems when large changes or UI redesigns were applied to the user interface
portion of the software [Myers 95].

Costs and Limitations

This technology requires workstations or PCs dedicated to support the
development, rapid prototype, and validation of user interfaces. The most widely
used GUI builders on the market today require minimal learning time for C and C
++ trained developers. These packages come with appropriate training
materials, online help features, and vendor-supplied help lines which help make
the developers productive in minimal time. There are few formal training costs
associated with the use of GUI builders; however an organization would be well
advised to provide internal training focusing on standardized approaches and
techniques similar to design and coding standards for source code.

http://www.sei.cmu.edu/str/descriptions/guib.html (2 of 4)7/28/2008 11:28:04 AM

Graphical User Interface Builders

The prime costs with GUI builders are the initial license fees, annual
maintenance agreements, and the cost of the workstations. In the UNIX
environment, typical license costs for full UIMS GUI builders are in the range of
$5k to $7.5k per single user license. For Windows or Macintosh environments,
the costs range from $300 to $600 per user license. The maintenance
agreements are key to keeping each GUI builder updated with vendor
corrections and upgrades.

Dependencies

GUI development tools employ window managers as the foundation upon which
a user interface can be built. A window manager allows the user to display, alter,
and interact with more than one window at a time. The window manager's
primary responsibility is to keep track of all aspects of each of the windows being
displayed. In terms of numbers of applications in use, the two most popular
window managers are Open Windows and Motif from Open Software Foundation
(OSF) [OSF 96].

Alternatives

UI software can be developed without the use of GUI builders by using the
features of window managers. For example, developers can use the X Windows
based Motif (from OSF) and its rich set of widgets and features to design and
implement UIs. This may be desirable for smaller, less complex UI applications
for which the developer does not require the assistance (and extra cost) of GUI
builders.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Graphical User Interface Builders

Application category Interfaces Design (AP.1.3.3)
Code (AP.1.4.2)
Reapply Software Life Cycle (AP.1.9.3)
Reengineering (AP.1.9.5)

Quality measures category Usability (QM.2.3)
Maintainability (QM.3.1)

Computing reviews category Software Engineering Tools and Techniques
(D.2.2)
User Interfaces (H.1.2)

http://www.sei.cmu.edu/str/descriptions/guib.html (3 of 4)7/28/2008 11:28:04 AM

Graphical User Interface Builders

References and Information Sources

[Myers
95]

Myers, Brad A. "User Interface Software Tools." ACM Transactions
on Computer-Human Interaction 2, 1 (March 1995): 64-108.

[OSF 96] OSF Home Page [online]. Available WWW
<URL: http://www.osf.org> (1996).

Current Author/Maintainer

Mike Bray, Lockheed-Martin Ground Systems

External Reviewers

Brian Gallagher, SEI

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/guib_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/guib.html (4 of 4)7/28/2008 11:28:04 AM

http://www.osf.org/
http://www.sei.cmu.edu/about/disclaimer.html

Halstead Complexity Measures

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Halstead Complexity Measures

Status

Advanced

Note

We recommend that Maintainability Index Technique for Measuring Program
Maintainability be read concurrently with this technology description. It illustrates
a specific application of Halstead complexity to quantify the maintainability of
software.

Purpose and Origin

Halstead complexity measurement was developed to measure a program
module's complexity directly from source code, with emphasis on computational
complexity. The measures were developed by the late Maurice Halstead as a
means of determining a quantitative measure of complexity directly from the
operators and operands in the module [Halstead 77]. Among the earliest
software metrics, they are strong indicators of code complexity. Because they
are applied to code, they are most often used as a maintenance metric. There
are widely differing opinions on the worth of Halstead measures, ranging from
"convoluted... [and] unreliable" [Jones 94] to "among the strongest measures of
maintainability" [Oman 91]. The material in this technology description is largely
based on the empirical evidence found in the Maintainability Index work, but
there is evidence that Halstead measures are also useful during development, to
assess code quality in computationally-dense applications.

Technical Detail

The Halstead measures are based on four scalar numbers derived directly from
a program's source code:

n1 = the number of distinct operators

n2 = the number of distinct operands

http://www.sei.cmu.edu/str/descriptions/halstead.html (1 of 6)7/28/2008 11:28:05 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/halstead_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Halstead Complexity Measures

N1 = the total number of operators

N2 = the total number of operands

From these numbers, five measures are derived:

Measure Symbol Formula

Program length N N= N1 + N2

Program
vocabulary

n n= n1 + n2

Volume V V= N * (LOG2 n)

Difficulty D D= (n1/2) * (N2/n2)

Effort E E= D * V

These measures are simple to calculate once the rules for identifying operators
and operands have been determined (Szulewski notes that establishing these
rules can be quite difficult [Szulewski 84]). The extraction of the component
numbers from code requires a language-sensitive scanner, which is a
reasonably simple program for most languages. Oman describes a tool for use
in determining maintainability which, for Pascal and C, computes the following
[Oman 91]:

V for each module; and

V(g), the average Halstead volume per module for a system
of programs

For Pascal alone, the following are also computed:

E for each module; and

E(g), the average Halstead volume per module for a system
of programs

Usage Considerations

Applicability. The Halstead measures are applicable to operational systems

http://www.sei.cmu.edu/str/descriptions/halstead.html (2 of 6)7/28/2008 11:28:05 AM

Halstead Complexity Measures

and to development efforts once the code has been written. Because
maintainability should be a concern during development, the Halstead measures
should be considered for use during code development to follow complexity
trends. A significant complexity measure increase during testing may be the sign
of a brittle or high-risk module. Halstead measures have been criticized for a
variety of reasons, among them the claim that they are a weak measure
because they measure lexical and/or textual complexity rather than the structural
or logic flow complexity exemplified by Cyclomatic Complexity measures .
However, they have been shown to be a very strong component of the
Maintainability Index measurement of maintainability (see Maintainability Index
Technique for Measuring Program Maintainability). In particular, the complexity
of code with a high ratio of calculational logic to branch logic may be more
accurately assessed by Halstead measures than by Cyclomatic Complexity,
which measures structural complexity.

Relation to other complexity measures. Marciniak describes all of the
commonly-known software complexity measures and puts them in a common
framework [Marciniak 94]. This is helpful background for any complexity
measurement effort. Most measurement programs benefit from using several
measures, at least initially; discarding those that do not suit the specific
environment; and combining those that work (see Complementary
Technologies). This is illustrated by Maintainability Index Technique for
Measuring Program Maintainability, which describes the use of Halstead
measures in combination with other complexity measures. When used in this
context, the problems with establishing rules for identifying the elements to be
counted are eliminated.

Maturity

Halstead measures were introduced in 1977 and have been used and
experimented with extensively since that time. They are one of the oldest
measures of program complexity. Because of the criticisms mentioned above,
they have seen limited use. However, their properties are well-known and, in the
context explained in Usage Considerations, they can be quite useful.

Costs and Limitations

The algorithms are free; the tool described in Technical Detail, contains Halstead
scanners for Pascal and C, and some commercially-available CASE toolsets
include the Halstead measures as part of their metric set. For languages not
supported, standalone scanners can probably be written inexpensively, and the
results can be exported to a spreadsheet or database to do the calculations and
store the results for use as metrics. It should be noted that difficulties sometimes
arise in uniquely identifying operators and operands. Consistency is important.
Szulewski discusses this, defines consistent counting techniques for Ada, and
points to other sources of counting techniques for some other languages
[Szulewski 84]. Adding Halstead measures to an existing maintenance
environment's metrics collection effort and then applying them to the software
maintenance process will require not only the code scanner, but a collection
system that feeds the resulting data to the metrics effort. Halstead measures
may not be sufficient by themselves as software metrics (see Complementary

http://www.sei.cmu.edu/str/descriptions/halstead.html (3 of 6)7/28/2008 11:28:05 AM

Halstead Complexity Measures

Technologies).

Alternatives

Common practice today is to combine measures to suit the specific program
environment. Most measures are amenable for use in combination with others
(although some overlap). Thus, many alternative measures are to some degree
complementary. Oman presents a very comprehensive list of code metrics that
are found in maintainability analysis work, and orders them by degree of
influence on the maintainability measure being developed in that effort [Oman
94]. Some examples are (all are averages across the set of programs being
measured)

● lines of code per module
● lines of comments per module
● variable span per module
● lines of data declarations per module

Complementary Technologies

Cyclomatic Complexity and its associated complexity measures measure the
structural complexity of a program. Maintainability Index Technique for
Measuring Program Maintainability, combines cyclomatic complexity with
Halstead measures to produce a practical measure of maintainability.

Function point measures (see Function Point Analysis) provide a measure of
functionality, with some significant limitations (at least in the basic function point
enumeration method); the variant called engineering function points adds
measurement of mathematical functionality that may complement Halstead
measures.

Lines-of-code (LOC) metrics offer a gross measure of code, but do not measure
content well. However, LOC in combination with Halstead measures may help
relate program size to functionality.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Halstead Complexity Measures

http://www.sei.cmu.edu/str/descriptions/halstead.html (4 of 6)7/28/2008 11:28:05 AM

Halstead Complexity Measures

Application category Code (AP.1.4.2)
Debugger (AP.1.4.2.4)
Test (AP.1.4.3)
Unit Testing (AP.1.4.3.4)
Component Testing (AP.1.4.3.5)
Reapply Software Life Cycle (AP.1.9.3)
Reengineering (AP.1.9.5)

Quality measures category Maintainability (QM.3.1)
Testability (QM.1.4.1)
Understandability (QM.3.2)
Complexity (QM.3.2.1)

Computing reviews category Software Engineering Distribution and
Maintenance (D.2.7)
Software Engineering Metrics (D.2.8)
Complexity Classes (F.1.3)
Tradeoffs Among Complexity Measures (F.2.3)

References and Information Sources

[Halstead 77] Halstead, Maurice H. Elements of Software Science, Operating,
and Programming Systems Series Volume 7. New York, NY:
Elsevier, 1977.

[Jones 94] Jones, Capers. "Software Metrics: Good, Bad, and Missing."
Computer 27, 9 (September 1994): 98-100.

[Marciniak
94]

Marciniak, John J., ed. Encyclopedia of Software Engineering,
131-165. New York, NY: John Wiley & Sons, 1994.

[Oman 91] Oman, P. HP-MAS: A Tool for Software Maintainability,
Software Engineering (#91-08-TR). Moscow, ID: Test
Laboratory, University of Idaho, 1991.

[Oman 94] Oman, P. & Hagemeister, J. "Constructing and Testing of
Polynomials Predicting Software Maintainability." Journal of
Systems and Software 24, 3 (March 1994): 251-266.

[Szulewski
84]

Szulewski, Paul, et al. Automating Software Design Metrics
(RADC-TR-84-27). Rome, NY: Rome Air Development Center,
1984.

Current Author/Maintainer

Edmond VanDoren, Kaman Sciences, Colorado Springs

http://www.sei.cmu.edu/str/descriptions/halstead.html (5 of 6)7/28/2008 11:28:05 AM

Halstead Complexity Measures

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/halstead_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/halstead.html (6 of 6)7/28/2008 11:28:05 AM

http://www.sei.cmu.edu/about/disclaimer.html

Intrusion Detection

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Intrusion Detection

Status

Advanced

Note

We recommend Computer System Security--An Overview as prerequisite
reading for this technology description.

Purpose and Origin

In the mid to late 1960s, as time sharing systems emerged, controlling access to
computer resources became a concern. In the 1970s, the Department of
Defense (DoD) Ware Report pointed out the need for computer security [Ware
79]. In the mid to late 1970s, a number of systems were designed and
implemented using security kernel architectures. In the late 1970s, Tiger Teams
began to evaluate the security of various systems. In 1983, the Department of
Defense Trusted Computer System Evaluation Criteria - the "orange book" - was
published and provided a set of criteria for evaluating computer security control
effectiveness [DoD 85]. Research in this area continued through the 1980s, but
many facets of computer security control remained a largely manual process.
For example, the Internet Worm program of 1988 - which infected thousands of
machines and disrupted normal activities for several days- was detected
primarily through manual means [Spafford 88]. Today, there are primarily four
approaches to achieving a secure computing environment [Kemmerer 94]:

1. the use of special procedures - such as password selection and use,
access control, and manual review of output products- for working with a
system

2. the inclusion of additional functions or mechanisms in the system
3. the use of assurance techniques - such as penetration analysis, formal

specification and verification, and covert channel analysis - to increase
one's confidence in the security of a system

4. the use of intrusion detection systems (IDSs)

The fourth approach, intrusion detection, is an emerging technology that seeks
to automate the detection and elimination of intrusions. IDSs seek to increase

http://www.sei.cmu.edu/str/descriptions/intrusion.html (1 of 5)7/28/2008 11:28:06 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/intrusion_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Intrusion Detection

the security and hence the availability, integrity, and confidentiality of computer
systems by eliminating unauthorized system/data access.

Technical Detail

Intrusion detection systems (IDSs) are predicated on the assumption that an
intruder can be detected through an examination of various parameters such as
network traffic, CPU utilization, I/O utilization, user location, and various file
activities [Lunt 93]. System monitors or daemons convert observed parameters
into chronologically sorted records of system activities. Called "audit trails," these
records are analyzed by IDSs for unusual or suspect behavior. IDS approaches
include

● Rule-Based Intrusion Detection
● Statistical-Based Intrusion Detection

IDSs designed to protect networks typically monitor network activity, while IDSs
designed for single hosts typically monitor operating system activity.

Usage Considerations

Although IDSs are likely to increase the security of computer systems, the
collection and processing of audit data will degrade system performance. Note
that an IDS can be used to augment crypto-based security systems- which
cannot defend against cracked passwords or lost or stolen keys- and to detect
the abuse of privileges by authorized users [Mukherjee 94]. User authentication
systems can be used to augment IDS systems.

Maturity

Prototypes of several intrusion detection systems have been developed, and
some intrusion detection systems have been deployed on an experimental basis
in operational systems. At least one network-based IDS - the Network Security
Monitor (NSM) - successfully detected an attack in which an intruder exploited
known security flaws to gain access to systems distributed over seven sites,
three states, and two countries [Mukherjee 94]. However, additional work is
required to determine appropriate levels of auditing, to strengthen the
representation of intrusion attempts, and to extend the concept of intrusion
detection to arbitrarily large networks [Lunt 93, Mukherjee 94].

Costs and Limitations

Audit trail analysis can be conducted either offline (after the fact) or in real time.
Although offline analysis permits greater depth of coverage while shifting the
processing of audit information to non-peak times, it can only detect intrusions
after the fact. Real-time IDSs can potentially catch intrusion attempts before the

http://www.sei.cmu.edu/str/descriptions/intrusion.html (2 of 5)7/28/2008 11:28:06 AM

Intrusion Detection

system state is compromised, but real-time IDSs must run concurrently with
other system applications and will therefore negatively affect throughput. In
addition to the costs associated with creating and analyzing audit trails, IDS
systems cannot detect all intrusion attempts, primarily because only known
intrusion scenarios can be represented. An intrusion attempt made using a
scenario not represented by an IDS system may be successful, and some
intrusion attempts have succeeded in either turning off the audit daemon or in
modifying the audit data prior to its being processed by an IDS.

Although most IDSs are designed to support multiple operating systems, audit
data collected by monitoring operating system activity will be operating system
specific [Mukherjee 94]; this type of data may therefore need to be converted
into a standard form before it can be processed by an IDS.

For these reasons, many IDS systems are designed as assistants to human
computer security monitors.

Dependencies

System or network auditing tools and techniques are necessary enablers for this
technology. Depending on the type of IDS, expert systems technology may also
be needed.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Intrusion Detection

Application category System Security (AP.2.4.3)

Quality measures category Security (QM.2.1.5)

Computing reviews category Operating Systems Security and Protection (D.4.6)
Computer-Communication Networks Security and
Protection (C.2.0)
Security and Protection (K.6.5)

References and Information Sources

http://www.sei.cmu.edu/str/descriptions/intrusion.html (3 of 5)7/28/2008 11:28:06 AM

Intrusion Detection

[DoD 85] Department of Defense (DoD) Trusted Computer System Evaluation
Criteria (TCSEC) (DoD 5200.28-STD 1985). Fort Meade, MD:
Department of Defense, 1985. Also available WWW
<URL: http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-
STD.html> (1985).

[Kemmerer 94] Kemmerer, Richard A. "Computer Security," 1153-1164.
Encyclopedia of Software Engineering. New York, NY: John Wiley
and Sons, 1994.

[Lunt 93] Lunt, Teresa F. "A Survey of Intrusion Detection Techniques."
Computers and Security 12, 4 (June 1993): 405-418.

[Mukherjee
94]

Mukherjee, Biswanath, L.; Heberlein, Todd; & Levitt, Karl N.
"Network Intrusion Detection." IEEE Network 8, 3 (May/June 1994):
26-41.

[Smaha 88] Smaha, Stephen E. "Haystack: An Intrusion Detection System," 37-44.
Proceedings of the Fourth Aerospace Computer Security Applications
Conference. Orlando, Florida, December 12-16, 1988. Washington,
DC: IEEE Computer Society Press, 1989.

[Sundaram
96]

Sundaram, Aurobindo. An Introduction to Intrusion Detection
[online]. Available WWW
<URL: http://www.acm.org/crossroads/xrds2-4/xrds2-4.html> (1996).

[Spafford 88] Spafford, Eugene H. The Internet Worm Program: An Analysis (CSD-
TR-823). West Lafayette, IN: Purdue University, 1988.

[Ware 79] Ware, W. H. Security Controls for Computer Systems: Report of
Defense Science Board, Task Force on Computer Security. Santa
Monica, CA: The Rand Corporation, 1979.

Current Author/Maintainer

Mark Gerken, Air Force Rome Laboratory

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

http://www.sei.cmu.edu/str/descriptions/intrusion.html (4 of 5)7/28/2008 11:28:06 AM

http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html
http://www.acm.org/crossroads/xrds2-4/xrds2-4.html

Intrusion Detection

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/intrusion_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/intrusion.html (5 of 5)7/28/2008 11:28:06 AM

http://www.sei.cmu.edu/about/disclaimer.html

Java

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Java(TM)

Status

Advanced

Purpose and Origin

JavaTM is an object-oriented programming language (see Object-Oriented
Programming Languages) developed by a small team of people headed by
James Gosling at Sun Microsystems (development began in 1991) [Sun 97e]. It
was originally intended for use in programming consumer devices, but when the
explosion of interest in the Internet began in 1995 it became clear that Java was
an ideal programming language for Internet applications [van Hoff 96]. Java
addresses many of the issues of software distribution over a network, including
interoperability, security, portability, and trustworthiness. When they are
embedded in a Web page, Java programs are called "applets." Applets, in
conjunction with JavaBeans(tm)[Sun 99d] provide a developer the flexibility to
develop a more sophisticated user interface on a Web page [Yourdon 96]. Java
applets provide executable content, such as event-driven pop-up windows and
graphical user interface (GUI) widgets (see Graphical User Interface Builders)
via peer classes (see Figure 19), which can support a variety of applications.
Java applets are the dominant player of client side Internet computing. However,
the server side computing, i.e. the code that generates the HTML contents, was
considered a stronghold of better performance languages as C++ or script
languages as PERL. This situation is changing with the release of Java 2
Enterprise Edition(tm) (J2EE) [Sun 99a]. J2EE is a new Java platform specifically
designed to address the needs of enterprise server side computing. J2EE
provides scalability, interoperability, reliability, security. Java is also re-
addressing its original purpose (consumer devices) through JINI(tm) connection
technology [Sun 97b]. JINI enables devices to work together without the burden
of setting up networks, loading drivers and so on. JINI devices such as TVs,
DVDs and cameras will be able to self-install, self-organize into communities,
self-configure, and self-diagnose. Jini technology reduces dependence on
system administrators, potentially lowering support costs and allowing impromptu
device communities to assemble in places far from the traditional office. JINI
mainly addresses usability, cost of ownership and interoperability.

Technical Detail

http://www.sei.cmu.edu/str/descriptions/java.html (1 of 11)7/28/2008 11:28:08 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/java_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Java

Java is a high-level programming language similar in flavor to Smalltalk and
similar in syntax to C and C++. However, the Java language is far less complex
than C++. It is an object-oriented, statically typed language that is architecture-
neutral, multi-threaded, and robust. It provides built-in garbage collection,
supports a single-inheritance class hierarchy, and does not use pointers, thereby
eliminating three of the primary sources of errors in many C++ programs.
Because it borrows its syntax from the widely known C and C++, the Java
language feels familiar to most developers. Java provides flexibility in that it
provides dynamic functionality. Classes are linked in as required and can be
downloaded from across networks. Incoming code is verified before execution.
Such flexibility is a paradigm shift from the normal model of computing, which
usually requires the entire suite of possible functionality to be installed onto a
user's platform prior to execution [Yourdon 96]. Java programs start as Java
source code, which is then compiled to bytecode and stored on a server or a
local computer in ".class" files. In order to execute a Java program, a user
invokes a Java Virtual Machine (JVM) that executes the Java bytecode. Unlike
most other programming languages, Java bytecode is not platform-specific or
native to any particular processor; it is a "write once, run anywhere" approach.
This platform-neutrality at both source and binary levels means Java is inherently
portable. The Java system also provides an extensive library of classes that
provides access to the underlying operating system. All of today's popular Web
browsers contain a Java Virtual Machine (JVM), including Netscape Navigator,
Microsoft Internet Explorer, and Sun's HotJava Browser. Desktop platforms such
as Microsoft Windows, MacOS, OS/2 Warp, and Sun Solaris also provide a
standalone JVM which can execute Java code. A new generation of so-called
Network Computers1 executes Java code directly. Sun is extending the
availability of the JVM to enable Java programs to be deployed on a wide range
of consumer devices, such as pagers, telephones, and televisions [Clark 97].
The relationships of code, Java Virtual Machines, and platform independence/
neutrality is shown in Figure 19.

http://www.sei.cmu.edu/str/descriptions/java.html (2 of 11)7/28/2008 11:28:08 AM

Java

Figure 19: Multiple-Platform Application [Halfhill 97]

The Java platform provides portability, a measure of security, and inherent
trustworthiness, including strong memory protection, encryption and signatures,
rules enforcement, and runtime verification. Java is designed to allow applets to
be downloaded and executed without introducing viruses or misbehaved code. It
does this by placing strict limits on applets to prevent malicious actions. For
example, applets cannot read from or write to the local disk. Unfortunately, while
the Java model is theoretically secure, the various implementations of the JVM
continue to show signs of weakness. Exploitation of security flaws in the
implementations is still alarmingly common [Sun 97a]. An applet's actions are
restricted to its "sandbox," an area of the Web browser dedicated to that applet
and within which it may do anything it wants. But a Java applet can't read or alter
any data outside its sandbox. Hence users can run untrusted Java code without
compromising their trusted computing environments. Standalone windows
created by Java applications are clearly labeled as being owned by untrusted
software. Java applications are also prohibited from making network connections
to other computers on a corporate Intranet, so malicious code can't exploit
undiscovered security holes. Applets are not enough to build enterprise systems.
Applets excel delivering functionality to remote clients, but enterprise
applications need much more than remote access, like scalability and
transactions. To address those needs Sun has developed Java(tm) 2 Platform,
Enterprise Edition (J2EE). J2EE is a standard set of Java APIs that define a multi
tier architecture (see Three Tier Software Architectures) suitable for the
development, deployment, and management of enterprise applications written in
the Java(tm) programming language. J2EE is functionally complete in the sense
that it is possible to develop a large class of enterprise applications using only
the J2EE APIs. Figure 20 illustrates the architecture of a J2EE application.

Figure 20: J2EE architecture [Sun 99f]

http://www.sei.cmu.edu/str/descriptions/java.html (3 of 11)7/28/2008 11:28:08 AM

Java

Remote clients are implemented as a combination of html pages and applets (or
as Java Applications if Internet access is not required). The middle tier is split in
two, the Enterprise JavaBeans framework(tm) (EJB) [Sun 99e] containing
Enterprise Beans, which are reusable units that contain transactional business
logic and the Web Server containing JSP Pages and servlets that are software
entities that provide services in response to HTTP requests. The persistence
layer can be implemented in any commercial database.

Usage Considerations

APIs. Java specifies a core set of Application Programming Interfaces (APIs)
required in all Java implementations and an extended set of APIs covering a
much broader set of functionality. The core set of APIs include interfaces for

● basic language types
● file and stream I/O
● network I/O
● container and utility classes
● abstract windowing toolkit

The extended set of APIs includes interfaces for 2D-rendering and 2D-animation;
a 3D-programming model; telephony, time-critical audio, video, and MIDI2 data;
network and systems management; electronic commerce; and encryption and
authentication [Hamilton 96]. J2EE introduces additional APIs to address specific
need of enterprise environments. These APIs provide similar functionality to
CORBA services including:

● Asynchronous communication through the Java Message Service (JMS)
● A naming service through the Java Naming and Directory Interface (JNDI)
● A transaction service through the Java Transaction API (JTA)
● Tabular data access though the JDBC API.

Platform-specific implementations. Recently, there has been some debate
about the use of platform-specific APIs and the affect on the future of Java. For
example, Microsoft's Internet Explorer 4.0 includes technology for J/Direct, which
will provide a connection between Java and the Windows programming
environment. Applications that make use of the J/Direct API will run only on the
Windows platform, thereby curtailing one of Java's inherent benefits: platform
neutrality. Providing Java developers with direct access to the Win32 API also
breaks Java's security model and makes it more like Microsoft's platform-
dependent ActiveX technology [Levin 97]. Sun has sued Microsoft for this
practice, there is not a definitive resolution (by November 1999) but Microsoft
has already been banned from using Java trademark with their modified versions.

Traning/education. The Java syntax for expressions and statements are almost
identical to ANSI C, thus making the language easy to learn for C or C++
programmers. Because Java is a programming language, it requires a higher
skill level for content developers than hypertext markup language (HTML).
Programmers need to learn the Java standard library, which contains objects
and methods for opening sockets, implementing the HTTP protocol, creating
threads, writing to the display, and building a user interface. Java provides

http://www.sei.cmu.edu/str/descriptions/java.html (4 of 11)7/28/2008 11:28:08 AM

Java

mechanisms for interfacing with other programming languages such as C and
existing libraries such as Xlib, Motif, or legacy database software.

Performance. Performance is a major consideration when deciding to use Java.
In most cases, interpreted Java is much slower than compiled C or C++ (as
much as 10-15 times slower). However, most recent versions of the popular Web
browsers and Java development environments provide Just In Time (JIT)
compilers that produce native binary code (while the program is loaded and
executed) that is beginning to rival that of optimized C++. The Java 2 platform
also provides the Java HotSpot(tm) Performance Engine [Sun 97c] that
combines the functionality of a JIT with runtime optimizations that further improve
Java performance. For real-time applications, the performance implications of
the Java garbage collector should also be considered. Garbage collection may
make it difficult to easily bound timing properties of the application.

Language migration. A number of items should be considered if migrating from
C or C++ to Java, including the following:

● Java is totally object-oriented; thus everything must be done via a method
invocation.

● Java has no pointers or parameterized types.
● Java supports multithreading and garbage collection.

Maturity

Java was made available to the general public in May 1995, and has enjoyed
unprecedented rapid transition into practice. Web sites such as the Java Applet
Rating Service (JARS) [JARS 97] and Gamelan [Gamelan 97] contain literally
thousands of Java-based applications available for downloading. All of today's
leading Web browsers provide support for Java by including a JVM as part of
their product. There are multitudes of books available that describe all aspects of
Java programming. Many commercial uses of Java have also appeared in a
relatively short period of time. Sun provides a series of "customer success
stories" at their web sites [Sun 97b, Sun 97c]. Some of the many commercial
applications written in Java include

● TWSNet, a shipment tracking and processing application for CSX
Corporation [Sun 96a]

● OC://WebConnect, a Web-based terminal emulation package for
connecting to legacy SNA networks, from OpenConnect Systems

● via World Network, an online travel reservation system, from Andersen
Consulting

There are now several development environments that support Java
programming. These include IBM's Visual Age for Java, Symantec's Visual Café,
Microsoft's J++, and Sun's Java Development Kit (JDK) [Sun 97d]. Most of these
products provide integrated editors, debuggers, JIT compilers, and other tools
commonly associated with computer-aided software engineering (CASE) tools.
J2EE is one of the newest and less mature parts of Java. In fact, by November
1999 there is only a beta release of J2EE. Some constituents of the platform are
quite stable but others are undertaking deep changes. EJB, for example, was

http://www.sei.cmu.edu/str/descriptions/java.html (5 of 11)7/28/2008 11:28:08 AM

Java

released in Dec 1997 and there already are more than thirty implementations
[EJB-SIG 99] (including from IBM, BEA, Oracle and IONA). However, EJB has
suffered important changes from the 1.1 to the 1.2 release and that volatility is
expected to continue with subsequent releases. In summary, J2EE is currently
usable but there are several important issues to be solved and some time is
needed until it delivers all its potential.

Costs and Limitations

Java and the source for the Java interpreter are freely available for
noncommercial use. Some restrictions exist for incorporating Java into
commercial products. Sun Microsystems licenses Java to hardware and software
companies that are developing products to run the Java virtual machine and
execute Java code. Developers, however, can write Java code without a license.
A complete Java Development Kit (JDK), including a Java compiler, can be
downloaded for free [Sun 97d]. Although a J2EE reference implementation will
be provided by Sun, this implementation is not expected to be usable in industrial
deployments. Several vendors are providing J2EE solutions ranging from free
open source distributions to industrial strength distributions with per developer
fees and per server fees. Yourdon discusses the potential impact of Java on the
cost of software applications in the future- purchased software packages could
be replaced with transaction-oriented rental of Java applets attached to Web
pages [Yourdon 96].

Alternatives

From a programming-language point of view, alternatives to Java include C/C++,
Perl, and Tcl/Tk. Scripting languages often used in Web browsers, such as
JavaScript and Visual Basic Scripting Edition (VB Script), can also be used to
perform some of the tasks that Java can do, but not all of them. Perhaps the
biggest challenge to client side Java's success is Microsoft's ActiveX technology.
ActiveX is built on top of COM/DCOM (see Component Object Model (COM),
DCOM, and Related Capabilities). Microsoft provides tools for developers to
create "ActiveX controls" that can serve a similar purpose to Java applets. The
primary difference is that ActiveX is a proprietary technology that only runs on
the Windows platform at present. It also provides a different security model
based on its "Authenticode" certificate technology, security zones, and encrypted
signatures. The ActiveX model itself is not secure in the way Java is; ActiveX
controls have unlimited access to the user's machine when they are executing.
This gives them more power to perform operations, but also makes them
potentially more dangerous to the user's computing environment. The
alternatives for the server side Java computing are CORBA and MTS. As
CORBA and Java are basically complimentary technologies, only MTS can be
considered as a J2EE's competitor. MTS is a product that provides to specifically
designed COM objects with enterprise services as transactions and security.
MTS and COM will converge into a single technology called COM+ that will be
released with Windows 2000.

Complementary Technologies

http://www.sei.cmu.edu/str/descriptions/java.html (6 of 11)7/28/2008 11:28:08 AM

Java

The entire distributed object technology area (CORBA, COM/DCOM, ActiveX,
etc.) offers technologies that can inter-operate with Java. There are standards
available that let Java objects talk to CORBA objects, thus extending the
capabilities of both technologies. Of particular relevance is the RMI-IIOP
mapping that enable interoperability between RMI objects and IIOP objects. Also
relevant is the CORBA 3 Component Model [OMG 99], this model is strongly
based in EJB and has EJB interoperability as one of its main goals. Java
provides solid foundations to component-based development (see Component-
Based Software Development/COTS Integration). The additions of Remote
Method Invocation (RMI), the JavaBeans component architecture [JavaSoft 97]
and EJB component framework to Java facilitate the reuse of other people's
software. Java components developed in this manner can have their interfaces
examined, can communicate with one another over a network, and can be
integrated with other components all without needing the source code. Java has
evolved to become a serious option to implement three tier architectures (see
Three Tier Software Architectures). Mobile and light clients can be implemented
as Applets or JavaBeans, Enterprise JavaBeans are perfect for transactional
business logic and Java Server Pages can be used to generate the html
representation. The ability to deploy component-oriented enterprise multi-tiers
systems, in a platform-neutral manner, can give fast moving enterprises a
significant and measurable competitive edge.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Java

Application category Distributed Computing (AP.2.1.2)
Application Program Interfaces (AP.2.7)
Programming Language (AP.1.4.2.1)
Compiler (AP.1.4.2.3)

Quality measures category Complexity (QM.3.2.1)
Cost of Ownership (QM.5.1)
Interoperability (QM.4.1)
Maintainability (QM.3.1)
Portability (QM.4.2)
Reliability (QM.2.1.2)
Scalability (QM.4.3)
Trustworthiness (QM.2.1.4)
Usability (QM.2.3)

Computing reviews category Programming Languages (D.3)
Distributed Systems (C.2.4)

http://www.sei.cmu.edu/str/descriptions/java.html (7 of 11)7/28/2008 11:28:08 AM

Java

References and Information Sources

[Clark 97]
Clark, Don. "Sun Microsystems Pours Some New Java." Wall Street
Journal, Page B-4. April 1, 1997.

[EJB-SIG 99]
Special Interest Group - Enterprise JavaBeans [online] Available WWW,
<URL: http://www.mgm-edv.de/ejbsig/ejbservers_tabled.html>

[Gamelan 97]
Gamelan Web site [online]. Available WWW,
<URL: http://www.gamelan.com> (1997).

[Gosling 96]
Gosling, James & McGilton, Henry. The Java Language Environment: A
White Paper [online]. Available WWW,
<URL: http://java.sun.com/docs/white/langenv/> (1996).

[JARS 97]

Java Applet Rating Service (JARS) [online]. Available WWW,
<URL: http://www.jars.com> (1997).

[Halfhill 97]
Halfhill, Tom R. "Today the Web, Tomorrow the World." Byte 22, 1
(January 1997): 68-80.

[Hamilton 96]
Hamilton, Marc. "Java and the Shift to Net-Centric Computing."
Computer 29, 8 (August 1996): 31-39.

[JavaSoft 97]

JavaBeans: The Only Component Architecture for Java [online].
Available WWW,
<URL: http://splash.javasoft.com/beans/> (1997).

[Levin 97]
Levin, Rich and Patrizio, Andy. "Breaking Point" [online]. Information
Week, June 23, 1997. Available WWW,
<URL: http://techweb.cmp.com/iw/636/36iujav.htm> (1997).

[OMG 99]
CORBA Component Model RFP [online]. Originally available WWW,
<URL http://www.omg.org/techprocess/meetings/schedule/
CORBA_Component_Model_RFP.html>

[Sun 96a]

CSX Gets on Track With Java [online]. Available WWW,
<URL: http://java.sun.com/features/1996/october/csx102996.html>
(1996).

http://www.sei.cmu.edu/str/descriptions/java.html (8 of 11)7/28/2008 11:28:08 AM

http://www.mgm-edv.de/ejbsig/ejbservers_tabled.html
http://www.gamelan.com/
http://java.sun.com/docs/white/langenv/
http://www.jars.com/
http://splash.javasoft.com/beans/
http://techweb.cmp.com/iw/636/36iujav.htm
http://java.sun.com/features/1996/october/csx102996.html

Java

[Sun 96b]

Java Computing in the Enterprise. Strategic Overview: Java [online].
Available WWW,
<URL: http://www.sun.com/javacomputing> (1996).

[Sun 97a]

Frequently Asked Questions- Applet Security [online]. Available WWW,
<URL: http://java.sun.com/sfaq> (1997).

[Sun 97b]

Java in the Real World [online]. Available WWW,
<URL: http://java.sun.com/nav/used/> (1997).

[Sun 97c]

Customer Successes [online]. Available WWW,
<URL: http://www.sun.com/javastation/customersuccesses/> (1997).

[Sun 97d]

Java Development Kit 1.1.2 [online]. Available WWW,
<URL: http://java.sun.com/products/jdk/1.1/> (1997).

[Sun 97e]
Overview of Java [online]. Available WWW,
<URL: http://java.sun.com/docs/Overviews/java/java-overview-1.html>
(1997).

[Sun 99a]
Java(tm) 2 Platform, Enterprise Edition [online]. Available WWW,
<URL:http://java.sun.com/j2ee/>

[Sun 99b]
Jini(tm) connection technology [online]. Available WWW,
<URL: http://www.sun.com/jini/>

[Sun 99c]
Java HotSpot(tm) Performance Engine [online]. Available WWW,
<URL:http://java.sun.com/products/hotspot/>

[Sun 99d]
JavaBeans Home Page [online]. Available WWW,
<URL:http://java.sun.com/beans/index.html>

[Sun 99e]
Enterprise JavaBeans Home Page [online]. Available WWW,
<URL:http://java.sun.com/products/ejb/index.html>

http://www.sei.cmu.edu/str/descriptions/java.html (9 of 11)7/28/2008 11:28:08 AM

http://www.sun.com/javacomputing
http://java.sun.com/sfaq
http://java.sun.com/nav/used/
http://www.sun.com/javastation/customersuccesses/
http://java.sun.com/products/jdk/1.1/
http://java.sun.com/docs/Overviews/java/java-overview-1.html
http://java.sun.com/j2ee/
http://www.sun.com/jini/
http://java.sun.com/products/hotspot/
http://java.sun.com/beans/index.html
http://java.sun.com/products/ejb/index.html

Java

[Sun 99f]
J2EE Sun BluePrints(TM) [online]. Available WWW,
<URL:http://java.sun.com/j2ee/blueprints/>

[van Hoff 96] van Hoff, A. Hooked on Java. Reading, MA: Addison-Wesley, 1996.

[Yourdon 96]
Yourdon, Edward. "Java, the Web, and Software Development."
Computer 29, 8 (August 1996): 25-30.

Current Author/Maintainer

Santiago Comella-Dorda, SEI
Scott Tilley, SEI

External Reviewers

Alan Brown, Texas Instruments
Hausi Müller, University of Victoria

Modifications

24 Feb 2000: Updated to cover new Java developments
More material added to cover Java 2, Jini, Java Beans, and Enterprise
Java Beans. Many new references added.

30 June 1997: Substantially rewritten to reflect developments of the past 5-6
months.

More material added in Usage Considerations, Maturity, and Alternatives.
Added figure to show applets, applications, Virtual Machines, and
platform independence/neutrality. Many new references added.

10 Jan 1997 (original); author: Cory Vondrak, TRW, Redondo Beach, CA

Footnotes

1 The network computer (NC) does not have an agreed-upon definition. Some
NCs are new devices designed to run software written in Java, with gateways to
existing programs and data. These are the official Network Computers (an
Oracle trademark) and JavaStations (a Sun trademark). Other NCs are more like
terminals in the classic sense: they don't execute programs at the desktop.
Instead, applications run remotely on a server, and the client handles only the
graphics locally. The generic term for these and the true NC alternatives to the
personal computer (PC) is "thin client". They are referred to as "thin" because
they are generally less complex and less expensive than a PC. However, recent

http://www.sei.cmu.edu/str/descriptions/java.html (10 of 11)7/28/2008 11:28:08 AM

http://java.sun.com/j2ee/blueprints/

Java

developments by Microsoft and others have muddied the waters a bit with the
"NetPC," which is essentially a stripped-down and sealed PC that is meant to be
centrally administered. 2 MIDI stands for "Musical Instrument Digital Interface". It
is a hardware specification and protocol used to communicate note and effect
information between synthesizers, computers, keyboards, controllers and other
electronic music devices.

JavaTM Copyright

Java and all Java-based marks are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. The Software
Engineering Institute is independent of Sun Microsystems, Inc.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/java_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/java.html (11 of 11)7/28/2008 11:28:08 AM

http://www.sei.cmu.edu/about/disclaimer.html

Mainframe Server Software Architectures

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Mainframe Server Software Architectures

Status

Complete

Note

We recommend Client/Server Software Architectures as prerequisite reading for
this technology description.

Purpose and Origin

Since 1994 mainframes have been combined with distributed architectures to
provide massive storage and to improve system security, flexibility, scalability,
and reusability in the client/server design. In a mainframe server software
architecture, mainframes are integrated as servers and data warehouses in a
client/server environment. Additionally, mainframes still excel at simple
transaction-oriented data processing to automate repetitive business tasks such
as accounts receivable, accounts payable, general ledger, credit account
management, and payroll. Siwolp and Edelstein provide details on mainframe
server software architectures see [Siwolp 95, Edelstein 94].

Technical Detail

While client/server systems are suited for rapid application deployment and
distributed processing, mainframes are efficient at online transactional
processing, mass storage, centralized software distribution, and data
warehousing [Data 96]. Data warehousing is information (usually in summary
form) extracted from an operational database by data mining (drilling down into
the information through a series of related queries). The purpose of data
warehousing and data mining is to provide executive decision makers with data
analysis information (such as trends and correlated results) to make and
improve business decisions.

http://www.sei.cmu.edu/str/descriptions/mssa.html (1 of 5)7/28/2008 11:28:09 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/mssa_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Mainframe Server Software Architectures

Figure 20: Mainframe in a Three Tier Client/Server
Architecture

Figure 20 shows a mainframe in a three tier client/server architecture. The
combination of mainframe horsepower as a server in a client/server distributed
architecture results in a very effective and efficient system. Mainframe vendors
are now providing standard communications and programming interfaces that
make it easy to integrate mainframes as servers in a client/server architecture.
Using mainframes as servers in a client/server distributed architecture provides
a more modular system design, and provides the benefits of the client/server
technology.

Using mainframes as servers in a client/server architecture also enables the
distribution of workload between major data centers and provides disaster
protection and recovery by backing up large volumes of data at disparate
locations. The current model favors "thin" clients (contains primarily user
interface services) with very powerful servers that do most of the extensive
application and data processing, such as in a two tier architecture. In a three tier
client/server architecture, process management (business rule execution) could
be off-loaded to another server.

Usage Considerations

Mainframes are preferred for big batch jobs and storing massive amounts of vital
data. They are mainly used in the banking industry, public utility systems, and for
information services. Mainframes also have tools for monitoring performance of
the entire system, including networks and applications not available today on
UNIX servers [Siwolp 95].

New mainframes are providing parallel systems (unlike older bipolar machines)
and use complementary metal-oxide semiconductor (CMOS) microprocessors,
rather than emitter-coupler logic (ECL) processors. Because CMOS processors
are packed more densely than ECL microprocessors, mainframes can be built
much smaller and are not so power-hungry. They can also be cooled with air
instead of water [Siwolp 95].

While it appeared in the early 1990s that mainframes were being replaced by
client/server architectures, they are making a comeback. Some mainframe
vendors have seen as much as a 66% jump in mainframe shipments in 1995
due to the new mainframe server software architecture [Siwolp 95].

http://www.sei.cmu.edu/str/descriptions/mssa.html (2 of 5)7/28/2008 11:28:09 AM

Mainframe Server Software Architectures

Given the cost of a mainframe compared to other servers, UNIX workstations
and personal computers (PCs), it is not likely that mainframes would replace all
other servers in a distributed two or three tier client/server architecture.

Maturity

Mainframe technology has been well known for decades. The new improved
models have been fielded since 1994. The new mainframe server software
architecture provides the distributed client/server design with massive storage
and improved security capability. New technologies of data warehousing and
data mining data allow extraction of information from the operational mainframe
server's massive storage to provide businesses with timely data to improve
overall business effectiveness. For example, stores such as Wal-Mart found that
by placing certain products in close proximity within the store, both products sold
at higher rates than when not collocated.1

Costs and Limitations

By themselves, mainframes are not appropriate mechanisms to support
graphical user interfaces. Nor can they easily accommodate increases in the
number of user applications or rapidly changing user needs [Edelstein 94].

Alternatives

Using a client/server architecture without a mainframe server is a possible
alternative. When requirements for high volume (greater than 50 gigabit), batch
type processing, security, and mass storage are minimal, three tier or two tier
architectures without a mainframe server may be viable alternatives. Other
possible alternatives to using mainframes in a client/server distributed
environment are using parallel processing software architecture or using a
database machine.

Complementary Technologies

A complementary technology to mainframe server software architectures is open
systems . This is because movement in the industry towards interoperable
heterogeneous software programs and operating systems will continue to
increase reuse of mainframe technology and provide potentially new applications
for mainframe capabilities.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

http://www.sei.cmu.edu/str/descriptions/mssa.html (3 of 5)7/28/2008 11:28:09 AM

Mainframe Server Software Architectures

Name of technology Mainframe Server Software Architectures

Application category Client/Server (AP.2.1.2.1)

Quality measures category Maintainability (QM.3.1)
Scalability (QM.4.3)
Reusability (QM.4.4)

Computing reviews category Distributed Systems (C.2.4)

References and Information Sources

[Data 96] Data Warehousing [online]. Available WWW
<URL: http://www-db.stanford.edu/warehousing/publications.
html> and
<URL: http://www-db.stanford.edu/warehousing/warehouse.
html> (1996).

[Edelstein
94]

Edelstein, Herb. "Unraveling Client/Server Architecture." DBMS
7, 5 (May 1994): 34(7).

[Siwolp 95] Siwolp, Sana. "Not Your Father's Mainframe." Information Week
546 (Sept 25, 1995): 53-58.

Current Author/Maintainer

Darleen Sadoski, GTE

External Reviewers

Frank Rogers, GTE

Modifications

10 Jan 97 (original)

Footnotes

1 Source: Stodder, David. Open Session Very Large Data Base (VLDB) Summit,
New Orleans, LA 23-26 April, 1995.

The Software Engineering Institute (SEI) is a federally funded research and development center

http://www.sei.cmu.edu/str/descriptions/mssa.html (4 of 5)7/28/2008 11:28:09 AM

http://www-db.stanford.edu/warehousing/publications.html
http://www-db.stanford.edu/warehousing/publications.html
http://www-db.stanford.edu/warehousing/warehouse.html
http://www-db.stanford.edu/warehousing/warehouse.html

Mainframe Server Software Architectures

sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/mssa_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/mssa.html (5 of 5)7/28/2008 11:28:09 AM

http://www.sei.cmu.edu/about/disclaimer.html

Rule-Based Intrusion Detection

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Rule-Based Intrusion Detection

Status

Advanced

Note

We recommend Intrusion Detection as prerequisite reading for this technology
description.

Purpose and Origin

Due to the voluminous, detailed nature of system audit data - some of which
may have little if any meaning to a human reviewer - and the difficulty of
discriminating between normal and intrusive behavior, one approach taken by
developers of intrusion detection systems is to use expert systems technology to
analyze automatically audit trail data for intrusion attempts [Lunt 93]. These
security systems, known as rule-based intrusion detection (RBID) systems, can
be used to analyze system audit trails for pending or completed computer
security violations. This emerging technology seeks to increase the availability of
computer systems by automating the detection and elimination of intrusions.

Technical Detail

Rule-based intrusion detection (RBID) is predicated on the assumption that
intrusion attempts can be characterized by sequences of user activities that lead
to compromised system states. RBID systems are characterized by their expert
system properties that fire rules1 when audit records or system status
information begin to indicate illegal activity [Ilgun 93]. These predefined rules
typically look for high-level state change patterns observed in the audit data
compared to predefined penetration state change scenarios. If an RBID expert
system infers that a penetration is in process or has occurred, it will alert the
computer system security officers and provide them with both a justification for
the alert and the user identification of the suspected intruder.

There are two major approaches to rule-based intrusion detection:

1. State-based. In this approach, the rule base is codified using the
terminology found in the audit trails. Intrusion attempts are defined as

http://www.sei.cmu.edu/str/descriptions/rbid.html (1 of 6)7/28/2008 11:28:09 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/rbid_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Rule-Based Intrusion Detection

sequences of system state- as defined by audit trail information- leading
from an initial, limited access state to a final compromised state [Ilgun 93].

2. Model-based. In this approach, known intrusion attempts are modeled as
sequences of user behavior; these behaviors may then be modeled, for
example, as events in an audit trail. Note, however, that the intrusion
detection system itself is responsible for determining how an identified
user behavior may manifest itself in an audit trail. This approach has
many benefits, including the following:

❍ More data can be processed, because the technology allows you
to narrow the focus of the data selectively.

❍ More intuitive explanations of intrusion attempts are possible.
❍ The system can predict the intruder's next action.

Usage Considerations

RBID rule bases are affected by system hardware or software changes and
require updates by system experts as the system is enhanced or maintained.
The protection afforded by RBID systems would be most useful in an
environment where physical protection of the computer system is not always
possible (e.g., a battlefield situation), yet the data is of high value and requires
stringent protection.

Maturity

Although RBID systems are in the research and early prototype stage, articles
describing RBID systems date to at least the 1986 description of the Discovery
system [Tener 86]. In 1987, Denning described an early, abstract model of a rule-
based intrusion detection system (IDS) [Denning 87]; in 1989, Vaccarro and
Liepins described the Wisdom and Sense system [Vaccarro 89]. More recent
systems include USTAT [Ilgun 93] and the Intrusion Detection Expert System
(IDES) [Lunt 93]; IDES combines statistical-based (see Statistical-Based
Intrusion Detection) and model-based intrusion detection approaches to achieve
a level of intrusion detection not feasible with either approach alone. Mukherjee
describes several other recent RBID systems [Mukherjee 94]. Feasibility for an
operational system has not yet been demonstrated.

Costs and Limitations

The use of RBID systems requires the following:

● personnel knowledgeable in rule-based systems, especially with respect
to rule representation

● personnel who know how various activities may be represented in audit
trails

● personnel experienced in intrusion detection and who have in-depth
knowledge of the audit collection mechanism [Ilgun 93]

In addition to the costs associated with maintaining intrusion detection
knowledge bases, there are several risks and limitations associated with this

http://www.sei.cmu.edu/str/descriptions/rbid.html (2 of 6)7/28/2008 11:28:09 AM

Rule-Based Intrusion Detection

technology:

● Only known vulnerabilities and attacks are codified in the knowledge
base. The knowledge base of rules is thus always playing "catch-up" with
the intruders [Lunt 93].

● The representation of intrusion scenarios- especially with respect to state-
based approaches- is not intuitive.

For these reasons, RBIDs cannot detect all intrusion attempts.

Like all intrusion detection systems, RBIDs will negatively affect system
performance due to their collecting and processing of audit trail information. For
example, early prototyping of a real-time RBID system on a UNIX workstation
showed the algorithm was using up to 50% of the available processor throughput
to process and analyze the audit trail [Ilgun 93].

Dependencies

Expert systems are an enabler for this technology.

Alternatives

Other automated approaches to intrusion detection include statistical-based
approaches (see Statistical-Based Intrusion Detection) and approaches based
on genetic algorithms. Manual examination of recorded audit data and online
monitoring of access activity by knowledgeable system security personnel are
the only other known alternatives.

Complementary Technologies

RBID systems can be used in conjunction with Statistical-Based Intrusion
Detection systems to catch a wider variety of intrusion attempts, and
authentication systems can be used to verify user identity.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Rule-Based Intrusion Detection

Application category System Security (AP.2.4.3)

Quality measures category Security (QM.2.1.5)

http://www.sei.cmu.edu/str/descriptions/rbid.html (3 of 6)7/28/2008 11:28:09 AM

Rule-Based Intrusion Detection

Computing reviews category Operating Systems Security and Protection
(D.4.6)
Computer-Communication Networks Security
and Protection (C.2.0)
Security and Protection (K.6.5)

References and Information Sources

[Bell 76] Bell, D. E. & LaPadula, L. J. Secure Computer System: Unified
Exposition and Multics Interpretation Rev. 1 (MTR-2997).
Bedford, MA: MITRE Corporation, 1976.

[Denning 87] Denning, Dorothy E., et al. "Views for Multilevel Database
Security." IEEE Transactions on Software Engineering SE-13,
2 (February 1987): 129-140.

[CSC 83] Computer Security Center. Department of Defense Trusted
Computer System Evaluation Criteria. Fort George G. Meade,
MD: DoD Computer Security Center, 1983.

[Ilgun 93] Ilgun, Koral. "USTAT: A Real-time Intrusion Detection System
for UNIX," 16-28. Proceedings of the 1993 Computer Society
Symposium on Research in Security and Privacy. Oakland,
California, May 24-26, 1993. Los Alamitos, CA: IEEE
Computer Society Press, 1993.

[Kemmerer
94]

Kemmerer, Richard A. "Computer Security," 1153-1164.
Encyclopedia of Software Engineering. New York, NY: John
Wiley and Sons, 1994.

[Lunt 93] Lunt, Teresa F. "A Survey of Intrusion Detection Techniques."
Computers and Security 12, 4 (June 1993): 405-418.

[Mukherjee
94]

Mukherjee, Biswanath, L.; Heberlein, Todd; & Levitt, Karl N.
"Network Intrusion Detection." IEEE Network 8, 3 (May/June
1994): 26-41.

[Sundaram 96] Sundaram, Aurobindo. An Introduction to Intrusion Detection
[online]. Available WWW
<URL: http://www.acm.org/crossroads/xrds2-4/xrds2-4.html>
(1996).

[Tener 86] Tener, W. T. "Discovery: An Expert System in the Commercial
Data Security Environment." Computer Security Journal 6, 1
(Summer 1990): 45.

[Vaccarro 89] Vaccarro, H. S. & Liepins, G. E. "Detection of Anomalous
Computer Session Activity," 208-209. Proceedings of the IEEE
Symposium on Research in Security and Privacy. Oakland,
California, May 1-3, 1989. Washington, DC: IEEE Computer
Society Press, 1989.

http://www.sei.cmu.edu/str/descriptions/rbid.html (4 of 6)7/28/2008 11:28:09 AM

http://www.acm.org/crossroads/xrds2-4/xrds2-4.html

Rule-Based Intrusion Detection

[Ware 79] Ware, W. H. Security Controls for Computer Systems: Report
of Defense Science Board, Task Force on Computer Security.
Santa Monica, CA: The Rand Corporation, 1979.

Current Author/Maintainer

Mark Gerken, Air Force Rome Laboratory

Modifications

10 Jan 97 (original)

Footnotes

1 In an expert system, knowledge about a problem domain is represented by a
set of rules. These rules consist of two parts:

1. The antecedent, which defines when the rule should be applied. An
expert system will use pattern matching techniques to determine when
the observed data matches or satisfies the antecedent of a rule.

2. The consequent, which defines the action(s) that should be taken if its
antecedent is satisfied.

A rule is said to be "fired" when the action(s) defined in its consequent are
executed. For RBID systems, rule antecedents will typically be defined in terms
of audit trail data, while rule consequents may be used to increase or decrease
the level of monitoring of various entities, or they may be used to notify system
administration personnel about significant changes in system state.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/rbid_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes

http://www.sei.cmu.edu/str/descriptions/rbid.html (5 of 6)7/28/2008 11:28:09 AM

http://www.sei.cmu.edu/about/disclaimer.html

Rule-Based Intrusion Detection

● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/rbid.html (6 of 6)7/28/2008 11:28:09 AM

Simple Network Management Protocol

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Simple Network Management Protocol

Status

Advanced

Note

We recommend Network Management -- An Overview as prerequisite reading for this
technology description.

Purpose and Origin

Simple Network Management Protocol (SNMP) is a network management specification
developed by the Internet Engineering Task Force (IETF),1 a subsidiary group of the
Internet Activities Board (IAB),2 in the mid 1980s to provide standard, simplified, and
extensible management of LAN-based internetworking products such as bridges,
routers, and wiring concentrators [IETF 96, Henderson 95]. SNMP was designed to
reduce the complexity of network management and minimize the amount of resources
required to support it. SNMP provides for centralized, robust, interoperable network
management, along with the flexibility to allow for the management of vendor-specific
information.

Technical Detail

SNMP is a communication specification that defines how management information is
exchanged between network management applications and management agents. There
are several versions of SNMP, two of the most common are SNMPv1 [SNMPv1 Specs]
and SNMPv2 [SNMPv2 Specs]. SNMPv2 and some of the less common versions will be
discussed later in this text.

The architecture of SNMPv1 is shown in Figure 33, which is a more detailed version of
the managed device and network management application shown in Figure 27 of
Network Management-An Overview. SNMPv1 is a simple message based request/
response application-layer protocol which typically uses the User Datagram Protocol
(UDP) [RFC 96] for data delivery. The SNMPv1 network management architecture
contains:

● Network Management Station (NMS) - Workstation that hosts the network
management application.

http://www.sei.cmu.edu/str/descriptions/snmp.html (1 of 10)7/28/2008 11:28:11 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/snmp_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Simple Network Management Protocol

● SNMPv1 network management application - Polls management agents for
information and provides control information to agents.

● Management Information Base (MIB) - Defines the information that can be
collected and controlled by the management application.

● SNMPv1 management agent(s) - Provides information contained in the MIB to
management applications and may accept control information.

A MIB is basically a database of managed objects3 that resides on the agent. Managed
objects are a characteristic of a managed device that can be monitored, modified or
controlled, such as a threshold, network address or counter. The management
application or user can define the relationship between the SNMPv1 manager and the
management agent.

Attributes of managed objects may be monitored or set by the network management
application using the following operations:

● GET_NEXT_REQUEST - Requests the next object instance from a table or list
from an agent

● GET_RESPONSE - Returned answer to get_next_request, get_request, or
set_request

● GET_REQUEST - Requests the value of an object instance from the agent
● SET_REQUEST - Set the value of an object instance within an agent
● TRAP - Send trap (event) asynchronously to network management application.

Agents can send a trap when a condition has occurred, such as change in state
of a device, device failure or agent initialization/restart.

Figure 33: The SNMPv1 Architecture [Lake 96]

By specifying the protocol to be used between the network management application and

http://www.sei.cmu.edu/str/descriptions/snmp.html (2 of 10)7/28/2008 11:28:11 AM

Simple Network Management Protocol

management agent, SNMP allows products (software and managed devices) from
different vendors (and their associated management agents) to be managed by the
same SNMP network management application. A "proxy function" is also specified by
SNMP to enable communication with non-SNMP devices to accommodate legacy
equipment.

The main attributes of SNMP are as follows [Moorhead 95]:

● It is simple to implement, making it easy for a vendor to accommodate it into its
device.

● It does not require large computational or memory resources from the devices
that do accommodate it.

Network management, as defined by SNMP, is based on polling and asynchronous
events. The SNMP manager polls for information gathered by each of the agents. Each
agent has the responsibility of collecting information (e.g., performance statistics)
pertaining to the device it resides within and storing that information in the agent's own
management information base (MIB). This information is sent to the SNMP manager in
response to the manager's polling.

SNMP events (alerts) are driven by trap messages generated as a result of certain
device parameters. These parameters can be either generic or vendor device specific.
Enterprise-specific trap messages are vendor proprietary and generally provide more
device-specific detail.

The SNMPv2 [SNMPv2 Specs] (SNMP Version 2) specification included the following
new capabilities:

● manager to manager communication to support the coexistence of multiple/
distributed managers and mid-level managers, increasing the flexibility and
scalability of the network being managed

● enhanced security (known as "Secure SNMP") by specifying three layers of
security

❍ encryption: Used to keep content of messages private. Encryption is based
on the Data Encryption Standard (DES) [DES 93] defined by the National
Institute of Standards and Technology (NIST) and the American National
Standards Institute (ANSI)4.

❍ authentication: Proof of the identity of the sender of a message.
❍ authorization: Provides access restrictions thru access control lists.

● improved efficiency and performance through the addition of bulk transfers of
data. This means that in some cases, using SNMPv2 instead of SNMPv1,
network management can be provided over low-bandwidth, wide-area links.

● support for additional network protocols besides UDP/IP, for example, OSI,
NetWare IPX/SPX and Appletalk [Broadhead 95]

Usage Considerations

Problem isolation. Neither version of SNMP does an effective job at helping network
managers isolate problem devices in large, complex networks. It sometimes becomes
difficult for an SNMP manager to determine which network events/alarms are
significant-- all are treated equally.

http://www.sei.cmu.edu/str/descriptions/snmp.html (3 of 10)7/28/2008 11:28:11 AM

Simple Network Management Protocol

Focus. SNMPv1 provides information only on individual devices, not on how the devices
work as a system.

Incompatibilities. SNMPv1 and SNMPv2 are incompatible with each other and can not
interact, however, some SNMP network management applications packages support
both specifications.

Performance. The performance impact on the network being managed should be
considered when using the polling scheme that SNMP uses for collecting information
from distributed agents. A higher frequency of polling, which may be required to manage
a network effectively, will increase the overhead on a network, possibly resulting in a
need for additional networking or processor resources. The frequency of polling can be
controlled by the SNMP manager, but can be dependent on what kind of messages
(generic or enterprise-specific) a device vendor supports. Many vendors offer generic
trap messages on their devices rather than enterprise-specific messages, because it is
easier and takes less time for the vendor to implement. Devices that provide only generic
trap information must be polled frequently to obtain the granularity of information to
manage the device effectively.

Maturity

SNMPv1 has been incorporated into many products and management platforms. It has
been deployed by virtually all internetworking vendors. It has been widely adopted for the
enterprise (business organization) networks and may be the manager of choice for the
internetworking arena in the future because it is well-suited for managing TCP/IP
networks. Limitations are discussed below in Costs and Limitations.

SNMPv2 has many unresolved issues and was supported by few vendors as of January
1998. The members of IETF subcommittee can not agree upon several parts of the
SNMPv2 specification (primarily the security and administrative needs of the protocol);
as a result only certain parts of SNMPv2 specification have reached draft standard
status within the IETF [SNMP FAQ 98]. There has been several attempts to achieve
acceptance of SNMPv2 through the release of experimental modified versions
commonly known as SNMPv2*, SNMPv2c, SNMPv2u, SNMPv1+ and SNMP1.5 that do
not contain the contentious parts.

SNMPv3 is the latest proposed version for the next generation of SNMP functionality. It
is based upon the protocol operations, data types, and proxy support from SNMPv2 with
user-based seucurity from SNMPv2u and SNMPv2*. It may take years before a new
version is accepted.

Costs and Limitations

The attractiveness of SNMP is its simplicity and relative ease of implementation. With
this comes a price: e.g., the more fine grained information that is need or required, such
as the variance in interarrival time (jitter) of packets sent to a particular local address, the
less likely it is that it will be available.

SNMPv1 uses the underlying User Datagram Protocol (UDP) for data delivery, which

http://www.sei.cmu.edu/str/descriptions/snmp.html (4 of 10)7/28/2008 11:28:11 AM

Simple Network Management Protocol

does not ensure reliability of data transfer. The loss of data may be a limitation to a
network manager, depending on the criticality of the information being gathered and the
frequency at which the polling is being performed.

SNMP is best suited for network monitoring and capacity planning. SNMP does not
provide even the basic troubleshooting information that can be obtained from simple
network troubleshooting tools [Wellens 96]. SNMP agents do not analyze information,
they just collect information and provide it to the network management application.

SNMPv1 has minimal security capability. Because SNMPv1 lacks the control of
unauthorized access to critical network devices and systems, it may be necessary to
restrict the use of SNMP management to non-critical networks. Lack of authentication in
SNMPv1 has led many vendors to not include certain commands, thus reducing
extensibility and consistency across managed devices. SNMPv2 addresses these
security problems but is difficult and expensive to set up and administer (e.g., each MIB
must be locally set up).

Vendors often include SNMP agents with their software and public domain agents are
available. Management applications are available from a variety of vendors as well as
the public domain, however they can differ greatly in terms of functionality, plots and
visual displays.

SNMP out-of-the-box can not be used to track information contained in application/user
level protocols (e.g., radar track message, http, mail). However these might be
accomplished through the use of a extensible (customized) SNMP agent that has user
defined MIB.5 It is important to note that a specialized or extensible network manager
may be required for use with the customized agents.

There are also concerns about the use of SNMP in the real-time domain where bounded
response, deadlines, and priorities are required.

SNMPv2 is intended to be able to coexist with existing SNMPv2, but in order to use
SNMPv2 as the SNMP manager or to migrate from SNMPv1 to SNMPv2, all SNMPv1
compliant agents must be entirely replaced with SNMPv2 compliant agents-gateways or
bilingual managers and proxy agents were not available to support the gradual migration
as of early-1995. Since SNMPv1 and SNMPv2 are incompatible with each other and
SNMPv2 is not stable, it is important when procuring a managed device to determine
which network management protocol(s) is supported.

Alternatives

Common Management Information Protocol (CMIP) may be a better alternative for large,
complex networks or security-critical networks.

CMIP is similar to SNMP and was developed to address SNMP's shortcomings.
However, CMIP takes significantly more system resources than SNMP, is difficult to
program, and is designed to run on the ISO protocol stack [X.700 96]. (However, the
technology standard used today in most systems is TCP/IP.)

The biggest feature in CMIP is that an agent can perform tasks or trigger events based

http://www.sei.cmu.edu/str/descriptions/snmp.html (5 of 10)7/28/2008 11:28:11 AM

Simple Network Management Protocol

upon the value of a variable or a specific condition. For example, when a computer can
not reach its network fileserver for a predetermined number of times, an event can be
generated to notify the appropriate personnel [Vallillee 96]. With SNMP, this task would
have to be performed by a user, because an SNMP agent does not analyze information.

Index Categories

This technology is classified under the following categories. Select a category for a list of
related topics.

Name of technology Simple Network Management Protocol

Application category Protocols (AP.2.2.3)
Network Management (AP.2.2.2)

Quality measures category Maintainability (QM.3.1)
Simplicity (QM.3.2.2)
Complexity (QM.3.2.1)
Efficiency/ Resource Utilization (QM.2.2)
Scalability (QM.4.3)
Security (QM.2.1.5)

Computing reviews category Network Operations (C.2.3)
Distributed Systems (C.2.4)

References and Information Sources

[Broadhead 95] Broadhead, Steve. "SNMP Too Simple for Security?" Secure
Computing (April 1995): 24-29.

[DES 93] Federal Information Processing Standards Publication 46-2 DATA
ENCRYPTION STANDARD, 1993 [online]. Available WWW
<URL: http://csrc.ncsl.nist.gov/fips/fips46-2.txt> (1996).

[Feit 94] Feit, Sidnie. A Guide to Network Management. New York, NY:
McGraw Hill, 1994.

[Henderson 95] Henderson and Erwin. "SNMP Version 2: Not So Simple." Business
Communications Review 25, 5 (May 1995): 44-48.

[Herman 94] Herman, James. "Network Computing Inches Forward." Business
Communications Review 24, 5 (May 1994): 45-50.

[IETF 96] Internet Engineering Task Force home page [online]. Available WWW
<URL: http://www.ietf.cnri.reston.va.us/> (1996).

[Kapoor 94] Kapoor, K. "SNMP Platforms: What's Real, What Isn't." Data
Communications International 23, 12 (September 1994): 115-18.

http://www.sei.cmu.edu/str/descriptions/snmp.html (6 of 10)7/28/2008 11:28:11 AM

http://csrc.ncsl.nist.gov/fips/fips46-2.txt
http://www.ietf.cnri.reston.va.us/

Simple Network Management Protocol

[Lake 96] Lake, Craig. Simple Network Management Protocol (SNMP) [online].
Available WWW
<URL: http://www.sei.cmu.edu/str/docs/SNMP.html> (1996).

[MIB 96] Development of an MIB for http [online]. Available WWW
<URL: http://http-mib.onramp.net/bof/> (1996).

[Moorhead 95] Moorhead, R.J. & Amirthalingam, K. "SNMP- An Overview of its
Merits and Demerits," 180-3. Proceedings of the Twenty-Seventh
Southeastern Symposium on System Theory. Starkvill, MS, March 12-
14, 1995. Los Alamitos, CA: IEEE Computer Society Press, 1995.

[Phifer 94] Phifer, L.A. "Tearing Down the Wall: Integrating ISO and Internet
Management." Journal of Network and Systems Management 2, 3
(September 1994): pp. 317-22.

[RFC 96] Postel T. User Datagram Protocol (RFC 768) [online]. Available
WWW
<URL: http://ds.internic.net/rfc/rfc768.txt> (1996).

[Rose 94] Rose, Marshall T. The Simple Book: An Introduction to Internet
Management. Englewood Cliffs, NJ: Prentice-Hall, 1994.

[SNMP 98] Simple Network Management Protocol [online]. Available WWW
<URL: http://www.snmp.com> and
<URL: http://www.snmp.com/snmppages.html> (1998).

[SNMP FAQ
98]

Simple Network Management Protocol FAQ [online]. Available
WWW
<URL: http://www.snmp.com/FAQs/snmp-faq-part1.txt> and
<URL: http://www.snmp.com/FAQs/snmp-faq-part2.txt> (1998).

[SNMPv1
Specs]

The following RFC's identify the major components of SNMPv1
online]. Available WWW
<URL: http://www.cis.ohio-state.edu/htbin/rfc/rfcXXXX.html>
(1996).

Historical
RFC 1156 - Management Information Base Network Management of
TCP/IP based internets
RFC 1161 - SNMP over OSI

Informational
RFC 1215 - A Convention for Defining Traps for use with the SNMP
RFC 1270 - SNMP Communication Services
RFC 1303 - A Convention for Describing SNMP-based Agents
RFC 1470 - A Network Management Tool Catalog

Standard and Draft
RFC 1089 - SNMP over Ethernet
RFC 1140 - IAB Official Protocol Standards
RFC 1155 - Structure and Identification of Management Information
for TCP/IP based internets.

http://www.sei.cmu.edu/str/descriptions/snmp.html (7 of 10)7/28/2008 11:28:11 AM

http://www.sei.cmue.edu/str/docs/SNMP.html
http://http-mib.onramp.net/bof/
http://ds.internic.net/rfc/rfc768.txt
http://www.snmp.com/
http://www.snmp.com/snmppages.html
http://www.snmp.com/FAQs/snmp-faq-part1.txt
http://www.snmp.com/FAQs/snmp-faq-part2.txt
http://www.cis.ohio-state.edu/htbin/rfc/rfc1156.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1161.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1215.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1270.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1303.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1470.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1089.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1140.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1155.html

Simple Network Management Protocol

RFC 1157 - A Simple Network Management Protocol
RFC 1158 - Management Information Base Network Management of
TCP/IP based internets: MIB-II
RFC 1187 - Bulk Table Retrieval with the SNMP
RFC 1212 - Concise MIB Definitions
RFC 1213 - Management Information Base for Network Management
of TCP/IP-based internets: MIB-II
RFC 1224 - Techniques for Managing Asynchronously-Generated
Alerts
RFC 1418 - SNMP over OSI
RFC 1419 - SNMP over AppleTalk
RFC 1420 - SNMP over IPX

[SNMPv2
Specs]

The following RFC's identify the major components of SNMPv2
online]. Available WWW
<URL: http://www.cis.ohio-state.edu/htbin/rfc/rfcXXXX.html>
(1996).

Historical
RFC 1441 - Introduction to SNMP v2
RFC 1442 - SMI For SNMP v2
RFC 1443 - Textual Conventions for SNMP v2
RFC 1444 - Conformance Statements for SNMP v2
RFC 1445 - Administrative Model for SNMP v2
RFC 1446 - Security Protocols for SNMP v2
RFC 1447 - Party MIB for SNMP v2
RFC 1448 - Protocol Operations for SNMP v2
RFC 1449 - Transport Mappings for SNMP v2
RFC 1450 - MIB for SNMP v2
RFC 1451 - Manager to Manager MIB
RFC 1452 - Coexistence between SNMP v1 and SNMP v2

Draft
RFC 1902 - SMI for SNMPv2
RFC 1903 - Textual Conventions for SNMPv2
RFC 1904 - Conformance Statements for SNMPv2
RFC 1905 - Protocol Operations for SNMPv2
RFC 1906 - Transport Mappings for SNMPv2
RFC 1907 - MIB for SNMPv2
RFC 1908 - Coexistence between SNMPv1 and SNMPv2

Experimental
RFC 1901 - Introduction to Community-based SNMPv2
RFC 1909 - An Administrative Infrastructure for SNMPv2
RFC 1910 - User-based Security Model for SNMPv2

http://www.sei.cmu.edu/str/descriptions/snmp.html (8 of 10)7/28/2008 11:28:11 AM

http://www.cis.ohio-state.edu/htbin/rfc/rfc1157.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1158.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1187.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1212.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1213.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1224.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1418.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1419.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1420.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1441.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1442.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1443.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1444.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1445.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1446.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1447.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1448.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1449.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1450.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1451.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1452.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1902.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1903.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1904.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1905.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1906.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1907.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1908.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1901.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1909.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1910.html

Simple Network Management Protocol

[Stallings 93] Stallings, William. SNMP, SNMPv2, and CMIP: The Practical Guide
to Network Management Standards. Reading, MA: Addison-Wesley,
1993.

[Vallillee 96] Vallillee, Tyler. SNMP & CMIP: An Introduction To Network
Management [online]. Available WWW
<URL: http://www.inforamp.net/~kjvallil/t/snmp.html> (1996).

[Wellens 96] Wellens, Chris & Auerbach, Karl. "Towards Useful
Management" [online]. The Quarterly Newsletter of SNMP
Technology, Comment, and Events(sm) 4, 3 (July 1996). Available
WWW
<URL: http://www.iwl.com/Press/thefuture.html> (1996).

[X.700 96] X.700 and Other Network Management Services [online]. Available
WWW
<URL: http://ganges.cs.tcd.ie/4ba2/x700/index.html> (1996).

Current Author/Maintainer

Dan Plakosh, SEI

External Reviewers

Craig Meyers, SEI
Patrick Place, SEI

Modifications

16 Jan 98: Changes included

● Increased the consistency of terminology
● Minor change to the SNMPv1 architecture figure
● Updated status of SNMPv2 and added information about other SNMP versions
● Clarified some areas
● Updated references

19 Jun 97: Changes included

● Creating an overview technical description on network management, which
includes overview material and figures applicable to all network management
techniques

● Clarifying the discussion of SNMPv1 and SNMPv2
● Minor changes to the SNMPv1 architecture figure
● Increased the consistency of terminology
● added many new references

10 Jan 97 (original); author for this version: Cory Vondrak, TRW, Redondo Beach, CA

Footnotes

http://www.sei.cmu.edu/str/descriptions/snmp.html (9 of 10)7/28/2008 11:28:11 AM

http://www.inforamp.net/~kjvallil/t/snmp.html
http://www.iwl.com/Press/thefuture.html
http://ganges.cs.tcd.ie/4ba2/x700/index.html

Simple Network Management Protocol

1 The IETF is a large open community of network designers, operators, vendors, and
researchers whose purpose is to coordinate the operation, management and evolution of
the Internet, and to resolve short- and mid-range protocol and architectural issues. It is a
major source of proposed protocol standards which are submitted to the Internet
Engineering Steering Group for final approval. The IETF meets three times a year and
extensive minutes of the plenary proceedings are issued.

2 The IAB is a technical advisory group of the Internet Society. The IAB provides
oversight of the architecture for the protocols and procedures used by the Internet, the
process used to create Internet Standards and serves as an appeal board for complaints
of improper execution of the standards process.

3 Managed objects: a characteristic of a managed device that can be monitored,
modified or controlled.

4 This organization is responsible for approving U.S. standards in many areas, including
computers and communications. Standards approved by this organization are often
called ANSI standards (e.g., ANSI C is the version of the C language approved by
ANSI).

5 There is an MIB being developed for http [MIB 96], and the MIB for mail monitoring is
now a proposed standard.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored
by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/snmp_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/snmp.html (10 of 10)7/28/2008 11:28:11 AM

http://www.sei.cmu.edu/about/disclaimer.html

Six Sigma

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Six Sigma

Status

Complete

Note

Purpose and Origin

Six Sigma (6) is a business-driven, multi-faceted approach to process
improvement, reduced costs, and increased profits. With a fundamental principle
to improve customer satisfaction by reducing defects, its ultimate performance
target is virtually defect-free processes and products (3.4 or fewer defective
parts per million (ppm)). The Six Sigma methodology, consisting of the steps
"Define - Measure - Analyze - Improve - Control," is the roadmap to achieving
this goal. Within this improvement framework, it is the responsibility of the
improvement team to identify the process, the definition of defect, and the
corresponding measurements. This degree of flexibility enables the Six Sigma
method, along with its toolkit, to easily integrate with existing models of software
process implementation.

Six Sigma originated at Motorola in the early 1980s in response to a CEO-driven
challenge to achieve tenfold reduction in product-failure levels in five years.
Meeting this challenge required swift and accurate root-cause analysis and
correction. In the mid-1990s, Motorola divulged the details of their quality
improvement framework, which has since been adopted by several large
manufacturing companies. [Harry 00, Arnold 99, Harrold 99]

Technical Detail

The primary goal of Six Sigma is to improve customer satisfaction, and thereby
profitability, by reducing and eliminating defects. Defects may be related to any
aspect of customer satisfaction: high product quality, schedule adherence, cost
minimization. Underlying this goal is the Taguchi Loss Function [Pyzdek 01],
which shows that increasing defects leads to increased customer dissatisfaction
and financial loss. Common Six Sigma metrics include defect rate (parts per
million or ppm), sigma level, process capability indices, defects per unit, and
yield. Many Six Sigma metrics can be mathematically related to the others.

The Six Sigma drive for defect reduction, process improvement and customer

http://www.sei.cmu.edu/str/descriptions/sigma6.html (1 of 9)7/28/2008 11:28:12 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/sigma6_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Six Sigma

satisfaction is based on the "statistical thinking" paradigm [ASQ 00], [ASA 01]:

● Everything is a process
● All processes have inherent variability
● Data is used to understand the variability and drive process improvement

decisions

As the roadmap for actualizing the statistical thinking paradigm, the key steps in
the Six Sigma improvement framework are Define - Measure - Analyze -
Improve - Control (see Figure 1). Six Sigma distinguishes itself from other quality
improvement programs immediately in the "Define" step. When a specific Six
Sigma project is launched, the customer satisfaction goals have likely been
established and decomposed into subgoals such as cycle time reduction, cost
reduction, or defect reduction. (This may have been done using the Six Sigma
methodology at a business/organizational level.) The Define stage for the
specific project calls for baselining and benchmarking the process to be
improved, decomposing the process into manageable sub-processes, further
specifying goals/sub-goals and establishing infrastructure to accomplish the
goals. It also includes an assessment of the cultural/organizational change that
might be needed for success.

Once an effort or project is defined, the team methodically proceeds through
Measurement, Analysis, Improvement, and Control steps. A Six Sigma
improvement team is responsible for identifying relevant metrics based on
engineering principles and models. With data/information in hand, the team then
proceeds to evaluate the data/information for trends, patterns, causal
relationships and "root cause," etc. If needed, special experiments and modeling
may be done to confirm hypothesized relationships or to understand the extent
of leverage of factors; but many improvement projects may be accomplished
with the most basic statistical and non-statistical tools. It is often necessary to
iterate through the Measure-Analyze-Improve steps. When the target level of
performance is achieved, control measures are then established to sustain
performance. A partial list of specific tools to support each of these steps is
shown in Figure 1.

http://www.sei.cmu.edu/str/descriptions/sigma6.html (2 of 9)7/28/2008 11:28:12 AM

Six Sigma

Note:
Many tools can be effectively used in multiple steps of the
framework. Tools that are not particularly relevant to software
applications have not been included in this list.

Figure 1: Six Sigma Improvement Framework and Toolkit

An important consideration throughout all the Six Sigma steps is to distinguish
which process substeps significantly contribute to the end result. The defect rate
of the process, service or final product is likely more sensitive to some factors
than others. The analysis phase of Six Sigma can help identify the extent of
improvement needed in each substep in order to achieve the target in the final
product. It is important to remain mindful that six sigma performance (in terms of
the ppm metric) is not required for every aspect of every process, product and
service. It is the goal only where it quantitatively drives (i.e, is a significant
"control knob" for) the end result of customer satisfaction and profitability.

The current average industry runs at four sigma, which corresponds to 6210
defects per million opportunities. Depending on the exact definition of "defect" in
payroll processing, for example, this sigma level could be interpreted as 6 out of
every 1000 paychecks having an error. As "four sigma" is the average current
performance, there are industry sectors running above and below this value.
Internal Revenue Service (IRS) phone-in tax advice, for instance, runs at roughly
two sigma, which corresponds to 308,537 errors per million opportunities. Again,
depending on the exact definition of defect, this could be interpreted as 30 out of
100 phone calls resulting in erroneous tax advice. ("Two Sigma" performance is
where many noncompetitive companies run.) On the other extreme, domestic (U.
S.) airline flight fatality rates run at better than six sigma, which could be
interpreted as fewer than 3.4 fatalities per million passengers - that is, fewer than
0.00034 fatalities per 100 passengers [Harry 00], [Bylinsky 98], [Harrold 99].

As just noted, flight fatality rates are "better than six sigma," where "six sigma"
denotes the actual performance level rather than a reference to the overall
combination of philosophy, metric, and improvement framework. Because
customer demands will likely drive different performance expectations, it is
useful to understand the mathematical origin of the measure and the term "six-
sigma process." Conceptually, the sigma level of a process or product is where
its customer-driven specifications intersect with its distribution. A centered six-
sigma process has a normal distribution with mean=target and specifications
placed 6 standard deviations to either side of the mean. At this point, the
portions of the distribution that are beyond the specifications contain 0.002 ppm
of the data (0.001 on each side). Practice has shown that most manufacturing
processes experience a shift (due to drift over time) of 1.5 standard deviations
so that the mean no longer equals target. When this happens in a six-sigma
process, a larger portion of the distribution now extends beyond the specification
limits: 3.4 ppm.

Figure 2 depicts a 1.5 -shifted distribution with "6 " annotations. In
manufacturing, this shift results from things such as mechanical wear over time
and causes the six-sigma defect rate to become 3.4 ppm. The magnitude of the
shift may vary, but empirical evidence indicates that 1.5 is about average. Does

http://www.sei.cmu.edu/str/descriptions/sigma6.html (3 of 9)7/28/2008 11:28:12 AM

Six Sigma

this shift exist in the software process? While it will take time to build sufficient
data repositories to verify this assumption within the software and systems
sector, it is reasonable to presume that there are factors that would contribute to
such a shift. Possible examples are declining procedural adherence over time,
learning curve, and constantly changing tools and technologies (hardware and
software).

Assumptions:

● Normal Distribution
● Process Mean Shift of

1.5 from Nominal is
Likely

● Process Mean and
Standard Deviation are
known

● Defects are randomly
distributed throughout
units

● Parts and Process
Steps are Independent

● For this discussion,
original nominal value
= target

Key

 = standard deviation
µ = center of the distribution
(shifted 1.5 from its original ,
on-target location)
+/-3 & +/-6 show the
specifications relative to the
original target

Figure 2: Six Sigma Process with Mean Shifted from Nominal by 1. 5

Usage Considerations

In the software and systems field, Six Sigma may be leveraged differently based
on the state of the business. In an organization needing process consistency,
Six Sigma can help promote the establishment of a process. For an organization
striving to streamline their existing processes, Six Sigma can be used as a
refinement mechanism.

In organizations at CMM® level 1-3, "defect free" may seem an overwhelming
stretch. Accordingly, an effective approach would be to use the improvement
framework ('Define-Measure-Analyze-Improve-Control') as a roadmap toward

http://www.sei.cmu.edu/str/descriptions/sigma6.html (4 of 9)7/28/2008 11:28:12 AM

Six Sigma

intermediate defect reduction goals. Level 1 and 2 organizations may find that
adopting the Six Sigma philosophy and framework reinforces their efforts to
launch measurement practices; whereas Level 3 organizations may be able to
begin immediate use of the framework. As organizations mature to Level 4 and
5, which implies an ability to leverage established measurement practices,
accomplishment of true "six sigma" performance (as defined by ppm defect
rates) becomes a relevant goal.

Many techniques in the Six Sigma toolkit are directly applicable to software and
are already in use in the software industry. For instance, "Voice of the Client"
and "Quality Function Deployment" are useful for developing customer
requirements (and are relevant measures). There are numerous charting/
calculation techniques that can be used to scrutinize cost, schedule, and quality
(project-level and personal-level) data as a project proceeds. And, for technical
development, there are quantitative methods for risk analysis and concept/
design selection. The strength of "Six Sigma" comes from consciously and
methodically deploying these tools in a way that achieves (directly or indirectly)
customer satisfaction.

As with manufacturing, it is likely that Six Sigma applications in software will
reach beyond "improvement of current processes/products" and extend to
"design of new processes/products." Named "Design for Six Sigma" (DFSS), this
extension heavily utilizes tools for customer requirements, risk analysis, design
decision-making and inventive problem solving. In the software world, it would
also heavily leverage re-use libraries that consist of robustly designed software.

Maturity

Six Sigma is rooted in fundamental statistical and business theory;
consequently, the concepts and philosophy are very mature. Applications of Six
Sigma methods in manufacturing, following on the heels of many quality
improvement programs, are likewise mature. Applications of Six Sigma methods
in software development and other 'upstream' (from manufacturing) processes
are emerging.

Costs and Limitations

Institutionalizing Six Sigma into the fabric of a corporate culture can require
significant investment in training and infrastructure. There are typically three
different levels of expertise cited by companies: Green Belt, Black Belt
Practitioner, Master Black Belt. Each level has increasingly greater mastery of
the skill set. Roles and responsibilities also grow from each level to the next, with
Black Belt Practitioners often in team/project leadership roles and Master Black
Belts often in mentoring/teaching roles. The infrastructure needed to support the
Six Sigma environment varies. Some companies organize their trained Green/
Black Belts into a central support organization. Others deploy Green/Black Belts
into organizations based on project needs and rely on communities of practice to
maintain cohesion.

Alternatives

http://www.sei.cmu.edu/str/descriptions/sigma6.html (5 of 9)7/28/2008 11:28:12 AM

Six Sigma

In past years, there have been many instances and evolutions of quality
improvement programs. Scrutiny of the programs will show much similarity and
also clear distinctions between such programs and Six Sigma. Similarities
include common tools and methods, concepts of continuous improvement, and
even analogous steps in the improvement framework. Differences have been
articulated as follows:

● Six Sigma speaks the language of business. It specifically addresses the
concept of making the business as profitable as possible.

● In Six Sigma, quality is not pursued independently from business goals.
Time and resources are not spent improving something that is not a lever
for improving customer satisfaction.

● Six Sigma focuses on achieving tangible results.
● Six Sigma does not include specific integration of ISO900 or Malcolm

Baldridge National Quality Award criteria.
● Six Sigma uses an infrastructure of highly trained employees from many

sectors of the company (not just the Quality Department). These
employees are typically viewed as internal change agents.

● Six Sigma raises the expectation from 3-sigma performance to 6-sigma.
Yet, it does not promote "Zero Defects" which many people dismiss as
"impossible."

Sources: [Pyzdek 2-01, Marash 99, Harry 00]

Complementary Technologies

It is difficult to concisely describe the ways in which Six Sigma may be
interwoven with other initiatives (or vice versa). The following paragraphs
broadly capture some of the possible interrelationships between initiatives.

Six Sigma and improvement approaches such as CMM‚, CMMISM, PSPSM/
TSPSM are complementary and mutually supportive. Depending on current
organizational, project or individual circumstances, Six Sigma could be an
enabler to launch CMM®, CMMISM, PSPSM, or TSPSM. Or, it could be a
refinement toolkit/methodology within these initiatives. For instance, it might be
used to select highest priority Process Areas within CMMISM or to select highest
leverage metrics within PSPSM.

Examination of the Goal-Question-Metric (GQM), Initiating-Diagnosing-
Establishing-Acting-Leveraging (IDEALSM), and Practical Software Measurement
(PSM) paradigms, likewise, shows compatibility and consistency with Six Sigma.
GQ(I)M meshes well with the Define-Measure steps of Six Sigma. IDEAL and
Six Sigma share many common features, with IDEALSM being slightly more
focused on change management and organizational issues and Six Sigma being
more focused on tactical, data-driven analysis and decision making. PSM
provides a software-tailored approach to measurement that may well serve the
Six Sigma improvement framework.

Index Categories

http://www.sei.cmu.edu/str/descriptions/sigma6.html (6 of 9)7/28/2008 11:28:12 AM

Six Sigma

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Six Sigma

Application category Detailed Design (AP.1.3.5)
Code (AP.1.4.2)
Unit Testing (AP.1.4.3.4)
Component Testing (AP.1.4.3.5)

Quality measures category Reliability (QM.2.1.2)
Availability (QM.2.1.1)
Maintenance Control (QM.5.1.2.3)
Productivity (QM.5.2)

Computing reviews category Management (D.2.9)

References and Information Sources

[Arnold 99] Arnold, Paul V. Pursuing the Holy Grail [online]. Available WWW
<URL: http://www.mrotoday.com/mro/archives/Editorials/editJJ1999.
htm > (1999).

[ASQ 00] ASQ Statistics Division. Improving Performance Through Statistical
Thinking. Milwaukee, WI: ASQ Quality Press, 2000.

[ASA 01] American Statistical Association, Quality & Productivity Section.
Enabling Broad Application of Statistical Thinking [online]. Available
WWW <URL: http://web.utk.edu/~asaqp/thinking.html> (2001).

[Bylinsky 98] Bylinsky, Gene. How to Bring Out Better Products Faster [online].
Available WWW <URL: http://www.amsup.com/media/fortune.htm>
(1998).

[Harrold 99] Harrold, Dave. Designing for Six Sigma Capability [Online]. Available
WWW <URL: http://www.controleng.com/archives/1999/
ctl0101.99/01a103.htm> (1999).

[Harry 00] Harry, Mikel. "Six Sigma: The Breakthrough Management Strategy
Revolutionizing the World's Top Corporations." New York, N.Y.
Random House Publishers, 2000.

http://www.sei.cmu.edu/str/descriptions/sigma6.html (7 of 9)7/28/2008 11:28:12 AM

http://www.mrotoday.com/mro/archives/Editorials/editJJ1999.htm
http://www.mrotoday.com/mro/archives/Editorials/editJJ1999.htm
http://web.utk.edu/~asaqp/thinking.html
http://www.amsup.com/media/fortune.htm
http://www.controleng.com/archives/1999/ctl0101.99/01a103.htm
http://www.controleng.com/archives/1999/ctl0101.99/01a103.htm

Six Sigma

[Lahiri 99] Lahiri, Jaideep. The Enigma of Six Sigma [online]. Available WWW
<URL: http://www.india-today.com/btoday/19990922/cover.html>
(1999).

[Marash 99] Marash, Stanley A. Six Sigma: Passing Fad or a Sign of Things to
Come? [online]. Available WWW <URL: http://www.thesamgroup.com/
sixsigmaarticle.htm> (1999).

[Pyzdek 01] Pyzdek, Thomas. The Six Sigma Handbook. New York, N.Y.: McGraw-
Hill Professional Publishing, 2001.

[Pyzdek 2-01] Pyzdek, Thomas. Six Sigma and Beyond: Why Six Sigma Is Not TQM
[online]. Available WWW <URL: http://www.qualitydigest.com/feb01/
html/sixsigma.html> (2001).

Current Author/Maintainer

Jeannine Siviy, SEI

External Reviewers

Anita Carleton, SEI
Wolfhart Goethert, SEI
David Zubrow, SEI

Modifications

1 May 2001 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/sigma6_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references

http://www.sei.cmu.edu/str/descriptions/sigma6.html (8 of 9)7/28/2008 11:28:12 AM

http://www.india-today.com/btoday/19990922/cover.html
http://www.thesamgroup.com/sixsigmaarticle.htm
http://www.thesamgroup.com/sixsigmaarticle.htm
http://www.qualitydigest.com/feb01/html/sixsigma.html
http://www.qualitydigest.com/feb01/html/sixsigma.html
http://www.sei.cmu.edu/about/disclaimer.html

Six Sigma

● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/sigma6.html (9 of 9)7/28/2008 11:28:12 AM

Simplex Architecture

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Simplex Architecture

Status

complete

Purpose and Origin

Real-time applications that play a mission-critical role are prevalent throughout
the DoD and industry. The complexity of these systems make them expensive to
design, maintain, and support. Their mission critical nature requires assurance of
operational availability. These systems are often safety-critical, requiring a high
degree of reliability. The long life cycles of these systems usually result in
multiple capability upgrades as well as platform migrations. As the use of COTS
products increases, upgrade cycles will become shorter.

Simplex architecture is a paradigm and an engineering framework that permits
the quick, easy, and reliable insertion of new capabilities and technologies into
mission critical real-time systems [Sha 96]. Simplex is the synthesis of selected
best practices in several technology areas that support the safe, online upgrade
of hardware and software, in spite of residual errors in the new components.
Through the use of Simplex, it becomes possible to shift resources from static
design and extensive testing to reliable incremental evolution.

Technical Detail

Software is pervasive within the critical systems that form the infrastructure of
modern society, both military and civilian. These systems are often large and
complex and require periodic and extensive upgrading. The important technical
problems include the following:

● Integration of new and revised components. The need for periodic and
extensive upgrading and technology refreshment of systems challenges
developers to integrate new or changed components into systems without
compromising the strict reliability and availability requirements of the
applications. There are significant strategic and tactical advantages
afforded by the ability to adapt quickly to changing situations. These
potential advantages challenge developers to find ways of modifying,
upgrading, or adding system components more quickly while reducing the
possibility of error.

● Vendor driven upgrade. To cut costs and gain leverage from technical
advances in the commercial sector, the DoD has encouraged more

http://www.sei.cmu.edu/str/descriptions/simplex.html (1 of 7)7/28/2008 11:28:13 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/simplex_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Simplex Architecture

frequent use of COTS components in its software. For similar reasons,
industry is often following suit. COTS components have a short life cycle
(roughly one year.) DoD platforms change at a much slower rate and
typically have longer life cycles (often 25-30 years or more). This make
the DoD platform susceptible to a problem that occurs when the vendor
releases a new version of the COTS component. The upgrade can either
be ignored or incorporated into the system. Ignoring it will eventually
result in a system that is burdened with unsupported and obsolete
components. Incorporating it forces the DoD platform to change on a
schedule determined by the vendor, rather than the system developer,
maintainer, or customer. New releases usually add features and fix
existing bugs, but in the process they also often introduce new bugs. So
upgrading is risky; a way to manage the risk is needed.

● Upgrade paradox. The upgrade paradox results from the use of
replication or functional redundancy and majority voting. A minority
upgrade will have no effect because it will be voted out of the system by
the majority. A majority upgrade with residual errors can cause the
system to fail.

Collectively, these technical problems present a formidable challenge to the
developers and maintainers of systems with long life cycles.

Simplex is a framework for system integration and evolution. It integrates a
number of technologies, including:

● Analytic Redundancy. These technologies are used for integrated
availability and reliability management. They employ sophisticated
monitoring and switching logic which includes a simple leadership
protocol. Analytic redundancy allows high-performance, but possibly less-
reliable, components to be used in systems demanding a high degree of
reliability. This is accomplished without sacrificing the performance and
reliability levels provided by existing highly reliable components.

● Replaceable Units. These technologies (dynamic binding) allow the
replacement of software modules at runtime without having to shut down
and restart the system.

● Publish/Subscribe. These are flexible real-time group communication
technologies that allow components to dynamically publish and subscribe
to needed information [Rajkumar 95].

● Rate Monotonic Scheduling. These technologies for real-time computing
(see Rate Monotonic Analysis) allow components to be replaced or
modified in real time, transparently to the applications, while still meeting
deadlines. These technologies are integrated into the real-time operating
system.

The above technologies are shown in the context of the overall structure of a
Simplex-based application in Figure 33.

http://www.sei.cmu.edu/str/descriptions/simplex.html (2 of 7)7/28/2008 11:28:13 AM

Simplex Architecture

Figure 33: Simplex Technologies and Architecture

Figure 34 is a highly simplified view of the data flow in a system using Simplex.
Notice that multiple versions of a component are employed-a Highly Reliable
Component (HRC) and a High Performance Component (HPC). The HRC might
be legacy software designed to control the device. It has known performance
characteristics and presumably, due to long use, is relatively bug free. If we
suppose that the HPC is a new version of the software with improved
performance characteristics, but possibly also containing bugs since it has not
yet been used extensively, the following scenario takes place.

Figure 34: Simplex: Simplified Data Flow

The device under control is sampled at a regular interval. The data is processed
by both HRC and HPC. Instead of controlling the device directly, a simple
leadership protocol is used. Under this protocol, both modules send their results
to the Monitoring and Switching Logic (MSL), which also uses inputs obtained
from the device under control to decide which output to pass back to the device.
As long as HPC is behaving properly, it is the leader and its output will be
transmitted to the device. Should MSL decide that HPC is not behaving
correctly, it makes the HRC the leader and uses its output instead. Thus the
device will perform no worse than it did before the upgrade to HPC occurred.
This solves the upgrade paradox even in the presence of multiple alternatives
because at any instant only the output of one of the alternatives is used. Not
shown, for reasons of complexity, is the module that would actually remove a

http://www.sei.cmu.edu/str/descriptions/simplex.html (3 of 7)7/28/2008 11:28:13 AM

Simplex Architecture

failed HPC from the system and allow it to be replaced with a corrected version
for another try.

Usage Considerations

Simplex is most suitable for systems that have high availability and reliability
requirements. It seems especially suitable for systems such as control systems
(real-time or process) whose behavior can be modeled and monitored.

Because Simplex is relatively immature, pilot studies will be needed to determine
its suitability for any intended application. This would involve developing a rapid
prototype, using Simplex, of a simplified instance of the intended application.

Maturity

The safe, online upgrade of both software and hardware, including COTS
components, using Simplex has been successfully demonstrated in the
laboratory. Simplex is being transitioned into practice via several pilot studies:

● Silicon Wafer Manufacturing. The objective was to demonstrate the use of
Simplex as the basis for the control architecture in manufacturing process-
control software. This was a joint effort between the Software Engineering
Institute and the Department of Electrical and Computer Engineering at
Carnegie Mellon, guided by engineers from SEMATECH.

● NSSN (new attack submarine program). This study involved a US Navy
program whose goal is the development, demonstration, and transition of
a COTS-based fault-tolerant submarine control system that can be
upgraded inexpensively and dependably.

● INSERT (INcremental Software Evolution for Real-Time Systems). This
project was funded by the Air Force/DARPA EDCS (evolutionary design
of complex software) program, whose goal is to evaluate the possible use
of Simplex in the context of onboard avionics systems. Work is
proceeding with Lockheed-Martin Tactical Aircraft Systems to investigate
the application of this technology to the automated maneuvering
capability of the F-16 fighter.

Costs and Limitations

Simplex is designed to support the evolution of mission-critical systems that
have high availability or reliability requirements. Its suitability for management
information systems (e.g., MIS) applications that do not have such requirements
has yet to be determined. Its usefulness in C4I systems is currently being
investigated.

Although Simplex has been designed to reduce the life-cycle cost of systems,
data on its impact on system life-cycle cost is not available at this time. Much of
Simplex is built upon COTS components such as a POSIX compliant real-time
operating system running on modern hardware. This tends to reduce costs
relative to custom designs.

http://www.sei.cmu.edu/str/descriptions/simplex.html (4 of 7)7/28/2008 11:28:13 AM

Simplex Architecture

When using Simplex, engineering costs are increased by the need to analyze
and create the analytically redundant modules. Additionally, there is some
overhead involved in the operation of the monitoring and switching logic. Finally,
the need to run multiple copies of an application (i.e., the HRC and HPC
simultaneously) requires additional resources-at the very least additional
memory and CPU cycles. These factors tend to have an upward effect on costs-
compensated for by the increased reliability and flexibility which Simplex
provides.

A perhaps more important consideration is the savings that Simplex provides by
reducing the required testing and downtime when installing an upgraded
component. The expectation is that the use of Simplex will provide a significant
savings in total life-cycle cost.

Complementary Technologies

Software and hardware reliability modeling and analysis allow users to estimate
the impact of Simplex on system reliability. System life-cycle cost estimation
techniques will allow users to estimate the cost impact.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of Technology Simplex Architecture

Application category Reapply Software Life Cycle (AP.1.9.3)
Reengineering (AP.1.9.5)
Software Architecture (AP.2.1)
Restart/Recovery (AP.2.10)

Quality measures category Availability/Robustness (QM.2.1.1)
Reliability (QM.2.1.2)
Safety (QM.2.1.3)
Real-time Responsiveness/Latency (QM.2.2.2)
Maintainability (QM.3.1)

Computing reviews category Fault-tolerance (D.4.5)
Real-time and embedded systems (D.4.7)
Network communication (D.4.4)

References and Information Sources

http://www.sei.cmu.edu/str/descriptions/simplex.html (5 of 7)7/28/2008 11:28:13 AM

Simplex Architecture

[Altman 97] Altman, Neal. The Simplex Architecture [online]. Available
WWW
<URL: http://www.sei.cmu.edu/simplex/simplex_architecture.
html> (May 6, 1997).

[Sha 96] Sha, L.; Rajkumar, R.; & Gagliardi, M. "Evolving Dependable
Real Time Systems," 335-346. Proceedings of the 1996 IEEE
Aerospace Applications Conference. Aspen, CO, February 3-10,
1996. New York, NY: IEEE Computer Society Press, 1996.

[Rajkumar
95]

Rajkumar, R.; Gagliardi, M.; & Sha, L. "The Real-Time
Publisher/Subscriber Inter-Process Communication Model for
Distributed Real-Time Systems: Design and Implementation," 66-
75. The First IEEE Real-Time Technology and Applications
Symposium. Chicago, IL, May 15-17, 1995. Los Alamitos, CA:
IEEE Computer Society Press, 1995.

Current Author/Maintainer

Charles B. Weinstock, SEI
Lui R. Sha, SEI

External Reviewers

John Lehoczky, Professor, Statistics Department, CMU

Modifications

29 Oct 97 changes include:

· Updated list of pilot studies.

· Provided additional detail on constituent technologies.

· Added application architecture diagram.

· Improved data flow diagram and enhanced the explanation.

· Added additional information on anticipated costs (where these are generally
understood.)

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University

http://www.sei.cmu.edu/str/descriptions/simplex.html (6 of 7)7/28/2008 11:28:13 AM

http://www.sei.cmu.edu/simplex/index.html
http://www.sei.cmu.edu/simplex/index.html

Simplex Architecture

Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/simplex_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/simplex.html (7 of 7)7/28/2008 11:28:13 AM

http://www.sei.cmu.edu/about/disclaimer.html

Software Inspections

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Software Inspections

Status

Complete

Purpose and Origin

Software Inspections are a disciplined engineering practice for detecting and
correcting defects in software artifacts, and preventing their leakage into field
operations. Software Inspections were introduced in the 1970s at IBM, which
pioneered their early adoption and later evolution [Fagan 76]. Software
Inspections provide value in improving software reliability, availability, and
maintainability.

Many organizations have made commitments to initiatives in the Capability
Maturity Model® (CMM®)1, ISO 9000, or Six Sigma in order to deliver superior
quality. Each of these initiatives has one thing in common: the practice of
Software Inspections.

Experienced software practitioners and managers understand that software
development is a process of experimentation involving the continuous discovery
of technical information associated with the function, form, and fit of the software
product. Software Inspections are an integral practice in the process of
experimentation.

Software inspections provide value in improving reliability, availability, and
maintainability.

Technical Detail

Software Inspections are strict and close examinations conducted on
requirements, specifications, architectures, designs, code, test plans and
procedures, and other artifacts [Ebenau 94], [O'Neill 01a]. Leading software
indicators of excellence for each artifact type provide the exit criteria for the
activities of the software life cycle. For example, these indicators include
completeness, correctness, style, rules of construction, and multiple views
[O'Neill 88,92].

Completeness is based on traceability of the requirements to the code, essential

http://www.sei.cmu.edu/str/descriptions/inspections.html (1 of 7)7/28/2008 11:28:14 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/inspections_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Software Inspections

for maintainability. Correctness is based on the clear specification of intended
function and its faithful elaboration in code, essential for reliability and availability
[Linger 79]. Style is based on consistency of recording, essential for
maintainability. Rules of construction are based on the software application
architecture and the specific protocols, templates, and conventions used to carry
it out, essential for reliability and availability. Multiple views are based on the
various perspectives and viewpoints required to be reflected in the software
product, essential for maintainability. By detecting defects early and preventing
their leakage into subsequent activities, the need for later detection and rework
(which is essential for reduced cycle time and lower cost) is eliminated.

Software Inspections are a reasoning activity performed by practitioners playing
the defined roles of moderator, recorder, reviewer, reader, and producer. Each
role carries with it the specific behaviors, skills, and knowledge needed to
achieve the expert practice of Software Inspections [Freedman 90].

The adoption of Software Inspections practice is competency enhancing and
meets little resistance among practitioners trained in their use. The adopting
organization benefits by improved predictability in cost and schedule
performance, reduced cost of development and maintenance, reduced defects in
the field, increased customer satisfaction, and improved morale among
practitioners.

The Return on Investment for Software Inspections is defined as net savings
divided by detection cost [O'Neill 01a,c]. Savings result from early detection and
correction avoiding the increased cost that comes with the detection and
correction of defects later in the life cycle. An undetected major defect that
escapes detection and leaks to the next phase may cost two to ten times to
detect and correct [Basili/Boehm 01]. A minor defect may cost two to four times
to detect and correct. The net savings then are up to nine times for major defects
and up to three times for minor defects. The detection cost is the cost of
preparation effort and the cost of conduct effort.

Usage Considerations

While Software Inspections originated and evolved in new development, its
usefulness in maintenance is now well established. Certain measurements
obtained during Software Inspections reflect this context of use. For example,
the lines of code inspected per conduct hour range from 250 to 500 for new
development and from 1000 to 1500 for maintenance. Other measurements
reveal no distinction between these contexts of usage. For example, the defects
detected per session range from five to ten for both new development and
maintenance.

The organization adopting Software Inspections practice seeks to prevent defect
leakage from one life cycle activity to another. Following training, the
organization can expect to detect 50% of the defects present. It may take 12 to
18 months to achieve expert practice where defect detection is expected to
range from 60% to 90% [O'Neill 89], [O'Neill 01a].

http://www.sei.cmu.edu/str/descriptions/inspections.html (2 of 7)7/28/2008 11:28:14 AM

Software Inspections

Maturity

The maturity of a technology can be reasoned about in terms of its long-term,
widespread use in a variety of usage domains and its transition from early
adopters through late adopters. Software Inspections have been evolving for 25
years. They are known to deliver economic value.

The data discussed in Usage Considerations above and Costs and Limitations
below are drawn from the National Software Quality Experiment (NSQE) [O'Neill
95,96,00] where thousands of participants from dozens of organizations are
populating the experiment database with thousands of defects of all types along
with pertinent information needed to pinpoint their root causes. The analysis bins
identified in the experiment include software process maturity level (1,2,3...),
organization type (government, Department of Defense (DoD) industry,
commercial), product type (embedded, organic), programming language (old
style, modern), and global region (North America, Pacific Rim, Latin America).

Organizations are invited to calibrate their Software Inspection results with the
NSQE results using the Software Inspection Measurement and Derived Metrics
tool [O'Neill 01b] found at http://members.aol.com/ONeillDon/nsqe-assessment.
html.

Software Inspections are a rigorous form of peer reviews, a Key Process Area
(kpa) of the CMM [Paulk 95], [Humphrey 89]. Although peer reviews are part of
achieving CMM level 3, and many organizations limit their software process
improvement agenda to the kpas for the maturity level they are seeking to
achieve, the population of Software Inspections adopters ranges from level 1 to
5.

Costs and Limitations

The rollout and operating costs associated with Software Inspections include the
initial training of practitioners and managers, the ongoing preparation and
conduct of inspection sessions, and the ongoing management and use of
measurement data for defect prevention and return on investment computations.

To properly adopt Software Inspections practice, each participant is trained in
the structured review process, defined roles of participants, system of process
and product checklists, and forms and reports. The lost opportunity cost to
acquire the knowledge, skills, and behaviors is twelve hours per practitioner
[O'Neill 89]. In addition, each manager is trained in the responsibilities for rolling
out the technology and the interpretation and use of measurements taken. The
management training is accomplished in four hours.

The cost of performing Software Inspections includes the individual preparation
effort of each participant before the session and the conduct effort of participants
in the inspections session. Typically, 4-5 people participate and expend 1-2
hours of preparation and 1-2 hours of conduct each. This cost of 10 to 20 hours
of total effort per session results in the early detection of 5-10 defects in 250-500
lines of new development code or 1000-1500 lines of legacy code [O'Neill

http://www.sei.cmu.edu/str/descriptions/inspections.html (3 of 7)7/28/2008 11:28:14 AM

http://members.aol.com/ONeillDon/nsqe-assessment.html
http://members.aol.com/ONeillDon/nsqe-assessment.html

Software Inspections

95,96,00].

The National Software Quality Experiment (NSQE) [O'Neill 95,96,00] reveals that
the Return on Investment (net savings/detection cost) for Software Inspections
ranges from four to eight independent of the context of usage. Organizations are
invited to calibrate their software inspection return on investment using the tool
[O'Neill 01c] found at http://members.aol.com/ONeillDon/nsqe-roi.html.

Dependencies

In order for Software Inspections to be systematically used in statistical process
control, there must be a life cycle model with defined software artifacts. In this
context, Software Inspections provide the exit criteria for each life cycle activity.
Furthermore, the standard of excellence of leading indicators for each type of
artifact must be specified and used in practice.

Alternatives

While Software Inspections are a rigorous form of peer reviews, software
walkthroughs are a less rigorous form of peer reviews [O'Neill 01a].
Walkthroughs may cost as much as inspections, but they deliver less. Notably,
walkthroughs provide no measured results and that precludes the application of
statistical process control needed to advance software process maturity.

Complementary Technologies

To optimize the practice of Software Inspections on legacy code during
maintenance operations, all modules are rank ordered by cyclomatic complexity.
Candidates for inspection are selected from those with highest complexity rating
where the defect density is expected to be high.

This legacy code maintenance strategy can be extended by rank ordering all
modules based upon incidents encountered in the past year and by rank
ordering the modules expected to be adapted and perfected in the coming year.
Modules for inspection are then selected based on their rank ordering in
cyclomatic complexity, defect history, and expected rework.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Software Inspections

http://www.sei.cmu.edu/str/descriptions/inspections.html (4 of 7)7/28/2008 11:28:14 AM

http://members.aol.com/ONeillDon/nsqe-roi.html

Software Inspections

Application category Detailed Design (AP.1.3.5),
Code (AP.1.4.2),
Unit Testing (AP.1.4.3.4),
Component Testing (AP.1.4.3.5)

Quality measures category Correctness (QM.1.3),
Reliability (QM.2.1.2),
Availability (QM.2.1.1),
Maintainability (QM.3.1)

Computing reviews category Program Verification (D.2.4),
Testing and Debugging (D.2.5)

References and Information Sources

[Basili/Boehm 01] Basili, Vic, & Barry Boehm. "Software Defect Reduction Top 10
List." Computer 34,1, (January 2001): 135-137.

[Ebenau 94]
Ebenau, Robert G. & Strauss, Susan H. Software Inspection
Process. New York, NY: McGraw-Hill, 1994.

[Fagan 76] Fagan, M. "Design and Code Inspections to Reduce Errors in
Program Development." IBM Systems Journal 15, 3 (1976): 182-
211.

[Freedman 90] Freedman, D.P. & Weinberg, G.M. Handbook of Walkthroughs,
Inspections, and Technical Reviews. New York, NY: Dorset House,
1990.

[Gilb 93] Gilb, Tom & Graham, Dorothy. Software Inspection. Essex,
England: Addison-Wesley Longman Ltd., 1993.

[Humphrey 89] Humphrey, Watts S. Managing the Software Process. Reading, MA:
Addison-Wesley, 1989.

[Linger 79] Linger, R.C.; Mills, H.D.; & Witt, B.I. Structured Programming:
Theory and Practice. Reading, MA: Addison-Wesley, 1979.

[O'Neill 88] O'Neill, Don & Ingram, Albert L. "Software Inspections Tutorial,"
92-120. Software Engineering Institute Technical Review 1988.
Pittsburgh, PA: Carnegie Mellon University, Software Engineering
Institute, 1988.

http://www.sei.cmu.edu/str/descriptions/inspections.html (5 of 7)7/28/2008 11:28:14 AM

Software Inspections

[O'Neill 89] O'Neill, Don. Software Inspections Course and Lab. Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 1989.

[O'Neill 92] O'Neill, Don. "Software Inspections: More Than a Hunt for Errors."
Crosstalk, Journal Of Defense Software Engineering 30 (January
1992): 8-10.

[O'Neill 95,96,00] O'Neill, Don. "National Software Quality Experiment: Results 1992-
1999." Software Technology Conference, Salt Lake City, 1995,
1996, and 2000.

[O'Neill 01a] O'Neill, Don. Peer Reviews. Encyclopedia of Software Engineering.
New York, New York: Wiley Publishing, Inc., to appear 2001.

[O'Neill 01b] O'Neill, Don. Software Inspection Measurements and Derived
Metrics Tool [online]. Available WWW <URL: http://members.aol.
com/ONeillDon/nsqe-assessment.html> (2001).

[O'Neill 01c] O'Neill, Don. Return on Investment Tool [online]. Available WWW
<URL: http://members.aol.com/ONeillDon/nsqe-roi.html> (2001).

[Paulk 95] Paulk, Mark C. The Capability Maturity Model: Guidelines for
Improving the Software Process. Reading, MA: Addison-Wesley
Publishing Company, 1995.

Current Author/Maintainer

Don O'Neill, Don O' Neill Consulting

External Reviewers

Alex Elentukh, Fidelity Investments
Rick Linger, SEI
Watts Humphrey, SEI
Joan Weszka, Lockheed Martin

Modifications

10 Jan 97 (original)
1 April 01 (updated)

Footnotes

1 Capability Maturity Model and CMM are service marks of Carnegie Mellon
University.

http://www.sei.cmu.edu/str/descriptions/inspections.html (6 of 7)7/28/2008 11:28:14 AM

http://members.aol.com/ONeillDon/nsqe-assessment.html
http://members.aol.com/ONeillDon/nsqe-assessment.html
http://members.aol.com/ONeillDon/nsqe-roi.html

Software Inspections

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/inspections_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/inspections.html (7 of 7)7/28/2008 11:28:14 AM

http://www.sei.cmu.edu/about/disclaimer.html

Statistical-Based Intrusion Detection

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Statistical-Based Intrusion Detection

Status

Advanced

Note

We recommend Intrusion Detection as prerequisite reading for this technology
description.

Purpose and Origin

Intrusion detection systems (IDS) automate the detection of security violations
through computer processing of system audit information. One IDS approach,
Rule-Based Intrusion Detection (RBID) , seeks to identify intrusion attempts by
matching audit data with known patterns of intrusive behavior. RBID systems
rely on codified rules of known intrusions to detect intrusive behavior. Intrusion
attempts not represented in an RBID rule base will go undetected by these
systems. To help overcome this limitation, statistical methods have been
employed to identify audit data that may potentially indicate intrusive or abusive
behavior. Known as statistical-based intrusion detection (SBID) systems, these
systems analyze audit trail data by comparing them to typical or predicted
profiles in an effort to find pending or completed computer security violations.
This emerging technology seeks to increase the availability of computer systems
by automating the detection and elimination of intrusions.

Technical Detail

SBID systems seek to identify abusive behavior by noting and analyzing audit
data that deviates from a predicted norm. SBID is based on the premise that
intrusions can be detected by inspecting a system's audit trail data for unusual
activity, and that an intruder's behavior will be noticeably different than that of a
legitimate user. Before unusual activity can be detected, SBID systems require a
characterization of user or system activity that is considered "normal." These
characterizations, called profiles, are typically represented by sequences of
events that may be found in the system's audit data. Any sequence of system
events deviating from the expected profile by a statistically significant amount is
flagged as an intrusion attempt [Sundaram 96]. The main advantage of SBID
systems is that intrusions can be detected without a priori information about the
security flaws of a system [Kemmerer 94].

http://www.sei.cmu.edu/str/descriptions/sbid.html (1 of 5)7/28/2008 11:28:15 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/sbid_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Statistical-Based Intrusion Detection

SBID systems typically employ statistical anomaly and rule-based misuse
models [Mukherjee 94]. System profiles, user profiles, or both may be used to
define expected behavior. User profiles, if used, are specific to each user and
are dynamically maintained. As a user's behavior changes over time, so too will
his user profile. No such profiles are used in RBID systems. As is the case with
RBID systems, known intrusion scenarios can be codified into the rule base of
SBID systems.

Interesting variations on this theme include the following:

● Predictive pattern generation, which uses a rule base of user profiles
defined as statistically-weighted event sequences [Teng 90]. This method
of intrusion detection attempts to predict future events based on events
that have already occurred. Advantages of this approach include its ability
to detect misuse as well as intrusions and its ability to detect and respond
quickly to anomalous behavior.

● Connectionist approaches in which neural networks are used to create
and maintain behavior profiles [Lunt 93]. Advantages of neural
approaches include their ability to cope with noisy data and their ability to
adapt to new user communities. Unfortunately, trial and error is required
to train the net, and it is possible for an intruder to train the net during its
learning phase to ignore intrusion attempts [Sundaram 96].

Usage Considerations

An advantage of SBID systems is that they are able to adaptively learn the
behavior of the users they monitor and are thus potentially more sensitive to
intrusion attempts than are humans [Sundaram 96, Lunt 93]. However, SBID
systems require the creation and maintenance of user/system profiles. These
profiles are sensitive to hardware and software modifications, and will need to be
updated whenever the system or network they used to protect is modified.
Additional work is required to determine how statistical user/system profiles
should be created and maintained [Lunt 93].

Maturity

Statistical intrusion detection algorithms have been in existence since at least
1988. Several prototype systems have been developed, including Haystack
[Smaha 88], IDES [Lunt 93], and MIDAS [Mukherjee 94]. MIDAS is a deployed
real-time SBID that provides security protection for the National Computer
Center's networked mainframe computer. IDES, which is deployed at both SRI
and FBI locations, is an IDS that combines SBID with RBID to detect a wider
range of intrusion attempts. Another deployed security system containing
aspects of SBID technology is AT&T Bell Lab's Dragons system which protects
their Internet gateway;1 the Dragons system has succeeded in detecting
intrusion attempts ranging from attempted "guest" logins to forged NFS packets
[Mukherjee 94].

http://www.sei.cmu.edu/str/descriptions/sbid.html (2 of 5)7/28/2008 11:28:15 AM

Statistical-Based Intrusion Detection

Costs and Limitations

In addition to the costs associated with creating audit trails and maintaining user
profiles, there are several risks and limitations associated with SBID technology:

● Because user profiles are updated periodically, it is possible for an insider
to slowly modify his behavior over time until a new behavior pattern has
been established within which an attack can be safely mounted [Lunt 93].

● Determining an appropriate threshold for "statistically significant
deviations" can be difficult. If the threshold is set too low, anomalous
activities that are not intrusive are flagged as intrusive (false positive). If
the threshold is set too high, anomalous activities that are intrusive are
not flagged as intrusive (false negative).

● Defining user profiles may be difficult, especially for those users with
erratic work schedules/habits.

Like RBID systems, SBID systems will negatively affect throughput because of
to the need to collect and analyze audit data. However, in contrast with RBID
systems, SBID systems do not always lag behind the intruders. Detection of
anomalous behavior, whether or not it is codified as a known intrusion attempt,
may be sufficient grounds for an SBID system to detect an intruder.

Use of this technology requires personnel who are experienced in statistics and
intrusion detection techniques and who have in-depth knowledge of audit
collection mechanisms.

Dependencies

Expert systems are an enabler for this technology.

Alternatives

Other approaches to intrusion detection include model-based or rule-based
approaches (see Rule-Based Intrusion Detection), and approaches based on
genetic algorithms. Manual examination of recorded audit data and online
monitoring of access activity by knowledgeable personnel are the only other
known alternatives.

Complementary Technologies

Rule-Based Intrusion Detection systems can be used in conjunction with
statistical-based intrusion detection systems to catch a wider variety of intrusion
attempts, and user authentication systems can be used to help verify user
identify.

Index Categories

This technology is classified under the following categories. Select a category for

http://www.sei.cmu.edu/str/descriptions/sbid.html (3 of 5)7/28/2008 11:28:15 AM

Statistical-Based Intrusion Detection

a list of related topics.

Name of technology Statistical-Based Intrusion Detection

Application category System Security (AP.2.4.3)

Quality measures category Security (QM.2.1.5)

Computing reviews category Operating Systems Security and Protection
(D.4.6)
Computer-Communication Networks Security
and Protection (C.2.0)
Security and Protection (K.6.5)

References and Information Sources

[Bell 76] Bell, D. E. & LaPadula, L. J. Secure Computer System: Unified
Exposition and Multics Interpretation Rev. 1 (MTR-2997).
Bedford, MA: MITRE Corporation, 1976.

[Kemmerer 94] Kemmerer, Richard A. "Computer Security," 1153-1164.
Encyclopedia of Software Engineering. New York, NY: John
Wiley and Sons, 1994.

[Lunt 93] Lunt, Teresa F. "A Survey of Intrusion Detection Techniques."
Computers and Security 12, 4 (June 1993): 405-418.

[Mukherjee
94]

Mukherjee, Biswanath, L.; Heberlein, Todd; & Levitt, Karl N.
"Network Intrusion Detection." IEEE Network 8, 3 (May/June
1994): 26-41.

[Smaha 88] Smaha, Stephen E. "Haystack: An Intrusion Detection System,"
37-44. Proceedings of the Fourth Aerospace Computer Security
Applications Conference. Orlando, Florida, December 12-16,
1988. Washington, DC: IEEE Computer Society Press, 1989.

[Spafford 88] Spafford, Eugene H. The Internet Worm Program: An Analysis
(CSD-TR-823). West Lafayette, IN: Purdue University, 1988.

[Sundaram
96]

Sundaram, Aurobindo. An Introduction to Intrusion Detection
[online]. Available WWW
<URL: http://www.acm.org/crossroads/xrds2-4/xrds2-4.html>
(1996).

[Teng 90] Teng, Henry S.; Chen, Kaihu; & Lu, Stephen C. "Security
Audit Trail Analysis Using Inductively Generated Predictive
Rules," 24-29. Sixth Conference on Artificial Intelligence
Applications. Santa Barbara, CA, May 5-9, 1990. Los Alamitos,
CA: IEEE Computer Society Press, 1990.

http://www.sei.cmu.edu/str/descriptions/sbid.html (4 of 5)7/28/2008 11:28:15 AM

http://www.acm.org/crossroads/xrds2-4/xrds2-4.html

Statistical-Based Intrusion Detection

Current Author/Maintainer

Mark Gerken, Air Force Rome Laboratory

Modifications

10 Jan 97 (original)

Footnotes

1 See http://www.research.att.com for more details.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/sbid_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/sbid.html (5 of 5)7/28/2008 11:28:15 AM

http://www.research.att.com/
http://www.sei.cmu.edu/about/disclaimer.html

Statistical Process Control for Software

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Statistical Process Control for Software

Status

Complete

Purpose and Origin

The demand for increased efficiency and effectiveness of our software
processes places measurement demands on the software engineering
community beyond those traditionally practiced. Statistical and process thinking
principles lead to the use of statistical process control methods to determine the
consistency and capability of the many processes used to develop software.

Technical Detail

Over the past decade, the concepts, methods, and practices associated with
process management and continual improvement have gained wide acceptance
in the software community. These concepts, methods, and practices embody a
way of thinking, a way of acting, and a way of understanding the data generated
by processes that collectively result in improved quality, increased productivity,
and competitive products. The acceptance of this "process thinking" approach
has motivated many to start measuring software processes that are responsive
to questions relating to process performance [Florac 99]. In that vein, traditional
software measurement and analysis methods of measuring "planned versus
actual" is not sufficient for measuring process performance or for predicting
process performance. The time has come to marry, if you will, "process thinking"
with "statistical thinking."

"Statistical thinking" [Britz 97] embraces three principles

1. all work occurs in a system of interconnected processes
2. variation exists in all processes
3. understanding and reducing variation are keys to success

If we examine the basis for these "process thinking" and "statistical concepts",
we find that they are founded on the principles of statistical process control.
These principles hold that by establishing and sustaining stable levels of
variability, processes will yield predictable results. We can then say that the
processes are under statistical control. Controlled processes are stable
processes, and stable processes enable you to predict results. This in turn

http://www.sei.cmu.edu/str/descriptions/spc.html (1 of 11)7/28/2008 11:28:16 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/spc_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Statistical Process Control for Software

enables you to prepare achievable plans, meet cost estimates and scheduling
commitments, and deliver required product functionality and quality with
acceptable and reasonable consistency. If a controlled process is not capable of
meeting customer requirements or other business objectives, the process must
be improved or retargeted.

When we relate these notions of process and statistical thinking to the
operational level, we realize a key concern of process management is that of
process performance &endash; how is the process performing now
(effectiveness, efficiency), and how can it be expected to perform in the future?
In the context of obtaining quantified answers to these questions, we can
address this issue by deconstructing the question of process performance into
three parts.

First we should examine process performance in terms of compliance. For
example, is the process being executed properly? Is the personnel trained? Are
the right tools available? If the process is not in compliance, we know there is
little chance of it performing satisfactorily.

If a process is compliant, the next question is: Is the process performance
(execution) reasonably consistent over time? Is the effort, cost, elapsed time,
delivery, and quality consumed and produced by executing the process
consistently? Realizing that variation exists in all processes, is the variation in
process performance predictable?

Finally, if the process performance is consistent, we ask the question: Is the
process performing satisfactorily? Is it meeting the needs of interdependent
processes and/or of the needs of the customers? Is it effective and efficient?

Historically, software organizations have addressed the question of compliance
by conducting assessments, such as comparing the organizations' software
process against a standard (e.g., the CMM). Such an assessment provides a
picture of the process status at a point in time and indicates the organization's
capacity to execute various software processes according to the standard's
criteria. However, it does not follow that the process is executed consistently or
efficiently merely because the assessment results satisfied all the criteria.

The questions of process consistency, effectiveness, and efficiency require a
measurement of process behavior as it is executed over time. Other disciplines
have addressed this issue by using statistical process control methods,
specifically using Shewhart control charts. They have concluded that control
charts provide the basis for making process decisions and predicting process
behavior.

Successful use of control charts by other disciplines suggest it is time to
examine how statistical process control techniques can help to address our
software process issues. In so doing, we find that Shewhart's control charts
provide a statistical method for distinguishing between variation caused by
normal process operation and variation caused by anomalies in the process.
Additionally, Shewhart's control charts provide an operational definition for
determining process stability or consistency and predictability as well as
quantitatively establishing process capability to meet criteria for process

http://www.sei.cmu.edu/str/descriptions/spc.html (2 of 11)7/28/2008 11:28:16 AM

Statistical Process Control for Software

effectiveness and efficiency.

We use the term software process to refer not just to an organization's overall
software process, but to any process or subprocess used by a software project
or organization. In fact, a good case can be made that it is only at subprocess
levels that true process management and improvement can take place. Thus, we
view the concept of software process as applying to any identifiable activity that
is undertaken to produce or support a software product or service. This includes
planning, estimating, designing, coding, testing, inspecting, reviewing,
measuring, and controlling, as well as the subtasks and activities that comprise
these undertakings.

Process Performance Variation

The basis for control charts is recognition of two types of variation: common
cause variation and assignable cause variation.

Common cause variation is variation in process performance due to normal or
inherent interaction among the process components (people, machines,
material, environment, and methods). Common cause variation of process
performance is characterized by a stable and consistent pattern over time, as
illustrated in Figure 1. Variation in process performance due to common cause is
thus random, but will vary within predictable bounds. When a process is stable,
the random variations that we see all come from a constant system of chance
causes. The variation in process performance is predictable, and unexpected
results are extremely rare.

Figure 1: The Concept of Controlled Variation

The key word in the paragraph above is "predictable." Predictable is
synonymous with "in control."

The other type of variation in process performance is due to assignable causes.
Assignable cause variation has marked impacts on product characteristics and
other measures of process performance. These impacts create significant

http://www.sei.cmu.edu/str/descriptions/spc.html (3 of 11)7/28/2008 11:28:16 AM

Statistical Process Control for Software

changes in the patterns of variation. This is illustrated in Figure 2, which we have
adapted from Wheeler and Chambers [Wheeler 92]. Assignable cause variations
arise from events that are not part of the normal process. They represent sudden
or persistent abnormal changes to one or more of the process components.
These changes can be in things such as inputs to the process, the environment,
the process steps themselves, or the way in which the process steps are
executed. Examples of assignable causes of variation include shifts in the quality
of raw materials, inadequately trained people, changes to work environments,
tool failures, altered methods, failures to follow the process, and so forth.

Figure 2: The Concept of Uncontrolled or Assignable Cause Variation

When all assignable causes have been removed and prevented from reoccurring
in the future so that only a single, constant system of chance causes remains,
we have a stable and predictable process.

Stability of a process with respect to any given attribute is determined by
measuring the attribute and tracking the results over time. If one or more
measurements fall outside the range of chance variation, or if systematic
patterns are apparent, the process may not be stable. We must then look for the
causes of deviation, and remove any that we find, if we want to achieve a stable
and predictable state of operation.

When a process is stable, 99+% of process performance variation will fall within
3 sigma of the mean or average of the variation. When the process variation falls
outside of the 3 sigma limits, the variation is very likely caused by an anomaly in
the process.

When a process is stable, or nearly so, the 3 sigma limits determine the amount
of variation that is normal or natural to the process. This is the "voice of the
process" or the process telling us what it is capable of doing. This may or may
not be satisfactory to the customer: if it is, it is "capable"; if it is not, the process
must be changed since we know that the remaining variation is due to the
process itself.

Three Important Factors

http://www.sei.cmu.edu/str/descriptions/spc.html (4 of 11)7/28/2008 11:28:16 AM

Statistical Process Control for Software

Before we look at an example, there are three important notions that should be
discussed

1. the importance of operational definitions
2. homogeneity
3. issues of rational subgrouping

The need for operational definitions is fundamental to any measurement activity.
It is not enough to identify measures. Measures must be defined in such a way
as to tell others exactly how each measure is obtained so that they can collect
and interpret the values correctly.

The primary issue is not whether a definition for a measure is correct, but that
everyone understands, completely, what the measured values represent. Only
then can people be expected to collect values consistently and have others
interpret and apply the results to reach valid conclusions.

Communicating clear and unambiguous definitions is not easy. Having
structured methods for identifying all the rules that are used to make and record
measurements can be very helpful in ensuring that important information does
not go unmentioned. When designing methods for defining measures, one
should keep in mind that things that do not matter to one user are often
important to another. This means that measurement definitions (and structures
for recording the definitions) often become larger and more encompassing than
the definitions most organizations have traditionally used. This is all the more
reason to have a well-organized approach. Definition focuses on details, and
structured methods help ensure that all details get identified, addressed, and
recorded. They also help negotiating with people who believe that attention to
detail is no longer their responsibility.

Operational definitions must satisfy two important criteria [Park 92]

1. communication. If someone uses the definition as a basis for measuring
or describing a measurement result, will others know precisely what has
been measured, how it was measured, and what has been included and
excluded?

2. repeatability. Could others, armed with the definition, repeat the
measurements and get the same results?

These criteria are closely related. In fact, if you can't communicate exactly what
was done to collect a set of data, you are in no position to tell someone else how
to do it. Far too many organizations propose measurement definitions without
first determining what users of the data will need to know about the measured
values in order to use them intelligently. It is no surprise, then, that
measurements are often collected inconsistently and at odds with users' needs.
When it comes to implementation, rules such as, "Count all noncomment,
nonblank source statements" or "Count open problems" are open to far too many
interpretations to provide repeatable results

Although communicating measurement definitions in clear, unambiguous terms
requires effort, there is good news as well. When someone can exactly describe
what has been collected, it is easy to turn the process around and say, "Please

http://www.sei.cmu.edu/str/descriptions/spc.html (5 of 11)7/28/2008 11:28:16 AM

Statistical Process Control for Software

do that again." Moreover, you can give the description to someone else and say,
"Please use this as your definition, but with these changes." In short, when we
can communicate clearly what we have measured, we have little trouble creating
repeatable rules for collecting future data.

Next, the notions of homogeneity and rational subgrouping need to be
understood and addressed. Homogeneity and rational subgrouping go hand in
hand. Because of the non-repetitive nature of software products and processes,
some believe it is difficult to achieve homogeneity with software data. The idea is
to understand the theoretical issues and at the same time, work within some
practical guidelines. We need to understand what conditions are necessary to
consider the data homogeneous. When more than two data values are placed in
a subgroup, we are making a judgement that these values are measurements
taken under essentially the same conditions, and that any difference between
them is due to natural or common variation. The primary purpose of
homogeneity is to limit the amount of variability within the subgroup data. One
way to satisfy the homogeneity principle is to measure the subgroup variables
within a short time period. Since we are not talking about producing widgets but
software products, the issue of homogeneity of subgroup data is a judgement
call that must be made by one with extensive knowledge of the process being
measured.

The principle of homogeneously subgrouped data is important when we consider
the idea of rational subgrouping. That is, when we want to estimate process
variability, we try to group the data so that assignable causes are more likely to
occur between subgroups than within them. Control limits become wider and
control charts less sensitive to assignable causes when containing non-
homogeneous data. Creating rational subgroups that minimize variation within
subgroups always takes precedence over issues of subgroup size.

Using Control Charts

Now let's examine how control charts can be used to investigate process stability
and lead to process improvement. There are a number of different kinds of
control charts (please see [Florac 99] for a more detailed discussion on this and
other topics). In software environments, measurements often occur only as
individual values. As a result, there may be a preference to using the individuals
and moving range (XmR) charts to examine the time-sequenced behavior of
process data.

For example, the figure below shows an XmR control chart for the number of
reported but unresolved problems backlogged over the first 30 weeks of system
testing. The chart indicates that the problem resolution process is stable, and
that it is averaging about 20 backlogged problems (the center line, CL, equals
20.4), with an average change in backlog of 4.35 problems from week to week.
The upper control limit (UCL) for backlogged problems is about 32, and the
lower control limit (LCL) is about 8. If future backlogs were to exceed these limits
or show other forms of nonrandom behavior, it would be likely that the process
has become unstable. The causes should then be investigated. For instance, if
the upper limit is exceeded at any point, this could be a signal that there are
problems in the problem-resolution process. Perhaps a particularly thorny defect
is consuming resources, causing problems to pile up. If so, corrective action

http://www.sei.cmu.edu/str/descriptions/spc.html (6 of 11)7/28/2008 11:28:16 AM

Statistical Process Control for Software

must be taken if the process is to be returned to its original (characteristic)
behavior.

Figure 3: Control Chart for the Backlog of Unresolved Problems

We must be careful not to misinterpret the limits on the individual observations
and moving ranges that are shown in the control chart. These limits are
estimates for the limits of the process, based on measurements of the process
performance. The process limits together with the center lines are sometimes
referred to as the "voice of the process."

The performance indicated by the voice of the process is not necessarily the
performance that needs to be provided to meet the customer's requirements. If
the variability and location of the measured results are such that the
processdoes not meet the customer requirement or specification (e.g., produces
too many nonconforming products), the process must be improved. This means
reducing the process performance variability, moving the average, or both.

Usage Considerations

1. When analyzing process performance data, all sources of variation in the
process must be identified. If a conscious effort is not made to account for the
potential sources of variation, variations that could help to improve the process
might inadvertantly be hidden or obscured. Even worse, it could lead to a faulty
analysis. When data are aggregated, the results will be particularly susceptible
to overlooked or hidden sources of variation. Overly aggregated data come
about in many ways, but the most common causes are

● inadequately formulated operational definitions of product and process
measures

● inadequate description and recording of context information
● lack of traceability from data back to the context from where it originated
● working with data whose elements are combinations (mixtures) of values

from non-homogeneous sources or different cause systems

http://www.sei.cmu.edu/str/descriptions/spc.html (7 of 11)7/28/2008 11:28:16 AM

Statistical Process Control for Software

Overly aggregated data easily lead to:

● difficulty in identifying instabilities in process performance
● difficulty in tracking instabilities to assignable causes
● using results from unstable processes to draw inferences or make

predictions about capability or performance
● anomalous process behavior patterns

2. When measured values of continuous variables have insufficient granularity (i.
e., are coarse and imprecise), the discreteness that results can mask the

underlying process variation. Computations for and sigma can then be
affected, and individual values that are rounded or truncated in the direction of
the nearest control limit can easily give false out-of-control signals.

There are four main causes of coarse data: inadequate measurement
instruments, imprecise reading of the instruments, rounding, and taking
measurements at intervals that are too short to permit detectable variation to
occur. When measurements are not obtained and recorded with sufficient
precision to describe the underlying variability, digits that contain useful
information will be lost. If the truncation or rounding reduces the precision in
recorded results to only one or two digits that change, the running record of
measured values will show only a few levels of possible outcomes.

3. Control charts can be used to serve many different purposes. Control charts
can be helpful for monitoring processes from release to release to compare
overall performance. They can be used for making process adjustments to
ensure that stability is maintained for a process on a daily or weekly basis. Most
importantly control charts may be used for continuous improvement of a process
that is stable and capable. It is important to keep in mind however, that the
control charts provide the most value to the people or team where the process
knowledge resides.

Management can also help set the example of how not to use the control charts.
While the control charts can be used to improve personal performance,
management should not misuse this tool or the data. Management has to
remember that the old saw "we will continue the beatings until morale improves,"
comes into play whenever measurements are used as part of the "beating."
Clearly, dysfunctional behavior is likely to occur if employees perceive that
measurements are being used in this way

There is evidence that Shewhart's control charts can play a significant role in
measuring process performance consistency, and process predictability .
Successful implementers of this process recognize the importance to1)
understand the concepts of variation, data homogeneity, common cause
systems, and rational subgrouping, and 2) fully understand the process and
subprocesses being measured. Furthermore, they have used the control charts
to measure process performance at the subprocess (and lower) level realizing
that there is far too much variation in the overall process to be helpful in
identifying possible actions for improvement.

http://www.sei.cmu.edu/str/descriptions/spc.html (8 of 11)7/28/2008 11:28:16 AM

Statistical Process Control for Software

These software organizations have come to appreciate the value added when
control charts are used to provide engineers and managers with quantitative
insights into the behavior of their software development processes. In many
ways the control chart is a form of instrumentation. Much like an oscilloscope, a
temperature probe, or a pressure gauge, it provides data to guide decisions and
judgements by process knowledgeable engineers and managers.

Maturity

While SPC is not a new technology, (i.e., this technique has been applied in
manufacturing for years) it is just recently being applied to address software
engineering improvement. Organizations are starting to become aware of SPC,
getting appropriate training, and starting to apply SPC. To get started, many
organizations are analyzing inspection data using SPC.

References and Information Sources

[Austin 96] Robert D. Austin, Measuring and Managing Performance in
Organizations, Dorset House Publishing, ISBN: 0-932633-36-6, New
York, NY, 1996.

[Basili 92] V.R. Basili, Software Modeling and Measurement: The Goal/
Question/Metric Paradigm, University of Maryland, CS-TR-2956,
UMIACS-TR-92-96, 1992.

[Brassard 94] Michael Brassard and Diane Ritter, The Memory Jogger II, GOAL/
QPC, Methuen, MA, 1994.

[Burr 96] Adrian Burr and Mal Owen, Statistical Methods for Software Quality,
ISBN 1-85032-171-X, International Thomson Computer Press,
Boston, MA, 1996.

[Deming 86] W. Edwards Deming, Out of the Crisis, MIT Center for Advanced
Engineering Study, Cambridge, MA, 1986.

[Florac 99] William A. Florac and Anita D. Carleton, Measuring the Software
Process: Statistical Process Control for Software Process
Improvement, Addison &endash;Wesley, 1999.

[Hare 95] Lynne B. Hare, Roger W. Hoerl, John D. Hromi, and Ronald D. Snee,
The Role of Statistical Thinking in Management, ASQC Quality
Progress, Vol. 28, No. 2, February 1995, pp. 53-60.

http://www.sei.cmu.edu/str/descriptions/spc.html (9 of 11)7/28/2008 11:28:16 AM

Statistical Process Control for Software

[Humphrey 95] Watts S. Humphrey, A Discipline for Software Engineering, ISBN 0-
201-54610-8, Addison-Wesley Publishing Company, Reading, MA,
1995.

[Ishikawa 86] K. Ishikawa, Guide to Quality Control, Asian Productivity
Organization, Tokyo, Japan, (available from Unipub - Kraus
International Publications, White Plains, NY) 1986.

[Paulk 95] Carnegie Mellon University, Software Engineering Institute (Principal
Contributors and Editors: Mark C. Paulk, Charles V. Weber, Bill
Curtis, and Mary Beth Chrissis), The Capability Maturity Model:
Guidelines for Improving the Software Process, ISBN 0-201-54664-7,
Addison-Wesley Publishing Company, Reading, MA, 1995.

[Wheeler 92] Donald J. Wheeler and David S. Chambers, Understanding Statistical
Process Control, Second Edition, SPC Press, Knoxville, TN, 1992.

[Wheeler 98] Donald J. Wheeler and Sheila R. Poling, Building Continual
Improvement: A Guide for Business, SPC Press, Knoxville, TN, 1998.

Current Author/Maintainer

Anita Carleton, SEI

External Reviewers

Bill Florac, SEI

Modifications

February 28, 2001: Original

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/spc_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

http://www.sei.cmu.edu/str/descriptions/spc.html (10 of 11)7/28/2008 11:28:16 AM

http://www.sei.cmu.edu/about/disclaimer.html

Statistical Process Control for Software

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/spc.html (11 of 11)7/28/2008 11:28:16 AM

TAFIM Reference Model

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

TAFIM Reference Model

Status

Advanced

Note

We recommend Reference Models, Architectures, Implementations- An Overview as
prerequisite reading for this technology.

Purpose and Origin

The Technical Architectural Framework for Information Management (TAFIM) reference model
was developed by the Defense Information Systems Agency (DISA) to guide the evolution of
Department of Defense (DoD) systems, including sustaining base, strategic, and tactical
systems, as well as interfaces to weapon systems. Application of the TAFIM reference model is
required on most DoD systems [Paige 93]. TAFIM is a set of services, standards, design
components, and configurations that are used in design, implementation, and enhancement of
information management system architectures. The intent is that the DoD infrastructure will
have a common architecture that will, over time, be a fully flexible and interoperable enterprise.
Details on the TAFIM model are available in a seven volume TAFIM document, but are
primarily in Volume 3 [TAFIM 94].

Technical Detail

The TAFIM reference model (Figure 27) describes services (functionality) needed within each
of the model's components. It contains a set of general principles on how components and
component services relate to each other. This model is designed to enhance transition from
legacy applications to a distributed environment. TAFIM addresses the following six software
components:

1. Application software. Application software consists of mission area applications and
support applications. Mission area applications may be custom-developed software,
commercial-off-the-shelf (COTS) products, or Non-developmental items (NDI). Support
applications are building blocks for mission area applications. They manage processing
for the communication environment and can be shared by multiple mission and support
applications. Common COTS support applications include multimedia, communications,
business processing, environment management, database utilities, and engineering
support (analysis, design, modeling, development, and simulation) capabilities.

2. Application platform. Application platform consists of hardware services and software

http://www.sei.cmu.edu/str/descriptions/tafim.html (1 of 6)7/28/2008 11:28:18 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/tafim_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

TAFIM Reference Model

services, including operating system, real-time monitoring program, and peripheral
drivers. Application software must access platform resources by a request across
Application Programming Interfaces (APIs) to ensure integrity and consistency. A
platform service may be realized by a single process shared by a group of applications,
or by a distributed system with portions of an application operating on separate
processors. Application platform services include software engineering, user interface,
data management, data interchange, graphic, network, and operating system
capabilities.

3. Application platform cross-area services. Application platform cross-area services are
services that have a direct effect on the operation of one or more of the functional areas.
Application platform cross-area services include culturally-related application
environments, security, system administration and distributed computing capabilities.

4. External environment. The external environment supports system and application
interoperability and user and data portability. The external environment interface
specifies a complete interface between the application platform and underlying external
environment. The external environment includes human-computer interaction,
information services, and communication capabilities.

5. TAFIM application program interface (API).The API is the interface between an
application and a service that resides on a platform. The API specifies how a service is
invoked- without specifying its implementation- so that the implementation may be
changed without causing a change in the applications that use that API. The API makes
the platform transparent to the application. A platform may be a single computer or a
network of hosts, clients, and servers where distributed applications are implemented. A
service invoked through an API can reside on the same platform as the requesting
application, on a different platform, or on a remote platform. APIs are defined for mission
and support applications and platform services. APIs are generally required for platform
services such as compilers, window management, data dictionaries, database
management systems, communication protocols, and system management utilities.

6. TAFIM external environment interface. The TAFIM external environment interface (which
could be considered and API) is between the application platform and the external
environment. This interface allows the exchange of information. It supports system and
application software interoperability. User and data portability are directly provided by
the external environment interface.

http://www.sei.cmu.edu/str/descriptions/tafim.html (2 of 6)7/28/2008 11:28:18 AM

TAFIM Reference Model

Figure 27: DoD TAFIM Technical Reference Model

Usage Considerations

The TAFIM reference model is applicable to most information systems, including sustaining
base, strategic, and tactical systems, as well as interfaces to weapon systems [TAFIM 94]. It is
mandatory for use on most DoD programs [Paige 93]. However, systems built using the
reference model have been criticized by Rear Adm. John Gauss, the Interoperability Chief at
DISA, when speaking on systems in the field in Bosnia: "We have built a bunch of state-of-the-
art, open-systems, TAFIM-compliant stove-pipes" [Temin 96]. TAFIM-compliant means that the
applicable standards and guidelines are met for the implemented component services. This
suggests that even when complying with the TAFIM reference model, problems of
interoperability are not necessarily resolved. The Joint Technical Architecture (JTA) provides a
set of standards and guidelines for C4I systems, specifically in the area of interoperability, that
supersedes TAFIM Volume 7 [JTA 96].

There are TAFIM-compliant software products available for use when implementing a TAFIM-
based architecture in areas such as support applications, communication services, business
process services, environment management, and engineering services. Additional products
exist or are being developed in areas such as user interface, data management, data
interchange, graphics, operating systems, internationalization, security system management,

http://www.sei.cmu.edu/str/descriptions/tafim.html (3 of 6)7/28/2008 11:28:18 AM

TAFIM Reference Model

and distributed computing.

Maturity

The latest version of TAFIM, Version 2.0, was published in 1994. DoD organizations and
contractors have been applying this set of guidelines to current and future information systems.
The Defense Information Infrastructure Common Operating Environment is an implementation
of TAFIM. This COE is currently being used by the Global Command and Control System
(GCCS) and the Global Combat Support System (GCSS). The Air Force Theater Battle
Management Core System (TBMCS) is also required to comply with the TAFIM and use the
COE. It may take several years, after multiple new TAFIM-compliant systems are in the field, to
determine the effectiveness of the reference model with respect to achieving a common,
flexible, and interoperable DoD infrastructure.

Costs and Limitations

The TAFIM reference model does not fully specify components and component connections
[Clements 96]. It does not dictate the specific components for implementation. (No reference
model prescribes implementation solutions.) TAFIM does provide the guidance necessary to
improve commonality among DoD information technical architectures.

One contractor has found that there is no cost difference in using the TAFIM reference model
(as compared to any other reference model) when designing and implementing a software
architecture. This is based on the fact that application of a reference model is part of the
standard design and implementation practice.

Dependencies

The TAFIM reference model is dependent on the evolution of component and service standards
that apply specifically to software; it may be affected by computer platforms and network
hardware as well.

Alternatives

Under conditions where the TAFIM reference model is not required, an alternative model would
be the Reference Model for Frameworks of Software Engineering Environments (known as the
ECMA model [ECMA 93]) that is promoted in Europe and used commercially and worldwide.
Commercially-available Hewlett-Packard products use this model [HP 96]. Another alternative
would be the Common Object Request Broker Architecture (CORBA) if the design called for
object-oriented infrastructure .

Complementary Technologies

Open systems (see COTS and Open Systems-An Overview) would be a complementary
technology to TAFIM because work done in open system supports the TAFIM goals of
achieving interoperable systems.

Index Categories

http://www.sei.cmu.edu/str/descriptions/tafim.html (4 of 6)7/28/2008 11:28:18 AM

TAFIM Reference Model

This technology is classified under the following categories. Select a category for a list of
related topics.

Name of technology TAFIM Reference Model

Application category Software Architecture Models (AP.2.1.1)
Distributed Computing (AP.2.1.2)

Quality measures category Maintainability (QM.3.1)
Interoperability (QM.4.1)

Computing reviews category Distributed Systems (C.2.4)
Software Engineering Design (D.2.10)

References and Information Sources

[Clements
96]

Clements, Paul C. & Northrop, Linda M. Software Architecture: An Executive
Overview (CMU/SEI-96-TR-003). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1996.

[ECMA 93] Reference Model for Frameworks of Software Engineering Environments, 3rd
Edition (NIST Special Publication 500-211/Technical Report ECMA TR/55).
Prepared jointly by NIST and the European Computer Manufacturers
Association (ECMA). Washington, DC: U.S. Government Printing Office, 1993.

[HP 96] Integrated Solutions Catalog for the SoftBench Product Family. Palo Alto, CA:
Hewlett-Packard, 1996.

[JTA 96] U.S. Department of Defense. Joint Technical Architecture (JTA) [online].
Available WWW
<URL: http://www-jta.itsi.disa.mil/>(1996).

[Paige 93] Paige, Emmett. Selection of Migration Systems ASD (C3I) Memorandum.
Washington, DC: Department of Defense, November 12, 1993.

[TAFIM 94] U.S. Department Of Defense. Technical Architecture Framework For
Information Management (TAFIM) Volumes 1-8, Version 2.0. Reston, VA:
DISA Center for Architecture, 1994. Also available [online] WWW
<URL: http://www-library.itsi.disa.mil/tafim/tafim.html> (1996).

[Temin 96] Temin, Thomas, ed. "Mishmash at Work (DoD Systems in Bosnia are not
Interoperable)." Government Computer News 15, 7 (April 1996): 28.

Current Author/Maintainer

Darleen Sadoski, GTE

External Reviewers

http://www.sei.cmu.edu/str/descriptions/tafim.html (5 of 6)7/28/2008 11:28:18 AM

http://www-jta.itsi.disa.mil/
http://www-library.itsi.disa.mil/tafim/tafim.html

TAFIM Reference Model

Peter Garrabrant, GTE
Tricia Oberndorf, SEI

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the
U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/tafim_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/tafim.html (6 of 6)7/28/2008 11:28:18 AM

http://www.sei.cmu.edu/about/disclaimer.html

Team Software Process (TSP)

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Team Software Process (TSP)

Status

Complete

Note

Recommended and additional and supplementary reading materials include:
The Team Software ProcessSM (TSPSM) (CMU/SEI-2000-TR-023).

The Team Software ProcessSM (TSPSM): An Overview and Preliminary Results
of Using Disciplined Practices (CMU/SEI-2000-TR-015).

Building High Performance Teams Using Team Software ProcessSM (TSPSM)
and Personal Software ProcessSM (PSPSM) - Home Page http://www.sei.cmu.
edu/tsp

Purpose and Origin

Organizations that develop software recognize that controlling their software
processes significantly affects their ability to be successful in business.
However, organizations still struggle when trying to apply disciplined methods in
software process. Historically, this struggle has resulted from a lack of
operational procedures for use by teams and individuals in developing software
in a disciplined fashion. The Team Software Process (TSP)1 was designed to
provide both a strategy and a set of operational procedures for using disciplined
software process methods at the individual and team levels.

Watts Humphrey developed the Personal Software Process (PSP)2 and the TSP
as a follow-up to his work with the Capability Maturity Model (CMM)3. The PSP
is a defined process for individuals [Humphrey 95] that operationally enacts the
concepts and principles prescribed by the CMM. It is the foundation from which
the TSP was developed for teams. The TSP represents an operational process
for teams that may be used as a strategy for implementing the CMM framework
on teams.

Technical Detail

The TSP is a fully defined and measured process that teams can use to plan
their work, execute their plans, and continuously improve their software
development processes. The TSP process is defined in a series of process

http://www.sei.cmu.edu/str/descriptions/tsp.html (1 of 6)7/28/2008 11:28:19 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/tsp_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/publications/documents/00.reports/00tr023.html
http://www.sei.cmu.edu/publications/documents/00.reports/00tr015.html
http://www.sei.cmu.edu/tsp
http://www.sei.cmu.edu/tsp

Team Software Process (TSP)

scripts that describe all aspects of project planning and product development.
The process includes team role definitions, defined measures, and the
postmortem process. Teams using the TSP practice those processes areas that
are prescribed by the CMM Maturity Level 5. Their team processes are
repeatable, defined, measured, and managed quantitatively. However, it should
be noted that the TSP can and has been used successfully by organizations at
levels 1, 2, 3, and 5. [McAndrews 00] In fact, the use of the TSP may even help
low maturity organizations to have teams quickly start behaving like a level 5
organization. Also, using the TSP will help the organization recognize how the
process areas operate at each maturity level.

Within the TSP scripts, there are operational definitions of the measures to be
used as part of the process. These measures include basic size (thousands of
lines of code [KLOC]), time (minutes and hours), and quality (defects), as well as
derived measures for productivity (KLOC/hour), process yield (percentage of
defects removed before a particular process phase), and defect densities
(defects/KLOC) of finished products. The process establishes how these
measures are defined, estimated, collected, reported, and analyzed. The
process also makes use of the team's historical data, as well as industry
planning and quality guidelines. Tools are available to help facilitate the TSP.

Usage Considerations

A typical software engineering team spends a great deal of time and creative
energy struggling with questions concerning goals, team roles, quality,
development, management, and multiple other issues. In fact, a team's ability to
deal with these issues can affect their success. The TSP provides explicit
guidance on how to answer these questions and accomplish the team's
objectives. The TSP shows engineering teams how to produce quality products
for planned costs and on aggressive schedules. It achieves this by showing
teams how to manage their work and by making them owners of their plans and
processes. The TSP also helps to accelerate software process improvement.

The TSP has been used with software-only teams and with mixed teams
composed of hardware, software, systems, and test professionals. The TSP can
be used on teams that typically range in size from 2 to about 150 individuals.
The TSP has been used for both new development and enhancement, and on
applications ranging from commercial software to embedded real-time systems.
It is also applicable in maintenance and support environments.

Maturity

Since the TSP technology is new, it has not yet gained widespread use. It also
takes time to obtain data on projects because software projects in industry
typically take months or years to complete. Furthermore, because of competition
in the software industry, and the resulting sensitivity about sharing data, it can be
difficult to persuade organizations to release their data to the public and to
participate in studies such as this. Consequently, there are limited data at this
time on TSP application. However, there have been a few published results, and
they are compelling. [McAndrews 00]

http://www.sei.cmu.edu/str/descriptions/tsp.html (2 of 6)7/28/2008 11:28:19 AM

Team Software Process (TSP)

Costs and Limitations

Introducing the TSP into engineering organizations is the principal focus of the
TSP effort at the Software Engineering Institute (SEI). The TSP was designed
for engineering teams, and its introduction has been initially targeted at teams
developing software-intensive products. To support use by industrial teams that
include other than software specialties, the SEI has developed an introductory
PSP course for professionals who are not software proficient. It has also
introduced a series of training and qualification programs so that organizations
can obtain their own PSP instructors. In addition, the SEI provides TSP coach
training so that organizations can launch and coach their own TSP teams. The
SEI has established relationships with a number of transition partners who are
qualified to teach the PSP and to coach TSP teams.

Dependencies

The TSP requires careful introduction strategies that include PSP training. The
initial reason for developing the TSP was to provide an environment where PSP-
trained engineers would find it natural to use disciplined methods. PSP training
by itself had not been found sufficient to get engineers to consistently use the
methods [Ferguson 97]. There are several reasons why this is the case. First,
without training, managers generally do not understand the PSP methods or
appreciate their benefits. They then often object to their engineers spending time
on planning, doing personal reviews, or gathering and analyzing data. Second,
disciplined work is hard to do even with support and coaching. Without such
help, long periods of sustained disciplined work are almost impossible. The initial
motivation for the TSP design was to address these problems. [Humphrey 00]

Complementary Technologies

The TSP is a stand-alone technology used to produce effective teams. It can be
used independent of, and in conjunction with, various development
methodologies. TSP, like PSP, is complementary to organizational software
process improvements efforts based on the CMM for Software [Paulk 95]. The
CMM is an organization-focused process-improvement framework that provides
a disciplined, efficient organizational environment for software engineering work.
The PSP equips engineers with the personal skills and methods to do high-
quality work and participate in organizational process improvement. Of the 18
key process areas in the CMM, PSP covers 12 of the 18, and the TSP covers 16.

The TSP is being developed for a wider range of project applications, including
large multi-teams, geographically distributed teams, and functional teams.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

http://www.sei.cmu.edu/str/descriptions/tsp.html (3 of 6)7/28/2008 11:28:19 AM

Team Software Process (TSP)

Name of technology Team Software Process

Application category Detailed Design (AP.1.3.5)
Code (AP.1.4.2)
Unit Testing (AP.1.4.3.4)
Component Testing (AP.1.4.3.5)
Reapply Software Life Cycle (AP.1.9.3)
Reengineering (AP.1.9.5)

Quality measures category Reliability (QM.2.1.2)
Availability (QM.2.1.1)
Maintenance Control (QM.5.1.2.3)
Productivity (QM.5.2)

Computing reviews category Management (D.2.9)

References and Information Sources

[Ferguson 97] Ferguson, P.; Humphrey, W. S.; Khajenoori, S.; Macke, S.; and
Matvya, A. "Introducing the Personal Software Process: Three
Industry Case Studies." IEEE Computer 30 (May 1997): 24-31.

[Ferguson 99] Ferguson, P.; Leman, G.; Perini, P.; Renner, S.; and Seshagiri, G.
Software Process Improvement Works! Advanced Information
Services Inc. (CMU/SEI-99-TR-027, ADA371804). Pittsburgh, Pa.:
Software Engineering Institute, Carnegie Mellon University, 1999.

[Humphrey 95]
Humphrey, Watts. A Discipline for Software Engineering. Reading,
MA: Addison-Wesley Publishing Company, 1995.

[Humphrey 00] Humphrey, Watts. The Team Software ProcessSM (TSPSM) (CMU/
SEI-2000-TR-023). Pittsburgh, Pa.: Software Engineering Institute,
Carnegie Mellon University, 2000.

[McAndrews
00]

McAndrews, Donald R. The Team Software ProcessSM (TSPSM): An
Overview and Preliminary Results of Using Disciplined Practices
(CMU/SEI-2000-TR-015). Pittsburgh, Pa.: Software Engineering
Institute, Carnegie Mellon University, 2000.

[Musson 99] Musson, R. "The Results of Using the TSP on Small Teams."
Proceedings of the 1999 Software Engineering Symposium.
(Pittsburgh, Pa., Software Engineering Institute, September 1999).

http://www.sei.cmu.edu/str/descriptions/tsp.html (4 of 6)7/28/2008 11:28:19 AM

http://www.sei.cmu.edu/publications/documents/00.reports/00tr023.html
http://www.sei.cmu.edu/publications/documents/00.reports/00tr023.html
http://www.sei.cmu.edu/publications/documents/00.reports/00tr015.html

Team Software Process (TSP)

[Paulk 95] Paulk, Mark C. The Capability Maturity Model: Guidelines for
Improving the Software Process. Reading, MA: Addison-Wesley
Publishing Company, 1995.

[Vu 00] Vu, J. "Process Improvement in the Boeing Company." Proceedings
of the 2000 Software Engineering Process Group (SEPG) Conference.
Seattle, WA, Software Engineering Process Group, March 2000.

[Webb 99] Webb, D. and Humphrey, W. Using the TSP on the TaskView
Project. Cross Talk: The Journal of Defense Software Engineering 12,
2 (February 1999).

[Webb 00] Webb, D. Managing Risk with the Team Software Process. Cross
Talk: The Journal of Defense Software Engineering 13, 6 (June
2000).

Current Author/Maintainer

Don McAndrews, SEI
Lauren Heinz, SEI

External Reviewers

Watts Humphrey, SEI

Modifications

1 May 2001 (original)

Footnotes

1 Personal Software Process and PSP are service marks of Carnegie Mellon
University.

2 Capability Maturity Model and CMM are service marks of Carnegie Mellon
University.

3 Team Software Process and TSP are service marks of Carnegie Mellon
University.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

http://www.sei.cmu.edu/str/descriptions/tsp.html (5 of 6)7/28/2008 11:28:19 AM

Team Software Process (TSP)

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/tsp_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/tsp.html (6 of 6)7/28/2008 11:28:19 AM

http://www.sei.cmu.edu/about/disclaimer.html

Three Tier Software Architectures

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Three Tier Software Architectures

Status

Complete

Note

We recommend Client/Server Software Architectures as prerequisite reading for
this technology description.

Purpose and Origin

The three tier software architecture (a.k.a. three layer architectures) emerged in
the 1990s to overcome the limitations of the two tier architecture (see Two Tier
Software Architectures). The third tier (middle tier server) is between the user
interface (client) and the data management (server) components. This middle
tier provides process management where business logic and rules are executed
and can accommodate hundreds of users (as compared to only 100 users with
the two tier architecture) by providing functions such as queuing, application
execution, and database staging. The three tier architecture is used when an
effective distributed client/server design is needed that provides (when
compared to the two tier) increased performance, flexibility, maintainability,
reusability, and scalability, while hiding the complexity of distributed processing
from the user. For detailed information on three tier architectures see Schussel
and Eckerson. Schussel provides a graphical history of the evolution of client/
server architectures [Schussel 96, Eckerson 95].

The three tier architecture is used when an effective distributed client/server
design is needed that provides (when compared to the two tier) increased
performance, flexibility, maintainability, reusability, and scalability, while hiding
the complexity of distributed processing from the user. These characteristics
have made three layer architectures a popular choice for Internet applications
and net-centric information systems.

Technical Detail

A three tier distributed client/server architecture (as shown in Figure 28) includes

http://www.sei.cmu.edu/str/descriptions/threetier.html (1 of 7)7/28/2008 11:28:20 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/threetier_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Three Tier Software Architectures

a user system interface top tier where user services (such as session, text input,
dialog, and display management) reside.

Figure 28: Three tier distributed client/server architecture depiction [Louis
95]

The third tier provides database management functionality and is dedicated to
data and file services that can be optimized without using any proprietary
database management system languages. The data management component
ensures that the data is consistent throughout the distributed environment
through the use of features such as data locking, consistency, and replication. It
should be noted that connectivity between tiers can be dynamically changed
depending upon the user's request for data and services.

The middle tier provides process management services (such as process
development, process enactment, process monitoring, and process resourcing)
that are shared by multiple applications.

The middle tier server (also referred to as the application server) improves
performance, flexibility, maintainability, reusability, and scalability by centralizing
process logic. Centralized process logic makes administration and change
management easier by localizing system functionality so that changes must only
be written once and placed on the middle tier server to be available throughout
the systems. With other architectural designs, a change to a function (service)
would need to be written into every application [Eckerson 95].

In addition, the middle process management tier controls transactions and
asynchronous queuing to ensure reliable completion of transactions [Schussel
96]. The middle tier manages distributed database integrity by the two phase
commit process (see Database Two Phase Commit). It provides access to
resources based on names instead of locations, and thereby improves scalability
and flexibility as system components are added or moved [Edelstein 95].

Sometimes, the middle tier is divided in two or more unit with different functions,
in these cases the architecture is often referred as multi layer. This is the case,
for example, of some Internet applications. These applications typically have
light clients written in HTML and application servers written in C++ or Java, the
gap between these two layers is too big to link them together. Instead, there is
an intermediate layer (web server) implemented in a scripting language. This

http://www.sei.cmu.edu/str/descriptions/threetier.html (2 of 7)7/28/2008 11:28:20 AM

Three Tier Software Architectures

layer receives requests from the Internet clients and generates html using the
services provided by the business layer. This additional layer provides further
isolation between the application layout and the application logic.

It should be noted that recently, mainframes have been combined as servers in
distributed architectures to provide massive storage and improve security (see
Distributed/Collaborative Enterprise Architectures).

Usage Considerations

Three tier architectures are used in commercial and military distributed client/
server environments in which shared resources, such as heterogeneous
databases and processing rules, are required [Edelstein 95]. The three tier
architecture will support hundreds of users, making it more scalable than the two
tier architecture (see Two Tier Software Architectures) [Schussel 96].

Three tier architectures facilitate software development because each tier can be
built and executed on a separate platform, thus making it easier to organize the
implementation. Also, three tier architectures readily allow different tiers to be
developed in different languages, such as a graphical user interface language or
light internet clients (HTML, applets) for the top tier; C, C++, SmallTalk, Basic,
Ada 83, or Ada 95 for the middle tier; and SQL for much of the database tier
[Edelstein 95].

Migrating a legacy system to a three tier architecture can be done in a manner
that is low-risk and cost-effective. This is done by maintaining the old database
and process management rules so that the old and new systems will run side by
side until each application and data element or object is moved to the new
design. This migration might require rebuilding legacy applications with new sets
of tools and purchasing additional server platforms and service tools, such as
transaction monitors (see Transaction Processing Monitor Technology) and
Message-Oriented Middleware. The benefit is that three tier architectures hide
the complexity of deploying and supporting underlying services and network
communications.

Maturity

Three tier architectures have been used successfully since the early 1990s on
thousands of systems of various types throughout the Department of Defense
(DoD) and in commercial industry, where distributed information computing in a
heterogeneous environment is required. An Air Force system that is evolving
from a legacy architecture to a three tier architecture is Theater Battle
Management Core System (TBMCS). Multi tier architectures have been widely
and successfully applied in some of the biggest Internet servers.

http://www.sei.cmu.edu/str/descriptions/threetier.html (3 of 7)7/28/2008 11:28:20 AM

Three Tier Software Architectures

Costs and Limitations

Building three tier architectures is complex work. Programming tools that support
the design and deployment of three tier architectures do not yet provide all of the
desired services needed to support a distributed computing environment.

A potential problem in designing three tier architectures is that separation of user
interface logic, process management logic, and data logic is not always obvious.
Some process management logic may appear on all three tiers. The placement
of a particular function on a tier should be based on criteria such as the following
[Edelstein 95]:

● ease of development and testing
● ease of administration
● scalability of servers
● performance (including both processing and network load)

Dependencies

Database management systems must conform to X/Open systems standards
and XA Transaction protocols to ensure distributed database integrity when
implementing a heterogeneous database two phase commit.

Alternatives

Two tier client server architectures (see Two Tier Software Architectures) are
appropriate alternatives to the three tier architectures under the following
circumstances:

● when the number of users is expect to be less than 100
● for non-real-time information processing in non-complex systems that

requires minimal operator intervention

Distributed/collaborative enterprise computing (see Distributed/Collaborative
Enterprise Architectures) is seen as a viable alternative, particularly if object-
oriented technology on an enterprise-wide scale is desired. An enterprise-wide
design is comprised of numerous smaller systems or subsystems.

Although three tier architecture has proven sound, the supporting products
implementing the architecture are not as mature as other competing
technologies. Transaction Monitors (TM) are a valid alternative when reliability
and scalability requirements can not be fulfilled with existing multi layer
technology. Although TMs don't support modern development paradigms like

http://www.sei.cmu.edu/str/descriptions/threetier.html (4 of 7)7/28/2008 11:28:20 AM

Three Tier Software Architectures

Object Orientation (OO) they are still quite useful when massive scalability and
robustness is needed.

Complementary Technologies

Complementary technologies to three tier architectures are Object-Oriented
Design (to implement decomposable applications), three tier client/server
architecture tools, and Database Two Phase Commit processing.

For communication between potentially distributed layers some middleware is
needed. This middleware can be a Remote Procedure Call (RPC) mechanism or
a Message-Oriented Middleware (MOM), depending on whether synchronous or
asynchronous communication is preferred.

The middle tier encapsulates business logic. Some of this logic is application
specific but a significant percentage is organization or even domain wide.
Domain Engineering and Domain Analysis can be used to capture this inter-
application commonality and create a set of assets that can be effectively reused
in different application.

It should be noted that recently, mainframes have been combined as servers in
distributed architectures to provide massive storage and improve security (see
Distributed/Collaborative Enterprise Architectures).

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Three Tier Software Architectures

Application category Client/Server (AP.2.1.2.1)

Quality measures category Maintainability (QM.3.1)
Scalability (QM.4.3)
Reusability (QM.4.4)
Reliability (QM.2.1.2)

Computing reviews category Distributed Systems (C.2.4)
Software Engineering Design (D.2.10)

References and Information Sources

http://www.sei.cmu.edu/str/descriptions/threetier.html (5 of 7)7/28/2008 11:28:20 AM

Three Tier Software Architectures

[Dickman 95] Dickman, A. "Two-Tier Versus Three-Tier Apps."
Informationweek 553 (November 13, 1995): 74-80.

[Eckerson 95] Eckerson, Wayne W. "Three Tier Client/Server Architecture:
Achieving Scalability, Performance, and Efficiency in Client
Server Applications." Open Information Systems 10, 1 (January
1995): 3(20).

[Edelstein 95] Edelstein, Herb. "Unraveling Client Server Architectures."
DBMS 7, 5 (May 1994): 34(7).

[Gallaugher 96] Gallaugher, J. & Ramanathan, S. "Choosing a Client/Server
Architecture. A Comparison of Two-Tier and Three-Tier
Systems." Information Systems Management Magazine 13, 2
(Spring 1996): 7-13.

[Louis 95] Louis [online]. Available WWW
<URL: http://www.softis.is> (1995).

[Newell 95] Newell, D.; Jones, O.; & Machura, M. "Interoperable Object
Models for Large Scale Distributed Systems," 30-31.
Proceedings. International Seminar on Client/Server
Computing. La Hulpe, Belgium, October 30-31, 1995. London,
England: IEE, 1995.

[Schussel 96] Schussel, George. Client/Server Past, Present, and Future
[online]. Formerly Available WWW
<URL: http://news.dci.com/geos/dbsejava.htm> (1995).

Current Author/Maintainer

Darleen Sadoski, GTE
Santiago Comella-Dorda, SEI

External Reviewers

Paul Clements, SEI
Frank Rogers, GTE

Modifications

16 Feb 2000: Inclusion of multi-layer architectures and net-centric systems.

10 Jan 1997 (original)

http://www.sei.cmu.edu/str/descriptions/threetier.html (6 of 7)7/28/2008 11:28:20 AM

http://www.softis.is/

Three Tier Software Architectures

| Home | What's New | Background & Overview | Technology Descriptions |
| Taxonomies | Glossary & Indexes | Feedback & Participation |

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use

URL: http://www.sei.cmu.edu/str/descriptions/threetier_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/threetier.html (7 of 7)7/28/2008 11:28:20 AM

http://www.sei.cmu.edu/str/new/
http://www.sei.cmu.edu/about/disclaimer.html

Transaction Processing Monitor Technology

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Transaction Processing Monitor Technology

Status

Advanced

Note

We recommend Client/Server Software Architectures as prerequisite reading for this
technology description.

Purpose and Origin

Transaction processing (TP) monitor technology provides the distributed client/server
environment the capacity to efficiently and reliably develop, run, and manage transaction
applications.

TP monitor technology controls transaction applications and performs business logic/rules
computations and database updates. TP monitor technology emerged 25 years ago when
Atlantic Power and Light created an online support environment to share concurrently
applications services and information resources with the batch and time sharing operating
systems environment. TP monitor technology is used in data management, network access,
security systems, delivery order processing, airline reservations, and customer service. Use of
TP monitor technology is a cost-effective alternative to upgrading database management
systems or platform resources to provide this same functionality. Dickman and Hudson provide
more details on TP monitor technology [Dickman 95, Hudson 94].

Technical Detail

TP monitor technology is software that is also referred to as Middleware. It can provide
application services to thousands of clients in a distributed client/server environment. TP
monitor technology does this by multiplexing client transaction requests (by type) onto a
controlled number of processing routines that support particular services. These events are
depicted in Figure 37.

http://www.sei.cmu.edu/str/descriptions/tpmt.html (1 of 5)7/28/2008 11:28:21 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/tpmt_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Transaction Processing Monitor Technology

Figure 37: Transaction Processing Monitor Technology

Clients are bound, serviced, and released using stateless servers that minimize overhead. The
database sees only the controlled set of processing routines as clients [Dickman 95, Hudson
94].

TP monitor technology maps numerous client requests through application services routines to
improve system performance. The TP monitor technology (located as a server) can also take
the application transitions logic from the client. This reduces the number of upgrades required
by these client platforms. In addition, TP monitor technology includes numerous management
features, such as restarting failed processes, dynamic load balancing, and enforcing
consistency of distributed data. TP monitor technology is easily scalable by adding more
servers to meet growing numbers of users [Dickman 95, Hudson 94].

TP monitor technology is independent of the database architecture. It supports flexible and
robust business modeling and encourages modular, reusable procedures. TP monitor designs
allow Application Programming Interfaces (APIs) to support components such as
heterogeneous client libraries, databases and resource managers, and peer-level application
systems. TP monitor technology supports architecture flexibility because each component in a
distributed system is comprised of products that are designed to meet specific functionality,
such as graphical user interface builders and database engines [Dickman 95, Hudson 94].

Usage Considerations

Within distributed client/server systems, each client that is supported adds overhead to system
resources (such as memory). Responsiveness is improved and system resource overhead is
reduced by using TP monitor technology to multiplex many clients onto a much smaller set of
application service routines. TP monitor technology provides a highly active system that
includes services for delivery order processing, terminal and forms management, data
management, network access, authorization, and security.

http://www.sei.cmu.edu/str/descriptions/tpmt.html (2 of 5)7/28/2008 11:28:21 AM

Transaction Processing Monitor Technology

TP monitor technology supports a number of program-to-program communication models, such
as store-and-forward, asynchronous, Remote Procedure Call (RPC), and conversational. This
improves interactions among application components. TP monitor technology provides the
ability to construct complex business applications from modular, well-defined functional
components. Because this technology is well-known and well-defined it should reduce program
risk and associated costs [Dickman 95, Hudson 94].

Maturity

TP monitor technology has been used successfully in the field for 25 years. TP monitor
technology is used for delivery order processing, hotel and airline reservations, electronic fund
transfers, security trading, and manufacturing resource planning and control. It improves batch
and time-sharing application effectiveness by creating online support to share application
services and information resources [Dickman 95, Hudson 94].

Costs and Limitations

TP monitor technology makes database processing cost-effective for online applications.
Spending relatively little money on TP monitor technology can result in significant savings
compared to the resources required to improve database or platform resources to provide the
same functionality [Dickman 95].

A limitation to TP technology is that the implementation code is usually written in a lower-level
language (such as COBOL), and is not yet widely available in the popular visual toolsets
[Schussel 96].

Alternatives

A variation of TP monitor technology is session based technology. In the TP monitor
technology, transactions from the client are treated as messages. In the session based
technology, a single server provides both database and transaction services. In session based
technology, the server must be aware of clients in advance to maintain each client's processing
thread. The session server must constantly send messages to the client (even when work is not
being done in the client) to ensure that the client is still alive. Session based architectures are
not as scalable because of the adverse effect on network performance as the number of clients
grow.

Another alternative to TP monitor technology is remote data access (RDA). The RDA centers
the application in a client computer, communicating with back-end database servers. Clients
can be network-intensive, but scalability is limited.

A third alternative to TP monitor technology is the database server approach, which provides
functions (usually specific to the database) and is architecturally locked to the specific database
system [Dickman 95, Hudson 94].

Complementary Technologies

Complementary technologies include mainframe client/server software architectures (see
Mainframe Server Software Architectures) and Three Tier Software Architectures; in both cases

http://www.sei.cmu.edu/str/descriptions/tpmt.html (3 of 5)7/28/2008 11:28:21 AM

Transaction Processing Monitor Technology

the TP monitor technology could server as the middle tier.

Index Categories

This technology is classified under the following categories. Select a category for a list of
related topics.

Name of technology Transaction Processing Monitor Technology

Application category Client/Server (AP.2.1.2.1)
Client/Server Communication (AP.2.2.1)

Quality measures category Efficiency/ Resource Utilization (QM.2.2)
Reusability (QM.4.4)
Maintainability (QM.3.1)

Computing reviews category Distributed Systems (C.2.4)

References and Information Sources

[Dickman
95]

Dickman, A. "Two-Tier Versus Three-Tier Apps." Informationweek 553
(November 13, 1995): 74-80.

[Hudson 94] Hudson, D. & Johnson, J. Client-Server Goes Business Critical. Dennis, MA:
The Standish Group International, 1994.

[Schussel 96] Schussel, George. Client/Server Past, Present, and Future [online]. Available
WWW
<URL: http://www.dciexpo.com/geos/> (1995).

[TP 96] TP Lite vs. TP Heavy [online]. Available WWW
<URL: http://www.byte.com/art/9504/sec11/art4.htm> (1996).

Current Author/Maintainer

Darleen Sadoski, GTE

External Reviewers

David Altieri, GTE

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the

http://www.sei.cmu.edu/str/descriptions/tpmt.html (4 of 5)7/28/2008 11:28:21 AM

http://www.dciexpo.com/geos/
http://www.byte.com/art/9504/sec11/art4.htm

Transaction Processing Monitor Technology

U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/tpmt_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/tpmt.html (5 of 5)7/28/2008 11:28:21 AM

http://www.sei.cmu.edu/about/disclaimer.html

Trusted Operating Systems

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Trusted Operating Systems

Status

Advanced

Note

We recommend Computer System Security--An Overview as prerequisite
reading for this technology description.

Purpose and Origin

Trusted operating systems provide the basic security mechanisms and services
that allow a computer system to protect, distinguish, and separate classified
data. Trusted operating systems have been developed since the early 1980s
and began to receive National Security Agency (NSA) evaluation in 1984.

Technical Detail

Trusted operating systems lower the security risk of implementing a system that
processes classified data. Trusted operating systems implement security policies
and accountability mechanisms in an operating system package. A security
policy is the rules and practices that determine how sensitive information is
managed, protected, and distributed [Abrams 95]. Accountability mechanisms
are the means of identifying and tracing who has had access to what data on the
system so they can be held accountable for their actions.

Trusted operating systems are evaluated by the NSA National Computer
Security Center (NCSC) against a series of six requirements-level classes listed
in the table below. C1 systems have basic capabilities. A1 systems provide the
most capability. The higher the rating level is, the wider the range of classified
data is that may be processed.

Table 10 below shows the NCSC Evaluation Criteria Classes.

Table 10: NCSC Evaluation Criteria Classes

http://www.sei.cmu.edu/str/descriptions/trusted.html (1 of 5)7/28/2008 11:28:21 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/trusted_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Trusted Operating Systems

Class Title
Number of Approved
Operating Systems in this Class
[TPEP 96]

A1 Verified Design 0

B3 Security Domains 1

B2 Structured Protection 1

B1 Labeled Security Protection 7

C2 Controlled Access Protection 5

C1 Discretionary Security Protection No Longer Evaluated

A low level (C1 and C2) system provides limited discretionary access controls
and identification and authentication mechanisms. Discretionary access controls
identify who can have access to system data based on the need to know.
Mandatory access controls identify who or what process can have access to
data based on the requester having formal clearance for the security level of the
data. A low-level system is used when the system only needs to be protected
against human error and it is unlikely that a malicious user can gain access to
the system.

A higher level (B2, B3, and A1) system provides complete mandatory and
discretionary access control, thorough security identification of data devices,
rigid control of transfer of data and access to devices, and complete auditing of
access to the system and data. These higher level systems are used when the
system must be protected against a malicious user's abuse of authority, direct
probing, and human error [Abrams 95].

The portion of the trusted operating system that grants requesters access to
data and records the action is frequently called the reference monitor because it
refers to an authorization database to determine if access should be granted.
Higher level trusted operating systems are used in MLS hosts and
compartmented mode workstations (see Computer System Security- an
Overview for overview information).

Usage Considerations

Trusted operating systems must be used to implement multi-level security
systems and to build security guards that allow systems of different security
levels to be connected to exchange data. Use of a trusted operating system may
be the only way that a system can be networked with other high security

http://www.sei.cmu.edu/str/descriptions/trusted.html (2 of 5)7/28/2008 11:28:21 AM

Trusted Operating Systems

systems. Trusted operating systems may be required if a C4I system processes
intelligence data and provides data to war fighters. Department of Defense
(DoD) security regulations define what evaluation criteria must be satisfied for a
multi-level system based on the lowest and highest classification of the data in a
system and the clearance level of the users of the system. Using an NCSC-
evaluated system reduces accreditation cost and risk. The security officer
identified as the Designated Approving Authority (DAA) for secure computer
systems has the responsibility and authority to review and approve the systems
to process classified information. The DAA will require analysis and tests of the
system to assure that it will operate securely. The DAA can accept the NCSC
evaluation of a system rather than generating the data. For a B3 or A1 system,
that can represent a savings of 1 to 2 years in schedule and the operating
system will provide a proven set of functions.

Maturity

This technology has been implemented by several vendors for commercial-off-
the-shelf (COTS) use in secure systems. As of September 1996, the NCSC
Evaluated Product List indicated that fourteen operating systems have been
evaluated as level C2, B1,B2, and B3 systems in the last three years [TPEP 96].
The number of operating systems evaluated by class (excluding evaluations of
updated versions of operating systems) is included in the table. Use of one of
the approved trusted operating systems can result in substantial cost and
schedule reductions for a system development effort and provide assurance that
the system can be operated securely.

Costs and Limitations

The heavy access control and accounting associated with high security systems
can affect system performance; as such, higher performance processors, I/O,
and interfaces may be required. Trusted operating systems have unique
interfaces and operating controls that require special security knowledge to use
and operate. Frequently COTS products that operate satisfactorily with a
standard operating system must be replaced or augmented to operate with a
trusted operating system.

Dependencies

Trusted operating systems at B2 and above enable the development of system
interoperability for systems at different security levels and allow applications to
perform data fusion. They are dependent on a trusted computing base that
provides secure data paths and protected memory.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

http://www.sei.cmu.edu/str/descriptions/trusted.html (3 of 5)7/28/2008 11:28:21 AM

Trusted Operating Systems

Name of technology Trusted Operating Systems

Application category Trusted Operating Systems (AP.2.4.1)

Quality measures category Security (QM.2.1.5)

Computing reviews category Operating System Security and Protection (D.4.6)
Computer-Communications Network Security
Protection (C.2.0)

References and Information Sources

[Abrams
95]

Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J.
Information Security An Integrated Collection of Essays. Los
Alamitos, CA: IEEE Computer Society Press, 1995.

[Russel 91] Russel, Deborah & Gangemi, G.T. Sr. Computer Security Basics.
Sebastopol, CA: O'Reilly & Associates, Inc., 1991.

[TPEP 96] Trusted Product Evaluation Program Evaluated Product List
[online]. Available WWW
<URL: http://www.radium.ncsc.mil/tpep/index.html> (1996).

[White 96] White, Gregory B.; Fisch, Eric A.; & Pooch, Udo W. Computer
System and Network Security. Boca Raton, FL: CRC Press, 1996.

Current Author/Maintainer

Tom Mills, Lockheed Martin

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/trusted_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

http://www.sei.cmu.edu/str/descriptions/trusted.html (4 of 5)7/28/2008 11:28:21 AM

http://www.radium.ncsc.mil/tpep/index.html
http://www.sei.cmu.edu/about/disclaimer.html

Trusted Operating Systems

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/trusted.html (5 of 5)7/28/2008 11:28:21 AM

Two Tier Software Architectures

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Two Tier Software Architectures

Status

Complete

Note

We recommend Client/Server Software Architectures, as prerequisite reading for
this technology description.

Purpose and Origin

Two tier software architectures were developed in the 1980s from the file server
software architecture design. The two tier architecture is intended to improve
usability by supporting a forms-based, user-friendly interface. The two tier
architecture improves scalability by accommodating up to 100 users (file server
architectures only accommodate a dozen users), and improves flexibility by
allowing data to be shared, usually within a homogeneous environment
[Schussel 96]. The two tier architecture requires minimal operator intervention,
and is frequently used in non-complex, non-time critical information processing
systems. Detailed readings on two tier architectures can be found in Schussel
and Edelstein [Schussel 96, Edelstein 94].

Technical Detail

Two tier architectures consist of three components distributed in two layers:
client (requester of services) and server (provider of services). The three
components are

1. User System Interface (such as session, text input, dialog, and display
management services)

2. Processing Management (such as process development, process
enactment, process monitoring, and process resource services)

3. Database Management (such as data and file services)

The two tier design allocates the user system interface exclusively to the client. It
places database management on the server and splits the processing
management between client and server, creating two layers. Figure 38 depicts
the two tier software architecture.

http://www.sei.cmu.edu/str/descriptions/twotier.html (1 of 6)7/28/2008 11:28:22 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/twotier_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Two Tier Software Architectures

Figure 38: Two Tier Client Server Architecture Design [Louis 95]

In general, the user system interface client invokes services from the database
management server. In many two tier designs, most of the application portion of
processing is in the client environment. The database management server
usually provides the portion of the processing related to accessing data (often
implemented in store procedures). Clients commonly communicate with the
server through SQL statements or a call-level interface. It should be noted that
connectivity between tiers can be dynamically changed depending upon the
user's request for data and services.

As compared to the file server software architecture (that also supports
distributed systems), the two tier architecture improves flexibility and scalability
by allocating the two tiers over the computer network. The two tier improves
usability (compared to the file sever software architecture) because it makes it
easier to provide a customized user system interface.

It is possible for a server to function as a client to a different server- in a
hierarchical client/server architecture. This is known as a chained two tier
architecture design.

Usage Considerations

Two tier software architectures are used extensively in non-time critical
information processing where management and operations of the system are not
complex. This design is used frequently in decision support systems where the
transaction load is light. Two tier software architectures require minimal operator
intervention. The two tier architecture works well in relatively homogeneous
environments with processing rules (business rules) that do not change very
often and when workgroup size is expected to be fewer than 100 users, such as
in small businesses.

Maturity

Two tier client/server architectures have been built and fielded since the middle
to late 1980s. The design is well known and used throughout industry. Two tier
architecture development was enhanced by fourth generation languages.

Costs and Limitations

Scalability. The two tier design will scale-up to service 100 users on a network.

http://www.sei.cmu.edu/str/descriptions/twotier.html (2 of 6)7/28/2008 11:28:22 AM

Two Tier Software Architectures

It appears that beyond this number of users, the performance capacity is
exceeded. This is because the client and server exchange "keep alive"
messages continuously, even when no work is being done, thereby saturating
the network [Schussel 96].

Implementing business logic in stored procedures can limit scalability because
as more application logic is moved to the database management server, the
need for processing power grows. Each client uses the server to execute some
part of its application code, and this will ultimately reduce the number of users
that can be accommodated.

Interoperability. The two tier architecture limits interoperability by using stored
procedures to implement complex processing logic (such as managing
distributed database integrity) because stored procedures are normally
implemented using a commercial database management system's proprietary
language. This means that to change or interoperate with more than one type of
database management system, applications may need to be rewritten.
Moreover, database management system's proprietary languages are generally
not as capable as standard programming languages in that they do not provide a
robust programming environment with testing and debugging, version control,
and library management capabilities.

System administration and configuration. Two tier architectures can be
difficult to administer and maintain because when applications reside on the
client, every upgrade must be delivered, installed, and tested on each client. The
typical lack of uniformity in the client configurations and lack of control over
subsequent configuration changes increase administrative workload.

Batch jobs. The two tiered architecture is not effective running batch programs.
The client is typically tied up until the batch job finishes, even if the job executes
on the server; thus, the batch job and client users are negatively affected
[Edelstein 94].

Dependencies

Developing a two tier client/server architecture following an object-oriented
methodology would be dependent on the CORBA standards for design
implementation. See Common Object Request Broker Architecture.

Alternatives

Possible alternatives for two tier client server architectures are

● the three-tier architecture (see Three Tier Software Architectures) if there
is a requirement to accommodate greater than 100 users

● distributed/collaborative architectures (see Distributed/Collaborative
Enterprise Architectures) if there is a requirement to design on an
enterprise-wide scale. An enterprise-wide design is comprised of
numerous smaller systems or subsystems.

http://www.sei.cmu.edu/str/descriptions/twotier.html (3 of 6)7/28/2008 11:28:22 AM

Two Tier Software Architectures

When preparing a two tier architecture for possible migration to an alternative
three tier architecture, the following five steps will make the transition less costly
and of lower risk [Dickman 95]:

1. Eliminate application diversity by ensuring a common, cross-hardware
library and development tools.

2. Develop smaller, more comparable service elements, and allow access
through clearly-defined interfaces.

3. Use an Interface Definition Language (IDL) to model service interfaces
and build applications using header files generated when compiled.

4. Place service elements into separate directories or files in the source
code.

5. Increase flexibility in distributed functionality by inserting service elements
into Dynamic Linked Libraries (DLLs) so that they do not need to be
complied into programs.

Complementary Technologies

Complementary technologies for two tier architectures are CASE (computer-
aided software engineering) tools because they facilitate two tier architecture
development, and open systems (see COTS and Open Systems-An Overview)
because they facilitate developing architectures that improve scalability and
flexibility.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Two Tier Software Architectures

Application category Client/Server (AP.2.1.2.1)

Quality measures category Usability (QM.2.3)
Maintainability (QM.3.1)
Scalability (QM.4.3)

Computing reviews category Distributed Systems (C.2.4)
Software Engineering Design (D.2.10)

References and Information Sources

[Dickman 95] Dickman, A. "Two-Tier Versus Three-Tier Apps."
Informationweek 553 (November 13, 1995): 74-80.

http://www.sei.cmu.edu/str/descriptions/twotier.html (4 of 6)7/28/2008 11:28:22 AM

Two Tier Software Architectures

[Edelstein 94] Edelstein, Herb. "Unraveling Client/Server Architecture."
DBMS 7, 5 (May 1994): 34(7).

[Gallaugher
96]

Gallaugher, J. & Ramanathan, S. "Choosing a Client/Server
Architecture. A Comparison of Two-Tier and Three-Tier
Systems." Information Systems Management Magazine 13, 2
(Spring 1996): 7-13.

[Louis 95] Louis [online]. Available WWW
<URL: http://www.softis.is> (1995).

[Newell 95] Newell, D.; Jones, O.; & Machura, M. "Interoperable Object
Models for Large Scale Distributed Systems," 30-31.
Proceedings. International Seminar on Client/Server
Computing. La Hulpe, Belgium, October 30-31, 1995. London,
England: IEE, 1995.

[Schussel 96] Schussel, George. Client/Server Past, Present, and Future
[online]. Available WWW
<URL: http://www.dciexpo.com/geos/> (1995).

Current Author/Maintainer

Darleen Sadoski, GTE

External Reviewers

Paul Clements, SEI
Frank Rogers, GTE

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/twotier_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections

http://www.sei.cmu.edu/str/descriptions/twotier.html (5 of 6)7/28/2008 11:28:22 AM

http://www.softis.is/
http://www.dciexpo.com/geos/
http://www.sei.cmu.edu/about/disclaimer.html

Two Tier Software Architectures

● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/twotier.html (6 of 6)7/28/2008 11:28:22 AM

Virus Detection

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Virus Detection

Status

Advanced

Note

We recommend Computer System Security- an Overview, as prerequisite
reading for this technology description.

Purpose and Origin

Technologies for Computer System Security in C4I Systems (see Computer
System Security- an Overview) introduced virus detection software as one of the
system security mechanisms included in Intranets used to support C4I systems.
Viruses are malicious segments of code, inserted into legitimate programs, that
execute when the legitimate program is executed. The primary characteristic of a
virus is that it replicates itself when it is executed and inserts the replica into
another program which will replicate the virus again when it executes. A
computer is said to be infected if it contains a virus. Detecting that a computer is
infected is the process of virus detection. Viruses have existed since the early
1980s and programs to detect them have been developed since then [Denning
90].

Technical Detail

Since viruses are executable code, they are written for a particular processor.
They have been written for mainframes, for UNIX machines, and for personal
computers (IBM PC compatibles and Apple Macintoshes). By far the most
viruses have been developed to attack 80x86-based IBM PC compatible
computers. By 1996, there have been over 2000 kinds of viruses developed that
attack IBM PC compatible computers. The IBM PC compatible is a frequent
target of viruses because there are so many of that type of computer in use and
the operating system (DOS and Windows) has no provision to prevent code from
being modified. A few viruses, written using word processing or spreadsheet
macros, infect any processor that runs the word processor or spreadsheet
program that can interpret those macros. There were some early, much
publicized, viruses on UNIX machines, but they are rare. The 1988 Morris Worm
was an early example of malicious code that attacked UNIX machines [Spafford

http://www.sei.cmu.edu/str/descriptions/virus.html (1 of 5)7/28/2008 11:28:23 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/virus_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Virus Detection

88]. Viruses are hard to write because they require detailed knowledge of how
the operating system works; there are much easier ways to damage or copy
information on a UNIX computer. There have been a few mainframe viruses but
they are also rare because mainframe operating systems make it difficult for a
program to gain access to and modify other programs.

Within some viruses is a portion of code called the payload. The payload is
designed to do something malicious such as corrupt files, display a message on
the screen, or prevent the computer from booting. When the virus executes or at
some future execution after a trigger condition has been met, the virus will
execute the payload. A favorite trigger condition is the occurrence of a particular
date, such as Friday the 13th. A virus still causes harm, even if it does not
contain a payload, by consuming processor and storage resources as it
replicates itself.

The two general types of PC viruses are boot-record infectors and program file
infectors. The type is determined by where the virus code copy is written when it
is replicated.

Boot-record infectors, also called system infectors, infect the boot records on
hard disks and floppy disks. When the system is booted, they are loaded into
memory. They may execute and replicate themselves every time a disk is
loaded. Once a hard disk boot record is infected the virus will be loaded into
memory each time the system is booted from the hard disk.

The program file infectors attach their replicas to program file (.EXE or .COM
files) hosts on disk whenever the virus is executed. When the host is executed
the virus replicates itself again. When the virus is added to a file it makes the file
larger. In order to not cause an obvious growth in a file, viruses include a
signature pattern in the copy that it can recognize so that it will not add to a file
again if the virus is there already.

There are three basic types of virus detection software:

● virus scanner
● activity monitor
● change detection

Virus scanner software looks for the virus signature in memory or in program
files and looks for code in the boot record that is not boot code. Once suspicious
code is found, a message is displayed to the operator that the system is
infected. Some virus scanners have the capability to remove viruses as well as
to detect them.

Activity monitors are memory resident programs that watch for suspicious
activity such as a program other than the operating system trying to format disks,
delete an executable file, or change the file allocation table on a disk. They also
may look for programs trying to go memory resident, scanning for other program
files, or trying to modify their own code [Slade 96b].

Change detection software scans the executable program files in the system

http://www.sei.cmu.edu/str/descriptions/virus.html (2 of 5)7/28/2008 11:28:23 AM

Virus Detection

before a system is used and records vital statistics about each program, such as
program file length or a calculated CRC or checksum. After the system is in
operation, the change detection software periodically scans the program files
looking for changes compared to the pre-stored data. These changes could have
been caused by a virus.

Usage Considerations

Virus scanners are executed periodically, when the system is started up, or
whenever a disk is initially put into the system. When new software (commercial,
freeware, or downloaded) is added to the system, it should be checked with a
virus scanner before the new software is executed to identify known viruses if
they are present. Although virus scanners are very useful in finding known
viruses they will not detect new kinds of viruses. They therefore must be updated
frequently to include the "signatures" of new viruses.

Activity monitors are more likely to find new types of viruses than virus scanners
since activity monitors are not limited to finding a known bit pattern in memory or
on disk. Activity monitors have considerable performance overhead since they
must be constantly scanning for unusual activity. Activity monitors also must be
incorporated into software change processes so that its baseline of "correct"
software files can be maintained.

Of the three types of virus detection software, change detection software has the
best chance of detecting current and future virus types but is most likely to
produce false alarms [Slade 96b]. The database for change detection software
must be updated every time system files or executable program files are
updated. This adds maintenance overhead to the system if the system is
frequently modified.

Maturity

More than 100 virus detection products are listed on the National Institute of
Standards and Technology (NIST) list of products reviewed [Slade 96a]. Most of
those products are virus scanners. Virus scanners are also the most rapidly
changing as they must be updated to check for new virus "signatures" as new
viruses are identified. The challenge to virus detection product vendors is in the
constant race to keep up with the host of smart computer hackers and malicious
software developers creating new strains of viruses.

Costs and Limitations

Effective use of virus detection software requires system administrators familiar
with virus types and their mode of attack, the operation of the virus detection
software, the ability to evaluate the virus detection program output, and the
ability to recognize a true attack versus a false alarm. This requires knowledge
of the system and its normal operation, training in the use of the virus detection
software, and frequent retraining as the virus detection software is routinely
updated.

http://www.sei.cmu.edu/str/descriptions/virus.html (3 of 5)7/28/2008 11:28:23 AM

Virus Detection

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Virus Detection

Application category Information Security (AP.2.4)

Quality measures category Security (QM.2.1.5)
Denial of Service (QM.2.1.4.1.3)

Computing reviews category Operating Systems Security and Protection
(D.4.6)
Security and Protection (K.6.5)

References and Information Sources

[Abrams 95] Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J.
Information Security An Integrated Collection of Essays. Los
Alamitos, CA: IEEE Computer Society Press, 1995.

[Denning 90] Denning, Peter J. Computers Under Attack Intruders, Worms and
Viruses. New York, NY: ACM Press, 1990.

[Garfinkel
96]

Garfinkel, Simson & Spafford, Gene. Practical UNIX and
Internet Security Second Edition. Sebastopol, CA: O'Reilly &
Associates, Inc., 1996.

[Russel 91] Russel, Deborah & Gangemi, G.T. Sr. Computer Security Basics.
Sebastopol, CA: O'Reilly & Associates, Inc., 1991.

[Slade 96a] Slade, Robert. Quick Reference Antiviral Review Chart [online].
Available WWW
<URL: http://csrc.ncsl.nist.gov/virus/quickref.rvw> (1996).

[Slade 96b] Slade, Robert. Reviewing Anti-virus Products [online]. Available
WWW
<URL: http://www.bocklabs.wisc.edu/~janda/sladerev.html>
(1996).

[Spafford 88] Spafford, Eugene H. The Internet Worm Program: An Analysis
(CSD-TR-823). West Lafayette, IN: Purdue University, 1988.

Current Author/Maintainer

Tom Mills, Loral

http://www.sei.cmu.edu/str/descriptions/virus.html (4 of 5)7/28/2008 11:28:23 AM

http://csrc.ncsl.nist.gov/virus/quickref.rvw
http://www.bocklabs.wisc.edu/~janda/sladerev.html

Virus Detection

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/virus_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/virus.html (5 of 5)7/28/2008 11:28:23 AM

http://www.sei.cmu.edu/about/disclaimer.html

Maintainability Index Technique for Measuring Program Maintainability

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Maintainability Index Technique for Measuring Program
Maintainability

Status

Complete

Purpose and Origin

Quantitative measurement of an operational system's maintainability is desirable
both as an instantaneous measure and as a predictor of maintainability over
time. Efforts to measure and track maintainability are intended to help reduce or
reverse a system's tendency toward "code entropy" or degraded integrity, and to
indicate when it becomes cheaper and/or less risky to rewrite the code than to
change it. Software Maintainability Metrics Models in Practice is the latest report
from an ongoing, multi-year joint effort (involving the Software Engineering Test
Laboratory of the University of Idaho, the Idaho National Engineering Laboratory,
Hewlett-Packard, and other companies) to quantify maintainability via a
Maintainability Index (MI) [Welker 95]. Measurement and use of the MI is a
process technology, facilitated by simple tools, that in implementation becomes
part of the overall development or maintenance process. These efforts also
indicate that MI measurement applied during software development can help
reduce lifecycle costs. The developer can track and control the MI of code as it is
developed, and then supply the measurement as part of code delivery to aid in
the transition to maintenance.

Other studies to define code maintainability in various environments have been
done [Peercy 81, Bennett 93], but the set of reports leading to the MI
measurement technique offered by Welker [Welker 95] describes a method that
appears to be very applicable to today's Department of Defense (DoD) systems.

Technical Detail

The literature of at least the last ten years shows that there have been several
efforts to characterize and quantify software maintainability; Maintenance of
Operational Systems--An Overview provides a broad overview of software
maintenance issues. In this specific technology, a program's maintainability is
calculated using a combination of widely-used and commonly-available
measures to form a Maintainability Index (MI). The basic MI of a set of programs
is a polynomial of the following form (all are based on average-per-code-module
measurement):

http://www.sei.cmu.edu/str/descriptions/mitmpm.html (1 of 8)7/28/2008 11:28:24 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/mitmpm_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Maintainability Index Technique for Measuring Program Maintainability

171 - 5.2 * ln(aveV) - 0.23 * aveV(g') - 16.2 * ln (aveLOC) + 50 * sin (sqrt(2.4 *
perCM))

The coefficients are derived from actual usage (see Usage Considerations). The
terms are defined as follows:

aveV = average Halstead Volume V per module (see Halstead Complexity
Measures)

aveV(g') = average extended cyclomatic complexity per module (see Cyclomatic
Complexity)

aveLOC = the average count of lines of code (LOC) per module; and, optionally

perCM = average percent of lines of comments per module

Oman develops the MI equation forms and their rationale [Oman 92a]; the Oman
study indicates that the above metrics are good and sufficient predictors of
maintainability. Oman builds further on this work using a modification of the MI
and describing how it was calibrated for a specific large suite of industrial-use
operational code [Oman 94]. Oman describes a prototype tool that was
developed specifically to support capture and use of maintainability measures for
Pascal and C [Oman 91]. The aggregate strength of this work and the underlying
simplicity of the concept make the MI technique potentially very useful for
operational Department of Defense (DoD) systems.

Usage Considerations

Calibration of the equations. The coefficients shown in the equation are the
result of calibration using data from numerous software systems being
maintained by Hewlett-Packard. Detailed descriptions of how the MI equation
was calibrated and used appear in Coleman, Pearse, and Welker [Coleman 94,
Coleman, 95, Pearse 95, Welker 95]. The authors claim that follow-on efforts
show that this form of the MI equation generally fits other industrial-sized
software systems [Oman 94 and Welker 95], and the breadth of the work tends
to support this claim. It is advisable to test the coefficients for proper fit with each
major system to which the MI is applied.

Effects from comments in code. The user must analyze comment content and
quality in the specific system to decide whether the comment term perCM is
useful.

Ways of using MI

1. The system can be checked periodically for maintainability, which is also
a way of calibrating the equations.

http://www.sei.cmu.edu/str/descriptions/mitmpm.html (2 of 8)7/28/2008 11:28:24 AM

Maintainability Index Technique for Measuring Program Maintainability

2. It can be integrated into a development effort to screen code quality as it
is being built and modified; this could yield potentially significant life cycle
cost savings.

3. It can be used to drive maintenance activities by evaluating modules
either selectively or globally to find high-risk code.

4. MI can be used to compare or evaluate systems: Comparing the MIs of a
known-quality system and a third-party system can provide key
information in a make-or-buy decision.

Example of usage. Welker relates how a module containing a routine with some
"very ugly" code was assessed as unmaintainable, when expressed in terms of
the MI (note that just quantifying the problem is a step forward) [Welker 95]. The
module was first redesigned, and then functionally enhanced. The measured
results are shown in Table 7:

Table 7: Measured Results

Measure Initial Code
Restructured

Code
After

Enhancement

Code Unit Routine Module Routine Module Routine Module

MI (larger MI
= more
maintainable)

6.47 33.55 39.93 70.13 37.62 69.60

Halstead
Effort1

2,216,499 2,233,072 182,216 480,261 201,429 499,474

Extended
Cyclomatic
Complexity2

45 49 18 64 21 67

Lines of Code 622 663 196 732 212 748

1 Halstead Effort, rather than Halstead Volume, was used in this case study. See
Halstead Complexity Measures for more information on both these measures.
Generally, the lower a program's measure of effort, the simpler a change to the
program will be (because Halstead measures are weighted toward measuring
computational complexity, not all programs will behave this way).

2 Note that a low Cyclomatic Complexity is generally indicative of a lower risk,
hence more maintainable, program. In this case, restructuring increased the
module complexity slightly (from 49 to 64), but reduced the "ugly" routine's
complexity significantly. In both, the subsequent enhancement drove the
complexity slightly higher.

http://www.sei.cmu.edu/str/descriptions/mitmpm.html (3 of 8)7/28/2008 11:28:24 AM

Maintainability Index Technique for Measuring Program Maintainability

If the enhancement had been made without first doing the restructuring, these
figures indicate the change would have been much more risky.

Coleman, Pearse, and Welker provide detailed descriptions of how MI was
calibrated and used at Hewlett-Packard [Coleman 94, Coleman 95, Pearse 95,
Welker 95].

Maturity

Oman tested the MI approach by using production operational code containing
around 50 KLOC to determine the metric parameters, and by checking the
results against subjective data gathered using the 1989 AFOTEC maintainability
evaluation questionnaire [AFOTEC 89, Oman 94]. Other production code of
about half that size was used to check the results, with apparent consistency.

Welker applied the results to analyses of a US Air Force (USAF) system, the
Improved Many-On-Many (IMOM) electronic combat modeling system. The
original IMOM (in FORTRAN) was translated to C and the C version was later
reengineered into Ada. The maintainability of both newer versions was
measured over time using the MI approach [Welker 95]. Results were as follows:

● The reengineered version's MI was more than twice as high as the
original code (larger MI = more maintainable), and declined only slightly
over time (note that the original code was not measured over time for
maintainability, so change in its MI could not be measured).

● The translated baseline's MI was not significantly different from the
original. This is of special interest to those considering translation,
because one of the primary objectives of translation is to reduce future
maintenance costs. There was also evidence that the MI of translated
code deteriorates more quickly than reengineered code.

Costs and Limitations

Calculating the MI is generally simple and straightforward, given that several
commercially-available programming environments contain utilities to count code
lines, comment lines, and even Cyclomatic Complexity. Other than the tool
described in Oman [Oman 91], tools to calculate Halstead Complexity Measures
are less common because the measure is not used as widely. However, once
conventions for the counting have been established, it is generally not difficult to
write language-specific code scanners to count the Halstead components
(operators and operands) and calculate the E and V measures. In relating that
removal of unused code in a single module did not affect the MI, Pearse
highlights the fact that MI is a system measurement; its parameters are average
values [Pearse 95]. However, measuring the MI of individual modules is useful
because changes in either structural or computational complexity are reflected in
a module's MI. A product/process measurement program not already gathering
the metrics used in MI could find them useful additions. Those metrics already

http://www.sei.cmu.edu/str/descriptions/mitmpm.html (4 of 8)7/28/2008 11:28:24 AM

Maintainability Index Technique for Measuring Program Maintainability

being gathered may be useful in constructing a custom MI for the system.
However, it would be advisable to consult the references for their findings on the
effectiveness of metrics, other than Halstead E and V and cyclomatic complexity,
in determining maintainability.

Dependencies

The MI method depends on the use of Cyclomatic Complexity and Halstead
Complexity Measures. To realize the full benefit of MI, the maintenance
environment must allow the rewriting of a module when it becomes measurably
unmaintainable. The point of measuring the MI is to identify risk; when
unacceptably risky code is identified, it should be rewritten.

Alternatives

The process described by Sittenauer is designed to assist in deciding whether or
not to reengineer a system [Sittenauer 92]. There are also many research and
analytic efforts that deal with maintainability as a function of program structure,
design, and content, but none was found that was as clearly appropriate as MI to
current DoD systems in the lifecycle phases described in Maintenance of
Operational Systems--An Overview.

Complementary Technologies

The test in Sittenauer is meant to verify generally the condition of a system, and
would be useful as a periodic check of a software system and to compare to the
MI [Sittenauer 92].

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Maintainability Index Technique for Measuring
Program Maintainability

Application category Debugger (AP.1.4.2.4)
Test (AP.1.4.3)
Unit Testing (AP.1.4.3.4)
Component Testing (AP.1.4.3.5)
Reapply Software Life Cycle (AP.1.9.3)
Reengineering (AP.1.9.5)

http://www.sei.cmu.edu/str/descriptions/mitmpm.html (5 of 8)7/28/2008 11:28:24 AM

Maintainability Index Technique for Measuring Program Maintainability

Quality measures category Maintainability (QM.3.1)
Testability (QM.1.4.1)
Understandability (QM.3.2)

Computing reviews category Software Engineering Distribution and
Maintenance (D.2.7)
Software Engineering Metrics (D.2.8)
Complexity Classes (F.1.3)
Tradeoffs Among Complexity Measures (F.2.3)

References and Information Sources

[AFOTEC 89] Software Maintainability Evaluation Guide 800-2, Volume 3.
Kirtland AFB, NM: HQ Air Force Operational Test and
Evaluation Center (AFOTEC), 1989.

[Ash 94] Ash, Dan, et al. "Using Software Maintainability Models to
Track Code Health," 154-160. Proceedings of the International
Conference on Software Maintenance. Victoria, BC, Canada,
September 19-23, 1994. Los Alamitos, CA: IEEE Computer
Society Press, 1994.

[Bennett 93] Bennett, Brad & Satterthwaite, Paul. "A Maintainability Measure
of Embedded Software," 560-565. Proceedings of the IEEE 1993
National Aerospace and Electronics Conference. Dayton, OH,
May 24-28, 1993. New York, NY: IEEE, 1993.

[Coleman 94] Coleman, Don, et al. "Using Metrics to Evaluate Software
System Maintainability." Computer 27, 8 (August 1994): 44-49.

[Coleman 95] Coleman, Don; Lowther, Bruce; & Oman, Paul. "The Application
of Software Maintainability Models in Industrial Software
Systems." Journal of Systems Software 29, 1 (April 1995): 3-16.

[Oman 91] Oman, P. HP-MAS: A Tool for Software Maintainability,
Software Engineering (#91-08-TR). Moscow, ID: Test
Laboratory, University of Idaho, 1991.

[Oman 92a] Oman, P. & Hagemeister, J. Construction and Validation of
Polynomials for Predicting Software Maintainability (92-01TR).
Moscow, ID: Software Engineering Test Lab, University of
Idaho, 1992.

http://www.sei.cmu.edu/str/descriptions/mitmpm.html (6 of 8)7/28/2008 11:28:24 AM

Maintainability Index Technique for Measuring Program Maintainability

[Oman 92b] Oman, P. & Hagemeister, J. "Metrics for Assessing a Software
System's Maintainability," 337-344. Conference on Software
Maintenance 1992. Orlando, FL, November 9-12, 1992. Los
Alamitos, CA: IEEE Computer Society Press, 1992.

[Oman 94] Oman, P. & Hagemeister, J. "Constructing and Testing of
Polynomials Predicting Software Maintainability." Journal of
Systems and Software 24, 3 (March 1994): 251-266.

[Pearse 95] Pearse, Troy & Oman, Paul. "Maintainability Measurements on
Industrial Source Code Maintenance Activities," 295-303.
Proceedings. of the International Conference on Software
Maintenance. Opio, France, October 17-20, 1995. Los Alamitos,
CA: IEEE Computer Society Press, 1995.

[Peercy 81] Peercy, David E. "A Software Maintainability Evaluation
Methodology." Transactions on Software Engineering 7, 7 (July
1981): 343-351.

[Sittenauer 92] Sittenauer, Chris & Olsem, Mike. "Time to Reengineer?"
Crosstalk, Journal of Defense Software Engineering 32 (March
1992): 7-10.

[Welker 95] Welker, Kurt D. & Oman, Paul W. "Software Maintainability
Metrics Models in Practice." Crosstalk, Journal of Defense
Software Engineering 8, 11 (November/December 1995): 19-23.

[Zhuo 93] Zhuo, Fang, et al. "Constructing and Testing Software
Maintainability Assessment Models," 61-70. Proceedings of the
First International Software Metrics Symposium. Baltimore, MD,
May 21-22, 1993. Los Alamitos, CA: IEEE Computer Society
Press, 1993.

Current Author/Maintainer

Edmond VanDoren, Kaman Sciences, Colorado Springs

External Reviewers

Paul W. Oman, Ph.D., Computer Science Department, University of Idaho,
Moscow, ID
Kurt Welker, Lockheed Martin, Idaho Falls, ID

Modifications

http://www.sei.cmu.edu/str/descriptions/mitmpm.html (7 of 8)7/28/2008 11:28:24 AM

Maintainability Index Technique for Measuring Program Maintainability

10 Jan 97 (original)
12 Mar 02 Correction of Maintainability Index (MI) formula

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/mitmpm_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/mitmpm.html (8 of 8)7/28/2008 11:28:24 AM

http://www.sei.cmu.edu/about/disclaimer.html

About the Taxonomies

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

About the
Taxonomies

View the
Application
Taxonomy

View the
Quality
Measures
Taxonomy

Glossary &
Indexes

About the Taxonomies

Overview and Purpose

Some readers may not desire to read all of the technology descriptions or may
not have a specific technology in mind when visiting this Web site. Instead a
reader might be concerned about or interested in a particular software quality
measure, a phase of the development process, or an operational function.

With this in mind, we created two taxonomies that serve as directories into the
technology descriptions. This method is an effective way to lead readers to a set
of possible technologies that address their software problem area. Each
software technology description has been categorized into the following two
taxonomies:

● Application. This taxonomy categorizes technologies by how they might
be used in operational systems. A technology can fall into one of two
major categories. It can be used to support an operational system or it
can be used in an operational system.

● Quality Measures. This taxonomy categorizes technologies by the
software quality characteristics or attributes that they influence, such as
maintainability, expandability, reliability, trustworthiness, robustness, and
cost of ownership.

The taxonomies serve other purposes as well. A taxonomy implies a hierarchical
relationship of terms which are used for classifying items in a particular domain.
It is this hierarchical relationship that we wanted to capture for the reader with
the hope that each taxonomy would provide stand-alone utility. Additionally, this
relationship of terms gives the reader an idea of alternative categories in which
to look for technology descriptions.

General Taxonomy Structure

Both taxonomies are structured in a similar manner. Each term or category in a
taxonomy has an index number. For the Application Taxonomy, the index
numbers begin with AP; for the Quality Measures Taxonomy, the index numbers
begin with QM. As mentioned before, a taxonomy is a hierarchical relationship. A
category can be broken down into one or more subcategories with the
subcategories beginning a new level in the hierarchy. Subcategories are indexed
starting with the number 1. For example, index numbers that are subcategories
to the first, or root level (AP or QM) would look like AP.2, QM.1, or QM.3.

http://www.sei.cmu.edu/str/taxonomies/about_tax.html (1 of 2)7/28/2008 11:28:28 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/taxonomies/about_tax.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

About the Taxonomies

Subcategories to AP.2, QM.1, or QM.3 would have index numbers like AP.2.4,
QM.1.1, or QM.3.2, respectively; subcategories to these would have index
numbers like AP.2.4.3, QM.1.1.2, or QM.3.2.1, respectively, and so on.

Some categories have hyphenated subcategories. These subcategories are
terms that we feel are worth noting and help further define what type of
technology descriptions the reader may find under the parent category.
However, they are not sufficiently different from their parent category or in some
cases from each other to warrant an index number.

Technology descriptions can be classified into more than one category, and
these categories are usually three to four levels deep in the taxonomy.

Using the Taxonomies

When readers find a term within one of the taxonomies that leads them to a list
of technology descriptions, they may want to examine the graphical
representations of the taxonomies as well. By examining these, readers can
identify other possible categories to look under that are related to their original
term. For example, if a reader is concerned about reliability, the reader would
look at one of the Quality Measures representations and notice that
"correctness" and "completeness" are closely related to reliability. The reader
could then look for technology descriptions under those categories. This method
may give the reader a more complete solution set for their particular problem
context.

Note: Within the technology descriptions, some software technologies that are
mentioned or referenced do not yet have corresponding descriptions. However,
we still indexed these into the Application Taxonomy. When these descriptions
are written and more information is gathered, the categories into which these
technologies are indexed may change. Thus technologies may appear in this
taxonomy without corresponding URLs.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/taxonomies/about_tax.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/taxonomies/about_tax.html (2 of 2)7/28/2008 11:28:28 AM

http://www.sei.cmu.edu/about/disclaimer.html

View the Application Taxonomy

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

About the
Taxonomies

View the
Application
Taxonomy

View the
Quality
Measures
Taxonomy

Glossary &
Indexes

View the Application Taxonomy

The following explains how to approach the graphical representations:

● There is always a two-level deep view from the root figure.
● Due to the structure of this taxonomy, it may take more than one figure to

provide a complete two-level deep view.
● If further expansion of the taxonomy is needed (i.e., there is more detail at

subordinate levels), the first level is marked with a number in a shaded box
located in the lower, right-hand corner. That level is then further expanded
(and rotated 90 degrees) in Figure X where X corresponds to the number
that the level is marked with.

● You can display a list of technology descriptions categorized at a particular
level of the taxonomy. Move to the appropriate figure (1-8), and use your
mouse to select the taxonomy term of interest. The list of descriptions is
then displayed in the lower frame of this document.

Root Figure: Application

Figure 1a: Used to Support Operational Systems

http://www.sei.cmu.edu/str/taxonomies/view_ap.html (1 of 6)7/28/2008 11:28:30 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/taxonomies/view_ap_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

View the Application Taxonomy

Figure 1b: Used to Support Operational Systems

Figure 2a: Used in Operational Systems

http://www.sei.cmu.edu/str/taxonomies/view_ap.html (2 of 6)7/28/2008 11:28:30 AM

View the Application Taxonomy

Figure 2b: Used in Operational Systems

Figure 3: Requirements Phase

Figure 4: Implementation Phase

http://www.sei.cmu.edu/str/taxonomies/view_ap.html (3 of 6)7/28/2008 11:28:30 AM

View the Application Taxonomy

Figure 5: Test Phase

Figure 6: Installation and Checkout Phase

http://www.sei.cmu.edu/str/taxonomies/view_ap.html (4 of 6)7/28/2008 11:28:30 AM

View the Application Taxonomy

Figure 7: Operations and Maintenance Phase

Figure 8: Software Architecture Phase

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/taxonomies/view_ap_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/taxonomies/view_ap.html (5 of 6)7/28/2008 11:28:30 AM

http://www.sei.cmu.edu/about/disclaimer.html

View the Application Taxonomy

Technology Descriptions

When you select a taxonomy category from one of the images above, the list of technology descriptions in that
category will appear in this frame.

http://www.sei.cmu.edu/str/taxonomies/view_ap.html (6 of 6)7/28/2008 11:28:30 AM

View the Quality Measures Taxonomy

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

About the
Taxonomies

View the
Application
Taxonomy

View the
Quality
Measures
Taxonomy

Glossary &
Indexes

View the Quality Measures Taxonomy

The following explains how to approach the graphical representations:

● There is always a two-level deep view from the root figure.
● If further expansion of the taxonomy is needed (i.e., there is more detail at

subordinate levels), the first level is marked with a number in a shaded box
located in the lower, right-hand corner. That level is then further expanded
(and rotated 90 degrees) in Figure X where X corresponds to the number
that the level is marked with.

● You can display a list of technology descriptions categorized at a particular
level of the taxonomy. Move to the appropriate figure (1-8), and use your
mouse to select the taxonomy term of interest. The list of descriptions is
then displayed in the lower frame of this document.

Root Figure: Quality Measures

Figure 1: Needs Satisfaction Measures

http://www.sei.cmu.edu/str/taxonomies/view_qm.html (1 of 5)7/28/2008 11:28:31 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/taxonomies/view_qm_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

View the Quality Measures Taxonomy

Figure 2: Performance Measures

Figure 3: Maintenance Measures

http://www.sei.cmu.edu/str/taxonomies/view_qm.html (2 of 5)7/28/2008 11:28:31 AM

View the Quality Measures Taxonomy

Figure 4: Adaptive Measures

Figure 5: Organizational Measures

Figure 6: Dependability

http://www.sei.cmu.edu/str/taxonomies/view_qm.html (3 of 5)7/28/2008 11:28:31 AM

View the Quality Measures Taxonomy

Figure 7: Cost of Ownership

Figure 8: Trustworthiness

http://www.sei.cmu.edu/str/taxonomies/view_qm.html (4 of 5)7/28/2008 11:28:31 AM

View the Quality Measures Taxonomy

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/taxonomies/view_qm_body.html
Last Modified: 24 July 2008

Technology Descriptions

When you select a taxonomy category from one of the images above, the list of technology descriptions in that
category will appear in this frame.

http://www.sei.cmu.edu/str/taxonomies/view_qm.html (5 of 5)7/28/2008 11:28:31 AM

http://www.sei.cmu.edu/about/disclaimer.html

Glossary

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

Glossary &
Indexes

Glossary

Keyword Index

Glossary

A-H I-P Q-Z

Abstractness
the degree to which a system or component performs only the necessary
functions relevant to a particular purpose.

Acceptance testing
formal testing conducted to determine whether or not a system satisfies
its acceptance criteria and to enable the customer to determine whether
or not to accept the system [IEEE 90].

Accessibility
1. (Denial of Service) the degree to which the software system protects

system functions or service from being denied to the user
2. (Reusability) the degree to which a software system or component

facilitates the selective use of its components [Boehm 78].

Accuracy

a quantitative measure of the magnitude of error [IEEE 90].

Acquisition cycle time
the period of time that starts when a system is conceived and ends when
the product meets its initial operational capability.

Adaptability
the ease with which software satisfies differing system constraints and
user needs [Evans 87].

Adaptive maintenance
software maintenance performed to make a computer program usable in
a changed environment [IEEE 90].

Adaptive measures
a category of quality measures that address how easily a system can
evolve or migrate.

Agent
a piece of software which acts to accomplish tasks on behalf of its user
[McGill 96].

Anonymity

http://www.sei.cmu.edu/str/indexes/glossary/index.html (1 of 16)7/28/2008 11:28:33 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/indexes/glossary/index_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Glossary

the degree to which a software system or component allows for or
supports anonymous transactions.

ANSI
American National Standards Institute. This organization is responsible
for approving U.S. standards in many areas, including computers and
communications. Standards approved by this organization are often
called ANSI standards (e.g., ANSI C is the version of the C language
approved by ANSI). ANSI is a member of ISO. See also: International
Organization for Standardization.

Application program interface
a formalized set of software calls and routines that can be referenced by
an application program in order to access supporting system or network
services [ITS 96].

Architectural design
the process of defining a collection of hardware and software components
and their interfaces to establish the framework for the development of a
computer system [IEEE 90].

Artificial intelligence
a subfield within computer science concerned with developing technology
to enable computers to solve problems (or assist humans in solving
problems) using explicit representations of knowledge and reasoning
methods employing that knowledge [DoD 91].

Auditable
the degree to which a software system records information concerning
transactions performed against the system.

Availability
the degree to which a system or component is operational and accessible
when required for use [IEEE 90].

Capacity
a measure of the amount of work a system can perform [Barbacci 95].

Code
the transforming of logic and data from design specifications (design
descriptions) into a programming language [IEEE 90].

Commonality
the degree to which standards are used to achieve interoperability.

Communication software
software concerned with the representation, transfer, interpretation, and
processing of data among computer systems or networks. The meaning
assigned to the data must be preserved during these operations.

Compactness
the degree to which a system or component makes efficient use of its
data storage space- occupies a small volume.

Compatibility

http://www.sei.cmu.edu/str/indexes/glossary/index.html (2 of 16)7/28/2008 11:28:33 AM

Glossary

the ability of two or more systems or components to perform their
required functions while sharing the same hardware or software
environment [IEEE 90].

Completeness
the degree to which all the parts of a software system or component are
present and each of its parts is fully specified and developed [Boehm 78].

Complexity
1. (Apparent) the degree to which a system or component has a design or

implementation that is difficult to understand and verify [IEEE 90].
2. (Inherent) the degree of complication of a system or system component,

determined by such factors as the number and intricacy of interfaces, the
number and intricacy of conditional branches, the degree of nesting, and
the types of data structures [Evans 87].

Component testing

testing of individual hardware or software components or groups of
related components [IEEE 90].

Concept phase
the initial phase of a software development project, in which the user
needs are described and evaluated through documentation (for example,
statement of needs, advance planning report, project initiation memo,
feasibility studies, system definition, documentation, regulations,
procedures, or policies relevant to the project) [IEEE 90].

Conciseness
the degree to which a software system or component has no excessive
information present.

Confidentiality
the nonoccurrence of the unauthorized disclosure of information [Barbacci
95].

Consistency
the degree of uniformity, standardization, and freedom from contradiction
among the documents or parts of a system or component [IEEE 90].

Corrective maintenance
maintenance performed to correct faults in hardware or software [IEEE
90].

Correctness
the degree to which a system or component is free from faults in its
specification, design, and implementation [IEEE 90].

Cost estimation
the process of estimating the "costs" associated with software
development projects, to include the effort, time, and labor required.

Cost of maintenance
the overall cost of maintaining a computer system to include the costs

http://www.sei.cmu.edu/str/indexes/glossary/index.html (3 of 16)7/28/2008 11:28:33 AM

Glossary

associated with personnel, training, maintenance control, hardware and
software maintenance, and requirements growth.

Cost of operation
the overall cost of operating a computer system to include the costs
associated with personnel, training, and system operations.

Cost of ownership
the overall cost of a computer system to an organization to include the
costs associated with operating and maintaining the system, and the
lifetime of operational use of the system.

Data management security
the protection of data from unauthorized (accidental or intentional)
modification, destruction, or disclosure [ITS 96].

Data management
the function that provides access to data, performs or monitors the
storage of data, and controls input/output operations [McDaniel 94].

Data recording
to register all or selected activities of a computer system. Can include
both external and internal activity.

Data reduction
any technique used to transform data from raw data into a more useful
form of data. For example, grouping, summing, or averaging related data
[IEEE 90].

Database administration
the responsibility for the definition, operation, protection, performance,
and recovery of a database [IEEE 90].

Database design
the process of developing a database that will meet a user's
requirements. The activity includes three separate but dependent steps:
conceptual database design, logical database design, and physical
database design [IEEE 91].

Database
1. a collection of logically related data stored together in one or more

computerized files. Note: Each data item is identified by one or more keys
[IEEE 90].

2. an electronic repository of information accessible via a query language
interface [DoD 91].

Denial of service

the degree to which a software system or component prevents the
interference or disruption of system services to the user.

Dependability
that property of a computer system such that reliance can justifiably be
placed on the service it delivers [Barbacci 95].

http://www.sei.cmu.edu/str/indexes/glossary/index.html (4 of 16)7/28/2008 11:28:33 AM

Glossary

Design phase

the period of time in the software life cycle during which the designs for
architecture, software components, interfaces, and data are created,
documented, and verified to satisfy requirements [IEEE 90].

Detailed design
the process of refining and expanding the preliminary design of a system
or component to the extent that the design is sufficiently complete to be
implemented [IEEE 90].

Distributed computing
a computer system in which several interconnected computers share the
computing tasks assigned to the system [IEEE 90].

Domain analysis
the activity that determines the common requirements within a domain for
the purpose of identifying reuse opportunities among the systems in the
domain. It builds a domain architectural model representing the
commonalities and differences in requirements within the domain
(problem space) [ARC 96].

Domain design
the activity that takes the results of domain analysis to identify and
generalize solutions for those common requirements in the form of a
Domain-Specific Software Architecture (DSSA). It focuses on the problem
space, not just on a particular system's requirements, to design a solution
(solution space) [ARC 96].

Domain engineering
the process of analysis, specification and implementation of software
assets in a domain which are used in the development of multiple
software products [SEI 96]. The three main activities of domain
engineering are: domain analysis, domain design, and domain
implementation [ARC 96].

Domain implementation
the activity that realizes the reuse opportunities identified during domain
analysis and design in the form of common requirements and design
solutions, respectively. It facilitates the integration of those reusable
assets into a particular application [ARC 96].

Effectiveness
the degree to which a system's features and capabilities meet the user's
needs.

Efficiency
the degree to which a system or component performs its designated
functions with minimum consumption of resources (CPU, Memory, I/O,
Peripherals, Networks) [IEEE 90].

Error handling
the function of a computer system or component that identifies and
responds to user or system errors to maintain normal or at the very least

http://www.sei.cmu.edu/str/indexes/glossary/index.html (5 of 16)7/28/2008 11:28:33 AM

Glossary

degraded operations.

Error proneness
the degree to which a system may allow the user to intentionally or
unintentionally introduce errors into or misuse the system.

Error tolerance
the ability of a system or component to continue normal operation despite
the presence of erroneous inputs [IEEE 90].

Evolvability
the ease with which a system or component can be modified to take
advantage of new software or hardware technologies.

Expandability
see Extendability [IEEE 90].

Extendability
the ease with which a system or component can be modified to increase
its storage or functional capacity [IEEE 90].

Fail safe
pertaining to a system or component that automatically places itself in a
safe operating mode in the event of a failure [IEEE 90].

Fail soft
pertaining to a system or component that continues to provide partial
operational capability in the event of certain failures [IEEE 90].

Fault tolerance
the ability of a system or component to continue normal operation despite
the presence of hardware or software faults [IEEE 90].

Fault
an incorrect step, process, or data definition in a computer program [IEEE
90].

Fidelity
the degree of similarity between a model and the system properties being
modeled [IEEE 90].

Flexibility
the ease with which a system or component can be modified for use in
applications or environments other than those for which it was specifically
designed [IEEE 90].

Functional scope
the range or scope to which a system component is capable of being
applied.

Functional testing
testing that ignores the internal mechanism of a system or component
and focuses solely on the outputs generated in response to selected
inputs and execution conditions. Synonym: black-box testing [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/index.html (6 of 16)7/28/2008 11:28:33 AM

Glossary

Generality

the degree to which a system or component performs a broad range of
functions [IEEE 90].

Graphics
methods and techniques for converting data to or from graphic display via
computers [McDaniel 94].

Hardware maintenance
the cost associated with the process of retaining a hardware system or
component in, or restoring it to, a state in which it can perform its required
functions.

Human Computer Interaction
a subfield within computer science concerned with the design, evaluation,
and implementation of interactive computing systems for human use and
with the study of major phenomena surrounding them [Toronto 95].

Human engineering
the extent to which a software product fulfills its purpose without wasting
user's time and energy or degrading their morale [Boehm 78].

Implementation phase
the period of time in the software life cycle during which a software
product is created from design documentation and debugged [IEEE 90].

Incompleteness
the degree to which all the parts of a software system or component are
not present and each of its parts is not fully specified or developed.

Information Security
the concepts, techniques, technical measures, and administrative
measures used to protect information assets from deliberate or
inadvertent unauthorized acquisition, damage, disclosure, manipulation,
modification, loss, or use [McDaniel 94].

Installation and checkout phase
the period of time in the software life cycle during which a software
product is integrated into its operational environment and tested in this
environment to ensure it performs as required [IEEE 90].

Integration testing
testing in which software components, hardware components, or both are
combined and tested to evaluate the interaction between them [IEEE 90].

Integrity
the degree to which a system or component prevents unauthorized
access to, or modification of, computer programs or data [IEEE 90].

Interface testing
testing conducted to evaluate whether systems or components pass data
and control correctly to one another [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/index.html (7 of 16)7/28/2008 11:28:33 AM

Glossary

Interfaces design
the activity concerned with the interfaces of the software system
contained in the software requirements and software interface
requirements documentation. Consolidates the interface descriptions into
a single interface description of the software system [IEEE 91].

Interoperability
the ability of two or more systems or components to exchange information
and to use the information that has been exchanged [IEEE 90].

ISO
International Organization for Standardization. A voluntary, non-treaty
organization founded in 1946 which is responsible for creating
international standards in many areas, including computers and
communications. Its members are the national standards organizations of
the 89 member countries, including ANSI for the U.S.

Latency
the length of time it takes to respond to an event [Barbacci 95].

Lifetime of operational capability
the total period of time in a system's life that it is operational and meeting
the user's needs.

Maintainability
the ease with which a software system or component can be modified to
correct faults, improve performance, or other attributes, or adapt to a
changed environment [IEEE 90].

Maintenance control
the cost of planning and scheduling hardware preventive maintenance,
and software maintenance and upgrades, managing the hardware and
software baselines, and providing response for hardware corrective
maintenance.

Maintenance measures
a category of quality measures that address how easily a system can be
repaired or changed.

Maintenance personnel
the number of personnel needed to maintain all aspects of a computer
system, including the support personnel and facilities needed to support
that activity.

Managed device
any type of node residing on a network, such as a computer, printer or
routers that contain a management agent.

Managed object
a characteristic of a managed device that can be monitored, modified or
controlled.

Management agent
software that resides in a managed device that allows the device to be
monitored and/or controlled by a network management application.

http://www.sei.cmu.edu/str/indexes/glossary/index.html (8 of 16)7/28/2008 11:28:33 AM

Glossary

Manufacturing phase

the period of time in the software life cycle during which the basic version
of a software product is adapted to a specified set of operational
environments and is distributed to a customer base [IEEE 90].

Model
an approximation, representation, or idealization of selected aspects of
the structure, behavior, operation, or other characteristics of a real-world
process, concept, or system. Note: Models may have other models as
components [IEEE 90].

Modifiability
the degree to which a system or component facilitates the incorporation of
changes, once the nature of the desired change has been determined
[Boehm 78].

Necessity of characteristics
the degree to which all of the necessary features and capabilities are
present in the software system.

Need satisfaction measures
a category of quality measures that address how well a system meets the
user's needs and requirements.

Network management
the execution of the set of functions required for controlling, planning,
allocating, deploying, coordinating, and monitoring the resources of a
computer network [ITS 96].

Network management application
application that provides the ability to monitor and control the network.

Network management information
information that is exchanged between the network management station
(s) and the management agents that allows the monitoring and control of
a managed device.

Network management protocol
protocol used by the network management station(s) and the
management agent to exchange management information.

Network management station
system that hosts the network management application.

Openness
the degree to which a system or component complies with standards.

Operability
the ease of operating the software [Deutsch 88].

Operational testing
testing conducted to evaluate a system or component in its operational
environment [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/index.html (9 of 16)7/28/2008 11:28:33 AM

Glossary

Operations and maintenance phase
the period of time in the software life cycle during which a software
product is employed in its operational environment, monitored for
satisfactory performance, and modified as necessary to correct problems
or to respond to changing requirements [IEEE 90].

Operations personnel
the number of personnel needed to operate all aspects of a computer
system, including the support personnel and facilities needed to support
that activity.

Operations system
the cost of environmentals, communication, licenses, expendables, and
documentation maintenance for an operational system.

Organizational measures
a category of quality measures that address how costly a system is to
operate and maintain.

Parallel computing
a computer system in which interconnected processors perform
concurrent or simultaneous execution of two or more processes
[McDaniel 94].

Perfective maintenance
software maintenance performed to improve the performance,
maintainability, or other attributes of a computer program [IEEE 90].

Performance measures
a category of quality measures that address how well a system functions.

Performance testing
testing conducted to evaluate the compliance of a system or component
with specified performance requirements [IEEE 90].

Portability
the ease with which a system or component can be transferred from one
hardware or software environment to another [IEEE 90].

Productivity
the quality or state of being productive [Webster 87].

Protocol
a set of conventions that govern the interaction of processes, devices,
and other components within a system [IEEE 90].

Provably correct
the ability to mathematically verify the correctness of a system or
component.

Qualification phase
the period of time in the software life cycle during which it is determined
whether a system or component is suitable for operational use.

Qualification testing

http://www.sei.cmu.edu/str/indexes/glossary/index.html (10 of 16)7/28/2008 11:28:33 AM

Glossary

testing conducted to determine whether a system or component is
suitable for operational use [IEEE 90].

Quality measure
a software feature or characteristic used to assess the quality of a system
or component.

Readability
the degree to which a system's functions and those of its component
statements can be easily discerned by reading the associated source
code.

Real-time responsiveness
the ability of a system or component to respond to an inquiry or demand
within a prescribed time frame.

Recovery
the restoration of a system, program, database, or other system resource
to a prior state following a failure or externally caused disaster; for
example, the restoration of a database to a point at which processing can
be resumed following a system failure [IEEE 90].

Reengineering
rebuilding a software system or component to suit some new purpose; for
example to work on a different platform, to switch to another language, to
make it more maintainable.

Regression testing
selective retesting of a system or component to verify that modifications
have not caused unintended effects and that the system or component
still complies with its specified requirements [IEEE 90].

Reliability
the ability of a system or component to perform its required functions
under stated conditions for a specified period of time [IEEE 90].

Requirements engineering
involves all life-cycle activities devoted to identification of user
requirements, analysis of the requirements to derive additional
requirements, documentation of the requirements as a specification, and
validation of the documented requirements against user needs, as well as
processes that support these activities [DoD 91].

Requirements growth
the rate at which the requirements change for an operational system. The
rate can be positive or negative.

Requirements phase
the period of time in the software life cycle during which the requirements
for a software product are defined and documented [IEEE 90].

Requirements tracing
describing and following the life of a requirement in both forwards and
backwards direction (i.e., from its origins, through its development and

http://www.sei.cmu.edu/str/indexes/glossary/index.html (11 of 16)7/28/2008 11:28:33 AM

Glossary

specification, to its subsequent deployment and use, and through periods
of ongoing refinement and iteration in any of these phases) [Gotel 95].

Resource utilization
the percentage of time a resource (CPU, Memory, I/O, Peripheral,
Network) is busy [Barbacci 95].

Responsiveness
the degree to which a software system or component has incorporated
the user's requirements.

Restart
to cause a computer program to resume execution after a failure, using
status and results recorded at a checkpoint [IEEE 90].

Retirement phase
the period of time in the software life cycle during which support for a
software product is terminated [IEEE 90].

Reusability
the degree to which a software module or other work product can be used
in more than one computing program or software system [IEEE 90].

Reverse engineering
the process of analyzing a system's code, documentation, and behavior
to identify its current components and their dependencies to extract and
create system abstractions and design information. The subject system is
not altered; however, additional knowledge about the system is produced.

Robustness
the degree to which a system or component can function correctly in the
presence of invalid inputs or stressful environment conditions [IEEE 90].

Safety
a measure of the absence of unsafe software conditions. The absence of
catastrophic consequences to the environment [Barbacci 95].

Scalability
the ease with which a system or component can be modified to fit the
problem area.

Security
the ability of a system to manage, protect, and distribute sensitive
information.

Select or develop algorithms
the activity concerned with selecting or developing a procedural
representation of the functions in the software requirements
documentation for each software component and data structure. The
algorithms shall completely satisfy the applicable functional and/or
mathematical specifications [IEEE 91].

Self-descriptiveness
the degree to which a system or component contains enough information

http://www.sei.cmu.edu/str/indexes/glossary/index.html (12 of 16)7/28/2008 11:28:33 AM

Glossary

to explain its objectives and properties [IEEE 90].

Simplicity
the degree to which a system or component has a design and
implementation that is straightforward and easy to understand [IEEE 90].

Software architecture
the structure of the components of a program/system, their
interrelationships, and principles and guidelines governing their design
and evolution over time [Clements 96].

Software change cycle time
the period of time that starts when a new system requirement is identified
and ends when the requirement has been incorporated into the system
and delivered for operational use.

Software life cycle
the period of time that begins when a software product is conceived and
ends when the software is no longer available for use. The life cycle
typically includes a concept phase, requirements phase, design phase,
implementation phase, test phase, installation and checkout phase,
operation and maintenance phase, and sometimes, retirement phase.
These phases may overlap or be performed iteratively, depending on the
software development approach used [IEEE 90].

Software maintenance
the cost associated with modifying a software system or component after
delivery to correct faults, improve performance or other attributes, or
adapt to a changed environment.

Software migration and evolution
see Adaptive maintenance.

Software upgrade and technology insertion
see Perfective maintenance.

Speed
the rate at which a software system or component performs its functions.

Statistical testing
employing statistical science to evaluate a system or component. Used to
demonstrate a system's fitness for use, to predict the reliability of a
system in an operational environment, to efficiently allocate testing
resources, to predict the amount of testing required after a system
change, to qualify components for reuse, and to identify when enough
testing has been accomplished [Poore 96].

Structural testing
testing that takes into account the internal mechanism of a system or
component. Types include branch testing, path testing, statement testing.
Synonym: white-box testing [IEEE 90].

Structuredness
the degree to which a system or component possesses a definite pattern

http://www.sei.cmu.edu/str/indexes/glossary/index.html (13 of 16)7/28/2008 11:28:33 AM

Glossary

of organization of its interdependent parts [Boehm 78].

Sufficiency of characteristics
the degree to which the features and capabilities of a software system
adequately meet the user's needs.

Survivability
the degree to which essential functions are still available even though
some part of the system is down [Deutsch 88].

System allocation
mapping the required functions to software and hardware. This activity is
the bridge between concept exploration and the definition of software
requirements [IEEE 91].

System analysis and optimization
a systematic investigation of a real or planned system to determine the
information requirements and processes of the system and how these
relate to each other and to any other system, and to make improvements
to the system where possible.

System security
a system function that restricts the use of objects to certain users
[McDaniel 94].

System testing
testing conducted on a complete, integrated system to evaluate the
system's compliance with its specified requirements [IEEE 90].

Taxonomy
a scheme that partitions a body of knowledge and defines the
relationships among the pieces. It is used for classifying and
understanding the body of knowledge [IEEE 90].

Test drivers
software modules used to invoke a module(s) under test and, often,
provide test inputs, control and monitor execution, and report test results
[IEEE 90].

Test phase
the period of time in the software life cycle during which the components
of a software product are evaluated and integrated, and the software
product is evaluated to determine whether or not requirements have been
satisfied [IEEE 90].

Test tools
computer programs used in the testing of a system, a component of the
system, or its documentation. Examples include monitor, test case
generator, timing analyzer [IEEE 90].

Test
an activity in which a system or component is executed under specified
conditions, the results are observed or recorded, and an evaluation is
made of some aspect of the system or component [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/index.html (14 of 16)7/28/2008 11:28:33 AM

Glossary

Testability

the degree to which a system or component facilitates the establishment
of test criteria and the performance of tests to determine whether those
criteria have been met [IEEE 90]. Note: Not only is testability a
measurement for software, it can also apply to the testing scheme.

Testing
the process of operating a system or component under specified
conditions, observing or recording the results, and making an evaluation
of some aspect of the system or component [IEEE 90].

Throughput
the amount of work that can be performed by a computer system or
component in a given period of time [IEEE 90].

Traceability
the degree to which a relationship can be established between two or
more products of the development process, especially products having a
predecessor-successor or master-subordinate relationship to one another
[IEEE 90].

Training
Provisions to learn how to develop, maintain, or use the software system.

Trouble report analysis
the methodical investigation of a reported operational system deficiency
to determine what, if any, corrective action needs to be taken.

Trustworthiness
the degree to which a system or component avoids compromising,
corrupting, or delaying sensitive information.

Understandability
the degree to which the purpose of the system or component is clear to
the evaluator [Boehm 78].

Unit testing
testing of individual hardware or software units or groups of related units
[IEEE 90].

Upgradeability
see Evolvability.

Usability
the ease with which a user can learn to operate, prepare inputs for, and
interpret outputs of a system or component [IEEE 90].

User interface
an interface that enables information to be passed between a human user
and hardware or software components of a computer system [IEEE 90].

Verifiability
the relative effort to verify the specified software operation and

http://www.sei.cmu.edu/str/indexes/glossary/index.html (15 of 16)7/28/2008 11:28:33 AM

Glossary

performance [Evans 87].

Vulnerability
the degree to which a software system or component is open to
unauthorized access, change, or disclosure of information and is
susceptible to interference or disruption of system services.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/indexes/glossary/index_body.html
Last Modified: 24 July 2008

References and Information Sources

This frame provides full citations for references used in definitions above.

http://www.sei.cmu.edu/str/indexes/glossary/index.html (16 of 16)7/28/2008 11:28:33 AM

http://www.sei.cmu.edu/about/disclaimer.html

Keywords Index

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

Glossary &
Indexes

Glossary

Keyword Index

Keyword Index

The Keyword Index is structured as in any typical document; a few nuances of
our index include the following:

● If the keyword is defined in the glossary, it is linked to that glossary
definition.

● If the keyword is the name of a technology, it appears in bold type and is
linked to that technology description.

● If the keyword is a category in one of the taxonomies, it is followed by that
category's index label in parenthesis. AP and QM labels are linked to a
list of technology descriptions included in the category.

Each keyword is followed by a list of the technology descriptions that reference
it. After selecting one of the descriptions, use your browser's "find" capabilities to
locate instances of the keyword.

A| B| C| D| E| F| G| H| I| J| K| L| M| N| O| P| Q| R| S| T| U| V| W|
X| Y| Z

A
abstraction

Object-Oriented Analysis

abstractness (QM.4.4.1.x)

acceptance testing (AP.1.8.2.2)

accessibility (QM.2.1.4.1.3.x), (QM.4.4.1.x)

accountability (QM.2.1.4.2)

accuracy (QM.2.1.2.1)
Database Two Phase Commit

acquisition cycle time

Active Group
Component Object Model (COM), DCOM, and Related Capabilities

ActiveX
Component Object Model (COM), DCOM, and Related Capabilities

Ada 83
Ada 95

Ada 95

http://www.sei.cmu.edu/str/indexes/keywords/index.html (1 of 33)7/28/2008 11:28:37 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/indexes/keywords/index_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Keywords Index

Ada 83
Common Object Request Broker Architecture
Rate Monotonic Analysis

adaptability (QM.3.1.x)

adaptive-maintenance (AP.1.9.3.2)

adaptive-measures (QM.4)

ADL. see architecture description languages

agents (AP.2.8)

Algorithm Formalization

American National Standards Institute
Ada 83

anonymity (QM.2.1.4.1.2.x)

ANSI. see American National Standards Institute

aperiodic task/process
Rate Monotonic Analysis

API. see application program interfaces

application engineering
Domain Analysis and Domain Engineering

application program interfaces (AP.2.7)
Application Program Interface
COTS and Open Systems--An Overview
Java
Message-Oriented Middleware
Middleware
private

Defense Information Infrastructure Common Operating
Environment

public
Defense Information Infrastructure Common Operating
Environment

application server
Three Tier Software Architectures

applications
event-driven

Message-Oriented Middleware

architectural design (AP.1.3.1)

architecture
Architecture Description Languages
Cleanroom Software Engineering
description languages

Architecture Description Languages
Module Interconnection Languages

modeling
Feature-Oriented Domain Analysis

Reference Models, Architectures, Implementations--An Overview

Argument-Based Design Rationale Capture Methods for Requirements

http://www.sei.cmu.edu/str/indexes/keywords/index.html (2 of 33)7/28/2008 11:28:37 AM

Keywords Index

Tracing

artificial intelligence

asynchronous
processing

Distributed Computing Environment

auditable (QM.2.1.4.2.1)

Authenticode
Component Object Model (COM), DCOM, and Related Capabilities

automatic programming
availability (QM.2.1.1)

Intrusion Detection
Software Inspections
Statistical-Based Intrusion Detection

B
backfiring

Function Point Analysis

Bang measure
Function Point Analysis

binary large objects
Object-Oriented Database

black-box testing (AP.1.4.3.4.x)

BLOBS. see binary large objects

Bowles metrics
Cyclomatic Complexity

box structure method
Cleanroom Software Engineering

browsers
Computer System Security--An Overview

C
C

Ada 83
Common Object Request Broker Architecture
Distributed Computing Environment

C++
Ada 83
Common Object Request Broker Architecture
Distributed/Collaborative Enterprise Architectures

C4I
Computer System Security--An Overview

Capability Maturity Model

http://www.sei.cmu.edu/str/indexes/keywords/index.html (3 of 33)7/28/2008 11:28:37 AM

Keywords Index

Cleanroom Software Engineering
Personal Software Process for Module-Level Development
Software Inspections

capacity (QM.2.2.1)

cell
in distributed computing

Distributed Computing Environment

Cleanroom Software Engineering
Object-Oriented Analysis
Object-Oriented Design

client
Two Tier Software Architectures

client/server (AP.2.1.2.1)
communication (AP.2.2.1)
Distributed Computing Environment
Mainframe Server Software Architectures
Message-Oriented Middleware
Object Request Broker
Remote Procedure Call
Software Architectures

CMIP. see Common Management Information Protocol

CMM. see Capability Maturity Model

Coad-Yourdan
Object-Oriented Analysis

COCOMO. see constructive cost model

code (AP.1.4.2)
analyzers (AP.1.4.3.4.x)
complexity

Halstead Complexity Measures
entropy

Maintenance of Operational Systems--An Overview
generator

Graphical User Interface Builders

COE. see Common Operating Environment

commercial-off-the-shelf
Application Programming Interface
Component-Based Software Development/COTS Integration
COTS and Open Systems--An Overview
integration

Application Programming Interface

commit phase
Database Two Phase Commit

Common Management Information Protocol
Simple Network Management Protocol

Common Object Request Broker Architecture
Distributed/Collaborative Enterprise Architectures
Distributed Computing Environment

http://www.sei.cmu.edu/str/indexes/keywords/index.html (4 of 33)7/28/2008 11:28:37 AM

Keywords Index

Middleware
Object Request Broker
compliance

Object Request Broker
implementations

Object Request Broker

Common Operating Environment
TAFIM Reference Model
architecture

Defense Information Infrastructure Common Operating
Environment

compliance levels
Defense Information Infrastructure Common Operating
Environment

component segments
Defense Information Infrastructure Common Operating
Environment

Information Server
Defense Information Infrastructure Common Operating
Environment

Software Repository System
Defense Information Infrastructure Common Operating
Environment

commonality (QM.4.1.2.x)
Domain Engineering and Domain Analysis

communication software (AP.2.2)

compactness (QM.2.2.x)

compartmented mode workstations
Computer System Security--An Overview
Trusted Operating Systems

compatibility (QM.4.1.1)
Graphic Tools for Legacy Database Migration

compiler (AP.1.4.2.3)
Ada 83
Ada 95

completeness (QM.1.3.1)
Requirements Tracing

complexity (QM.3.2.1)
Halstead Complexity Measures
Message-Oriented Middleware
Remote Procedure Call
analysis

Maintenance of Operational Systems--An Overview
apparent (QM.3.2.1.x)
inherent (QM.3.2.1.x)

compliance (standalone)
Common Object Request Broker Architecture

http://www.sei.cmu.edu/str/indexes/keywords/index.html (5 of 33)7/28/2008 11:28:37 AM

Keywords Index

Defense Information Infrastructure Common Operating Environment

component
adaptation

Component-Based Software Development/COTS Integration
assembly

Component-Based Software Development/COTS Integration
selection and evaluation

Component-Based Software Development/COTS Integration
testing (AP.1.4.3.5)

Component Object Model
Distributed Computing Environment
Middleware
Object Request Broker

Component-Based Software Development/COTS Intergration

component-based software engineering
Component-Based Software Development/COTS Intergration

computational complexity
Halstead Complexity Measures

Computer System Security--An Overview

concept phase (AP.1.1)

conciseness (QM.3.2.4.x)

concurrent engineering
Cleanroom Software Engineering

confidentiality (QM.2.1.4.1.2)
Intrusion Detection

conformance
COTS and Open Systems--An Overview

connected graph
Cyclomatic Complexity

connectivity software
Middleware

consistency (QM.1.3.2)
Algorithm Formalization
Requirements Tracing

constructive cost model
Function Point Analysis

context analysis
Feature-Oriented Domain Analysis

CORBA. see Common Object Request Broker Architecture

corrective maintenance (AP.1.9.3.1)

correctness (QM.1.3)
Cleanroom Software Engineering

cost estimation (AP.1.3.7)
Function Point Analysis

cost of maintenance (QM.5.1.2)

cost of operation (QM.5.1.1)

http://www.sei.cmu.edu/str/indexes/keywords/index.html (6 of 33)7/28/2008 11:28:37 AM

Keywords Index

cost of ownership (QM.5.1)

COTS and Open Systems--An Overview

COTS. see commercial-off-the-shelf

cycle time
Cleanroom Software Engineering

Cyclomatic Complexity

D
data

analyzers (AP.1.4.3.4.x)
complexity

Cyclomatic Complexity
exchange

Object Request Broker
integrity

Database Two Phase Commit
Public Key Digital Signatures

management (AP.2.6.1)
management security (AP.2.4.2)
mining

Mainframe Server Software Architectures
recording (AP.2.9)
reduction (AP.2.9)
sharing

Application Programming Interface
visualization

Graphic Tools for Legacy Database Migration
warehouses

Mainframe Server Software Architectures

Data Encryption Standard
Simple Network Management Protocol

databases (AP.2.6)
Graphic Tools for Legacy Database Migration
administration (AP.1.9.1)
design (AP.1.3.2)
management

Three Tier Software Architecture
Two Tier Software Architectures

management system
Multi-Level Secure Database Management Schemes

server
Transaction Processing Monitor Technology

two phase commit
Database Two Phase Commit

utilities (AP.1.4.2.2)

DBMS. see database management system

http://www.sei.cmu.edu/str/indexes/keywords/index.html (7 of 33)7/28/2008 11:28:37 AM

Keywords Index

debugger (AP.1.4.2.4.x)

decision support systems
Two Tier Software Architectures

defect
detection

Software Inspections
leakage

Software Inspections
management

Personal Software Process for Module-Level Development

prevention
Cleanroom Software Engineering

Defense Information Infrastructure Common Operating Environment. see
Common Operating Environment

Defense Information Systems Agency
COTS and Open Systems--An Overview
TAFIM Reference Model

denial of service (QM.2.1.4.1.3)

Department of Defense systems
evolution of

TAFIM Reference Model

dependability (QM.2.1)
Rate Monotonic Analysis

DES. see Data Encryption Standard

design
Cleanroom Software Engineering
architectural (AP.1.3.1)
complexity

Cyclomatic Complexity
database (AP.1.3.2)
decision

history
Feature-Based Design Rationale Capture Method for
Requirements Tracing

decisions
Feature-Based Design Rationale Capture Method for
Requirements Tracing

detailed (AP.1.3.5)
interface (AP.1.3.3)
phase (AP.1.3)
rationale

Argument-Based Design Rationale Capture Methods for
Requirements Tracing
Feature-Based Design Rationale Capture Method for
Requirements Tracing
Requirements Tracing
capture

Argument-Based Design Rationale Capture Methods for

http://www.sei.cmu.edu/str/indexes/keywords/index.html (8 of 33)7/28/2008 11:28:37 AM

Keywords Index

Requirements Tracing
history

Argument-Based Design Rationale Capture Methods for
Requirements Tracing

detailed design (AP.1.3.5)

development phase
Cleanroom Software Engineering
Maintenance of Operational Systems--An Overview

digital signatures
Computer System Security--An Overview
Public Key Digital Signatures

DII COE. see Defense Information Infrastructure Common Operating
Environment

directory services
Distributed Computing Environment

DISA. see Defense Information Systems Agency

diskless support
Distributed Computing Environment

distributed
business models

Distributed/Collaborative Enterprise Architectures
client/server architecture

Three Tier Software Architecture
computing (AP.2.1.2)
database system

Database Two Phase Commit
environment

TAFIM Reference Model
system

Distributed Computing Environment
Object Request Broker
Remote Procedure Call
services

Middleware

Distributed/Collaborative Enterprise Architectures
Client/Server Software Architectures

Distributed Computing Environment
Common Object Request Broker Architecture
Middleware

domain
Domain Engineering and Domain Analysis
analysis

Cleanroom Software Engineering
Domain Engineering and Domain Analysis
Feature-Oriented Domain Analysis
Organization Domain Modeling

design

http://www.sei.cmu.edu/str/indexes/keywords/index.html (9 of 33)7/28/2008 11:28:37 AM

Keywords Index

engineering (AP.1.2.4)
Domain Engineering and Domain Analysis
Organization Domain Modeling

implementation
modeling

Feature-Oriented Domain Analysis
Organization Domain Modeling

Domain Engineering and Domain Analysis

dynamic binding
Object-Oriented Programming Languages

E
early operational phase

Maintenance of Operational Systems--An Overview

effectiveness (QM.1.1)

efficiency (QM.2.2)
Algorithm Formalization
Transaction Processing Monitor Technology

electronic encryption key distribution cryptography
Computer System Security--An Overview

end-to-end encryption
Computer System Security--An Overview

engineering function points
Function Point Analysis
Halstead Complexity Measures

entropy
Maintenance of Operational Systems--An Overview

error
handling (AP.2.11)
proneness (QM.2.3.1)
tolerance (QM.2.1.1.x)

essential complexity
Cyclomatic Complexity

estimating
Personal Software Process for Module-Level Development

event-driven applications
Message-Oriented Middleware

evolution/replacement phase
Maintenance of Operational Systems--An Overview

evolvability (QM.3.1.x)

expandability (QM.3.1.x)

extendability (QM.3.1.x)

http://www.sei.cmu.edu/str/indexes/keywords/index.html (10 of 33)7/28/2008 11:28:37 AM

Keywords Index

F
fail safe (QM.2.1.1.x)

fail soft (QM.2.1.1.x)

FARS. see Federal Acquisition Regulations

FASA. see Federal Acquisition Streamlining Acts

fault

fault tolerance (QM.2.1.1.x)

feature analysis
Feature-Oriented Domain Analysis

feature points
Function Point Analysis

Feature-Based Design Rationale Capture Method for Requirements Tracing

Feature-Oriented Domain Analysis

Federal Acquisition Regulations
COTS and Open Systems--An Overview

Federal Acquisition Streamlining Acts
COTS and Open Systems--An Overview

fidelity (QM.2.4)

file systems
Distributed Computing Environment
support for

Remote Procedure Call

file transfer
Application Programming Interface

firewalls
Computer System Security--An Overview
Firewalls and Proxies
proxies, and

Firewalls and Proxies

fixed priority
Rate Monotonic Analysis

flexibility (QM.3.1.x)
Ada 83
Ada 95
Client/Server Software Architectures
Component-Based Software Development/COTS Integration
Distributed/Collaborative Enterprise Architectures
Distributed Computing Environment
Mainframe Server Software Architectures
Message-Oriented Middleware
Remote Procedure Call
TAFIM Reference Model
Three Tier Software Architecture
Transaction Processing Monitor Technology
Two Tier Software Architectures

FODA. see Feature-Oriented Domain Analysis

http://www.sei.cmu.edu/str/indexes/keywords/index.html (11 of 33)7/28/2008 11:28:37 AM

Keywords Index

FORTEZZA
Computer System Security--An Overview

function call
Remote Procedure Call

Function Point Analysis

function points
early and easy

Function Point Analysis

functional scope (QM.4.4.1)

functional size measurement
Function Point Analysis

functional testing (AP.1.4.3.4.x)

functionality analysis
Maintenance of Operational Systems--An Overview

fundamental distributed services
Distributed Computing Environment

Futurebus+
Rate Monotonic Analysis

G
GCCS. see Global Command and Control System

GCSS. see Global Combat Support System

generality (QM.4.4.1.x)

Global Combat Support System
Defense Information Infrastructure Common Operating Environment
TAFIM Reference Model

Global Command and Control System
Defense Information Infrastructure Common Operating Environent
TAFIM Reference Model

Graphic Tools for Legacy Database Migration

graphical user interface
Graphical User Interface Builders
builders

Graphical User Interface Builders

graphics (AP.2.3.2)

GUI builders. see graphical user interface builders

H
Halstead complexity measures

Cyclomatic Complexity
Function Point Analysis

hardware maintenance

http://www.sei.cmu.edu/str/indexes/keywords/index.html (12 of 33)7/28/2008 11:28:37 AM

Keywords Index

hardware-software co-design (AP.1.3.1.x)

Henry metrics
Cyclomatic Complexity

heterogeneous databases
Three Tier Software Architecture

homogeneous environment
Two Tier Software Architectures

human computer interaction (AP.2.3)

human engineering

I
IDTs. see interface development tools

IFPUG. see International Function Point User Group

implementation phase (AP.1.4)

implementations
overview of

Reference Models, Architectures, Implementations--An
Overview

incompleteness (QM.1.3.1)

incremental development
Cleanroom Software Engineering

independence
Distributed Computing Environment

information
analysis

Feature-Oriented Domain Analysis
hiding

Object-Oriented Programming Languages
security (AP.2.4)
warfare

Intrusion Detection
Rule-Based Intrusion Detection
Statistical-Based Intrusion Detection

inheritance
Object-Oriented Programming Languages

installation and checkout phase (AP.1.8)

integration testing (AP.1.5.3.2)

integrity (QM.2.1.4.1.1)
Distributed Computing Environment
Intrusion Detection

interface
definition language

Common Object Request Broker Architecture
Distributed Computing Environment

design (AP.1.3.3)

http://www.sei.cmu.edu/str/indexes/keywords/index.html (13 of 33)7/28/2008 11:28:37 AM

Keywords Index

development tools
Graphical User Interface Builders

specification
COTS and Open Systems--An Overview

standards
COTS and Open Systems--An Overview

testing (AP.1.5.3.3)

International Function Point User Group
Function Point Analysis

International Standards Organization
Ada 83
Function Point Analysis
standards

Distributed Computing Environment

internet
Firewalls and Proxies
Object Request Broker
standards

Distributed Computing Environment

interoperability (QM.4.1)
Ada 83
Ada 95
Application Programming Interface
Client/Server Software Architectures
Defense Information Infrastructure Common Operating Environment
Distributed Computing Environment
Message-Oriented Middleware
Middleware
Remote Procedure Call
TAFIM Reference Model

intranet
Computer System Security--An Overview
Firewalls and Proxies
Object Request Broker

Intrusion Detection
Computer System Security--An Overview
model-based

Rule-Based Intrusion Detection
rule-based

Rule-Based Intrusion Detection
statistical-based

Statistical-Based Intrusion Detection

ISO see International Standards Organization

J

http://www.sei.cmu.edu/str/indexes/keywords/index.html (14 of 33)7/28/2008 11:28:37 AM

Keywords Index

Jacobson
Object-Oriented Analysis

Java
Ada 95
Common Object Request Broker Architecture
Distributed/Collaborative Enterprise Architectures
Object Request Broker

Joint Technical Architecture
Defense Information Infrastructure Common Operating Environment

JTA. see Joint Technical Architecture

K
Kafura metrics

Cyclomatic Complexity

kernel COE
Defense Information Infrastructure Common Operating Environment

L
latency (QM.2.2.2)

legacy systems
COTS and Open Systems--An Overview
Distributed Computing Environment
Domain Engineering and Domain Analysis

lifetime of operational capability

Ligier metrics
Cyclomatic Complexity

lines of code
Function Point Analysis
metrics

Halstead Complexity Measures

LOC. see lines of code

M
MAC. see message authentication code

Mainframe Server Software Architectures

maintainability (QM.3.1)
Ada 83
Ada 95
Cyclomatic Complexity
Domain Engineering and Domain Analysis

http://www.sei.cmu.edu/str/indexes/keywords/index.html (15 of 33)7/28/2008 11:28:37 AM

Keywords Index

Feature-Oriented Domain Analysis
Graphic Tools for Legacy Database Migration
Maintainability Index Technique for Measuring Program Maintainability
Module Interconnection Languages
Object-Oriented Analysis
Object-Oriented Database
Object-Oriented Design
Object-Oriented Programming Languages
Organization Domain Modeling
Software Inspections
Three Tier Software Architecture

Maintainability Index Technique for Measuring Program Maintainability

maintenance
adaptive (AP.1.9.3.2)
control
corrective (AP.1.9.3.1)
costs

Maintenance of Operational Systems--An Overview
documentation

Maintenance of Operational Systems--An Overview
measures
metric

Halstead Complexity Measures
perfective (AP.1.9.3.3)
personnel

Maintenance of Operational Systems--An Overview

managed device

managed object

managed objects
Simple Network Management Protocol

management agent

management information base
Simple Network Management Protocol

manufacturing phase (AP.1.7)

marshalling
Component Object Model (COM), DCOM, and Related Capabilities

mature operational phase
Maintenance of Operational Systems--An Overview

mature systems
Maintenance of Operational Systems--An Overview

McCabe's complexity
Cyclomatic Complexity

message authentication code
Public Key Digital Signatures

message delivery
Application Programming Interface

message digest function

http://www.sei.cmu.edu/str/indexes/keywords/index.html (16 of 33)7/28/2008 11:28:37 AM

Keywords Index

Public Key Digital Signatures

Message-Oriented Middleware
Middleware
Remote Procedure Call

metrics
Cyclomatic Complexity
Halstead

Cyclomatic Complexity
Function Point Analysis

Henry
Cyclomatic Complexity

McCabe
Cyclomatic Complexity

Troy
Cyclomatic Complexity

Zweben
Cyclomatic Complexity

MIB. see management information base

middle tier server
Three Tier Software Architecture

Middleware
Application Programming Interface
Message-Oriented Middleware
Object Request Broker
Transaction Processing Monitor Technology

minimal operator intervention
Two Tier Software Architecture

MISSI. see Multilevel Information Systems Security Initiative

MLS Host
Computer System Security--An Overview

MLS Operating System
Computer System Security--An Overview

MLS. see multi-level security

models (AP.2.1.1)

modifiability (QM.3.1.x)
Application Programming Interface
Cleanroom Software Engineering

Module Interconnection Languages

module-level development
Personal Software Process for Module-Level Development

MOM. see message-oriented middleware

moniker
Component Object Model (COM), DCOM, and Related Capabilities

Morris Worm
Virus Detection

Motif
Graphical User Interface Builders

http://www.sei.cmu.edu/str/indexes/keywords/index.html (17 of 33)7/28/2008 11:28:37 AM

Keywords Index

Multilevel Information Systems Security Initiative
Computer System Security--An Overview

multi-level secure
database management schemes

Computer System Security--An Overview
Multi-Level Secure Database Management Schemes

guard
Computer System Security--An Overview

one way guard with random acknowledgement
Multi-Level Secure One Way Guard with Random
Acknowledgment

systems
Computer System Security--An Overview

multi-level security
Multi-Level Secure Database Management Schemes
Trusted Operating System

multiplexing client transaction requests
Transaction Processing Monitor Technology

N
NDI. see non-developmental items

necessity of characteristics (QM.1.1.1)

need satisfaction measures

network
Application Programming Interface
Distributed Computing Environment
architecture

Middleware
hardware

Distributed Computing Environment
management (AP.2.2.2)
manager

Message-Oriented Middleware
overhead

Distributed Computing Environment
performance of

Remote Procedure Call
protocols

interface to
Remote Procedure Call

security
Firewalls and Proxies

network management

network management application

network management information

network management protocol

http://www.sei.cmu.edu/str/indexes/keywords/index.html (18 of 33)7/28/2008 11:28:37 AM

Keywords Index

network management station

Network Management--An Overview

non-developmental items
COTS and Open Systems--An Overview

Nonrepudiation in Network Communications

O
object activation

Object Request Broker

Object Linking and Embedding
Component Object Model (COM), DCOM, and Related Capabilities

Object Management Architecture
Common Object Request Broker Architecture

Object Management Group
Common Object Request Broker Architecture
Distributed/Collaborative Enterprise Architectures

object model
Object-Oriented Analysis
Object-Oriented Database

object orientation
Object Request Broker

object-oriented
Cleanroom Software Engineering
Distributed Computing Environment
Remote Procedure Call
analysis

Object-Oriented Analysis
database

Object-Oriented Database
design

Object-Oriented Design
programming

Ada 83
Ada 95

programming language
Object-Oriented Programming Languages

systems
Message-Oriented Middleware

Object Request Broker
Client/Server Software Architectures
Common Object Request Broker Architecture
Distributed/Collaborative Enterprise Architectures
Middleware

objects
Object-Oriented Analysis

http://www.sei.cmu.edu/str/indexes/keywords/index.html (19 of 33)7/28/2008 11:28:37 AM

Keywords Index

Object Request Broker

ODM. see organization domain modeling

one way guards
Computer System Security--An Overview

OOA. see object-oriented analysis
OOD. see object-oriented design
OODB. see object-oriented database
OOPL. see object-oriented programming languages

Open Group
Component Object Model (COM), DCOM, and Related Capabilities

open systems
Application Programming Interface
COTS and Open Systems--An Overview
Mainframe Server Software Architectures
cost

COTS and Open Systems--An Overview
COTS, and

COTS and Open Systems--An Overview
interconnect standards

Distributed Computing Environment

openness (QM.4.1.2)

operability (QM.2.3.2)

operational analysis
Feature-Oriented Domain Analysis

operational testing (AP.1.8.2.1)

operations
personnel
system

operations and maintenance phase (AP.1.9)

opportunistic reuse
Domain Engineering and Domain Analysis

ORB. see object request broker

Organization Domain Modeling

organizational measures

overview of reference models, architectures, implementations
Reference Models, Architectures, Implementations--An Overview

P
parallel computing (AP.2.1.3)
payload

Virus Detection

peer reviews
Software Inspections

perfective maintenance (AP.1.9.3.3)

http://www.sei.cmu.edu/str/indexes/keywords/index.html (20 of 33)7/28/2008 11:28:37 AM

Keywords Index

performance
Graphic Tools for Legacy Database Migration
Rate Monotonic Analysis
Three Tier Software Architecture

measures
testing (AP.1.5.3.5)

periodic task/process
Rate Monotonic Analysis

persistent
data

Object-Oriented Database
objects

Object-Oriented Database

Personal Software Process
Personal Software Process for Module-Level Development
for module-level development

Personal Software Process for Module-Level Development

piecewise reengineering
Maintenance of Operational Systems--An Overview

pilot project
Cleanroom Software Engineering

plug-and-play
COTS and Open Systems--An Overview

polymorphism
Object-Oriented Programming Languages

portability (QM.4.2)
Ada 83
Ada 95
Defense Information Infrastructure Common Operating Environment
Distributed Computing Environment
Graphic Tools for Legacy Database Migration

POSIX
Rate Monotonic Analysis

pre-delivery phase
Maintenance of Operational Systems--An Overview

prepare phase
Database Two Phase Commit

priority inheritance
Rate Monotonic Analysis

priority inversion
Rate Monotonic Analysis

process management services
Three Tier Software Architecture

processing management

http://www.sei.cmu.edu/str/indexes/keywords/index.html (21 of 33)7/28/2008 11:28:37 AM

Keywords Index

Two Tier Software Architectures

product line
Component-Based Software Development/COTS Integration

productivity (QM.5.2)
Function Point Analysis
Object-Oriented Analysis
rates

Function Point Analysis

profiles
Statistical-Based Intrusion Detection

programming language (AP.1.4.2.1)

proprietary interfaces
COTS and Open Systems--An Overview

protocols (AP.2.2.3)
COTS and Open Systems--An Overview
support of

Message-Oriented Middleware

provably correct (QM.1.3.4)

proxies
Computer System Security--An Overview
Firewalls and Proxies

PSP. see Personal Software Process

public key cryptography
Computer System Security--An Overview
Public Key Digital Signatures

Public Key Digital Signatures

Q
qualification phase (AP.1.6)

qualification testing (AP.1.6.1)

quality
Cleanroom Software Engineering

quality measures
Component-Based Software Development/COTS Integration
Personal Software Process for Module-Level Development

queuing theory
Rate Monotonic Analysis

R

http://www.sei.cmu.edu/str/indexes/keywords/index.html (22 of 33)7/28/2008 11:28:37 AM

Keywords Index

Rate Monotonic Analysis

rate monotonic scheduling
Rate Monotonic Analysis

rationale capture
Argument-Based Design Rationale Capture Methods for Requirements
Tracing
Feature-Based Design Rationale Capture Method for Requirements
Tracing

RBID. see Rule-Based Intrusion Detection

RDA. see remote data access

readability (QM.3.2.4)

real-time
Rate Monotonic Analysis
responsiveness

responsiveness (QM.2.2.2)
systems

COTS and Open Systems--An Overview
Rate Monotonic Analysis

recovery (AP.2.10)

reengineering (AP.1.9.5)
Cyclomatic Complexity
Graphic Tools for Legacy Database Migration
Graphical User Interface Builders
Maintenance of Operational Systems--An Overview

reference models
overview of

Reference Models, Architectures, Implementations--An
Overview

regression testing (AP.1.5.3.4)

reliability (QM.2.1.2)
Ada 83
Ada 95
Cleanroom Software Engineering
Distributed/Collaborative Enterprise Architectures
Software Inspections
Transaction Processing Monitor Technology

remote data access
Transaction Processing Monitor Technology

remote method invocation
Object Request Broker

Remote Procedure Call
Application Programming Interface
Distributed Computing Environment

http://www.sei.cmu.edu/str/indexes/keywords/index.html (23 of 33)7/28/2008 11:28:37 AM

Keywords Index

Message-Oriented Middleware
Middleware
Transaction Processing Monitor Technology

requirements
cross referencing

Requirements Tracing
engineering (AP.1.2.2)
growth (QM.5.1.2.6)
phase (AP.1.2)
tracing (AP.1.2.3)

Maintenance of Operational Systems--An Overview
Requirements Tracing

requirements-to-code (AP.1.2.3.1)

resource utilization (QM.2.2)

responsiveness (QM.1.2)

restart (AP.2.10)

restructuring
Maintenance of Operational Systems--An Overview

retirement phase (AP.1.10)

retrievability (QM.4.4.2)

reusability (QM.4.4)
Ada 83
Ada 95
Architecture Description Languages
Defense Information Infrastructure Common Operating Environment
Domain Engineering and Domain Analysis
Feature-Based Design Rationale Capture Method for Requirements
Tracing
Feature-Oriented Domain Analysis
Mainframe Server Software Architectures
Object-Oriented Analysis
Object-Oriented Design
Organization Domain Modeling
Three Tier Software Architecture
Transaction Processing Monitor Technology

reuse
Component-Based Software Development/COTS Integration
Module Interconnection Languages

reverse-engineering (AP.1.9.4)
Maintenance of Operational Systems--An Overview
design recovery

Maintenance of Operational Systems--An Overview

REVIC. see revised intermediate COCOMO

http://www.sei.cmu.edu/str/indexes/keywords/index.html (24 of 33)7/28/2008 11:28:37 AM

Keywords Index

revised intermediate COCOMO
Function Point Analysis

risk analysis
Cyclomatic Complexity

RMA. see rate monotonic analysis

RMI. see remote method invocation

robustness (QM.2.1.1)

RPC. see remote procedure call

Rule-Based Intrusion Detection

Rumbaugh
Object-Oriented Analysis

runtime environment
Defense Information Infrastructure Common Operating Environment

S
safety (QM.2.1.3)

scalability (QM.4.3)
Distributed/Collaborative Enterprise Architectures
Distributed Computing Environment
Mainframe Server Software Architectures
Three Tier Software Architecture
Two Tier Software Architectures

schedulability analysis
Rate Monotonic Analysis

scheduling
Rate Monotonic Analysis

security (QM.2.1.5)
Distributed Computing Environment
Firewalls and Proxies
Intrusion Detection
Multi-Level Secure Database Management Schemes
Public Key Digital Signatures
Trusted Operating Systems

security services
Distributed Computing Environment

segments
Defense Information Infrastructure Common Operating Environment

select or develop algorithms

self descriptiveness (QM.3.2.4.x)

server
Two Tier Software Architecture

http://www.sei.cmu.edu/str/indexes/keywords/index.html (25 of 33)7/28/2008 11:28:37 AM

Keywords Index

session based technology
Transaction Processing Monitor Technology

sharing services
Distributed Computing Environment

Shlaer-Mellor
Object-Oriented Analysis

Simple Network Management Protocol
secure SNMP

Simple Network Management Protocol
SNMPv1

Simple Network Management Protocol
SNMPv2

Simple Network Management Protocol

Simplex Architecture

simplicity (QM.3.2.2)

Smalltalk
Common Object Request Broker Architecture
Distributed/Collaborative Enterprise Architectures

SNMP. see Simple Network Management Protocol

software
architecture (AP.2.1)
change cycle time
complexity

Maintenance of Operational Systems--An Overview
engineering

Personal Software Process for Module-Level Development
engineering tools

Graphical User Interface Builders
entropy

Maintenance of Operational Systems--An Overview
generation

Algorithm Formalization
inspections

Software Inspections
life cycle

Cleanroom Software Engineering
maintainability

Maintenance of Operational Systems--An Overview
maintenance (QM.5.1.2.5)
metrics

Cyclomatic Complexity
migration and evolution (AP.1.9.3.2)
process improvement

Personal Software Process for Module-Level Development
productivity

http://www.sei.cmu.edu/str/indexes/keywords/index.html (26 of 33)7/28/2008 11:28:37 AM

Keywords Index

Function Point Analysis
synthesis

Algorithm Formalization
upgrade and technology insertion (AP.1.9.3.3)

Software Technology for Adaptable Reliable Systems
Cleanroom Software Engineering
Organization Domain Modeling

speed (QM.2.2.x)

SQL. see standard query language

standard query language
Application Programming Interface

STARS. see Software Technology for Adaptable Reliable Systems

static metrics
Cyclomatic Complexity

statistical quality control
Cleanroom Software Engineering

statistical testing (AP.1.5.3.5.x)
Cleanroom Software Engineering

Statistical-Based Intrusion Detection

structural complexity
Cyclomatic Complexity

structural testing (AP.1.4.3.4.x)

structuredness (QM.3.2.3)

sufficiency of characteristics (QM.1.1.2)

support requirements
Function Point Analysis

survivability (QM.2.1.4.1.4)

synchronous mechanism
Message-Oriented Middleware
Remote Procedure Call

synchronous processing
Distributed Computing Environment

system
administrators

Distributed Computing Environment
allocation (AP.1.2.1)
analysis and optimization (AP.1.3.6)
Cleanroom Software Engineering
change costs

Function Point Analysis
evolution

Component-Based Software Development/COTS Integration
integration

Component-Based Software Development/COTS Integration

http://www.sei.cmu.edu/str/indexes/keywords/index.html (27 of 33)7/28/2008 11:28:37 AM

Keywords Index

lifecycle
Maintenance of Operational Systems--An Overview

migration
Graphic Tools for Legacy Database Migration

security (AP.2.4.3)
testing (AP.1.5.3.1)

system engineering
Domain Engineering and Domain Analysis

systematic reuse
Domain Engineering and Domain Analysis
Organization Domain Modeling

T
TAFIM

Defense Information Infrastructure Common Operating Environment
Application Program Interface

TAFIM Reference Model
External Environment Interface

TAFIM Reference Model
reference model

TAFIM Reference Model

tasks
Rate Monotonic Analysis

taxonomy

test (AP.1.4.3)
drivers (AP.1.4.3.2, AP.1.5.1)
generation

Maintenance of Operational Systems--An Overview
optimization

Maintenance of Operational Systems--An Overview
phase (AP.1.5)
planning

Cyclomatic Complexity
tools (AP.1.4.3.3, AP.1.5.2)

testability (QM.1.4.1)

testing (AP.1.5.3)
acceptance (AP.1.8.2.2)
black-box (AP.1.4.3.4.x)
component (AP.1.4.3.5)
functional (AP.1.4.3.4.x)
integration (AP.1.5.3.2)
interface (AP.1.5.3.3)

http://www.sei.cmu.edu/str/indexes/keywords/index.html (28 of 33)7/28/2008 11:28:37 AM

Keywords Index

operational (AP.1.8.2.1)
performance (AP.1.5.3.5)
qualification (AP.1.6.1)
regression (AP.1.5.3.4)
statistical (AP.1.5.3.5.x)

Cleanroom Software Engineering
structural (AP.1.4.3.4.x)
system (AP.1.5.3.1)
unit (AP.1.4.3.4)
white-box (AP.1.4.3.4.x)

threads
Distributed Computing Environment
Rate Monotonic Analysis
services

Distributed Computing Environment

three tier
architecture

Mainframe Server Software Architectures
Three Tier Software Architecture

software architectures
Three Tier Software Architecture

client/server
Message-Oriented Middleware

with application server
Client/Server Software Architectures

with message server
Client/Server Software Architectures

with ORB architecture
Client/Server Software Architectures

throughput (QM.2.2.3)
Intrusion Detection

time services
Distributed Computing Environment

TP Heavy
Client/Server Software Architectures

TP Lite
Client/Server Software Architectures

TP monitor. see transaction processing monitor technology.

traceability (QM.1.3.3)
Requirements Tracing

training (QM.5.1.1.2), QM.5.1.2.2)

transaction applications
Transaction Processing Monitor Technology

Transaction Processing Monitor Technology

http://www.sei.cmu.edu/str/indexes/keywords/index.html (29 of 33)7/28/2008 11:28:37 AM

Keywords Index

Client/Server Software Architectures
Middleware

translation
Maintainability Index Technique for Measuring Program Maintainability
Maintenance of Operational Systems--An Overview
restructuring/modularizing

Maintenance of Operational Systems--An Overview

transport software
Distributed Computing Environment

trouble report analysis (AP.1.9.2)

Troy metrics
Cyclomatic Complexity

Trusted Operating Systems (AP.2.4.1)
Multi-Level Secure Database Management Schemes

trustworthiness (QM.2.1.4)
Public Key Digital Signatures

two life cycle model
Domain Engineering and Domain Analysis

two phase commit technology
Database Two Phase Commit

two tier
architecture

Mainframe Server Software Architectures
software architectures

Two Tier Software Architectures

U
UDP. see user datagram protocol

UIL. see user interface language

UIMS. see user interface management system

understandability (QM.3.2)
Architecture Description Languages
Cleanroom Software Engineering
Domain Engineering and Domain Analysis
Graphic Tools for Legacy Database Migration
Module Interconnection Languages
Organization Domain Modeling

unit testing (AP.1.4.3.4)

UNIX
Mainframe Server Software Architectures

unmarshalling

http://www.sei.cmu.edu/str/indexes/keywords/index.html (30 of 33)7/28/2008 11:28:37 AM

Keywords Index

Component Object Model (COM), DCOM, and Related Capabilities

upgradeability (QM.3.1.x)

usability (QM.2.3)
Client/Server Software Architectures
Domain Engineering and Domain Analysis
Graphical User Interface Builders
Two Tier Software Architectures

user datagram protocol
Simple Network Management Protocol

user interfaces (AP.2.3.1)
development tools

Graphical User Interface Builders
language

Graphical User Interface Builders
management system

Graphical User Interface Builders

user services
Three Tier Software Architecture

user system interface
Two Tier Software Architectures

user friendly interface
Two Tier Software Architectures

V
validation suite

Ada
Ada 83
Ada 95

variability
Domain Engineering and Domain Analysis

vendor-driven upgrades
Component-Based Software Development/COTS Integration

verifiability (QM.1.4)
Cleanroom Software Engineering

VHDL. see VHSIC Hardware Description Language
VHSIC Hardware Description Language

Architecture Description Languages

virus
Virus Detection

Virus Detection
Computer System Security--An Overview

visualization tool

http://www.sei.cmu.edu/str/indexes/keywords/index.html (31 of 33)7/28/2008 11:28:37 AM

Keywords Index

Graphic Tools for Legacy Database Migration

vulnerability (QM.2.1.4.1)

W
walkthroughs

Software Inspections

white-box testing (AP.1.4.3.4.x)

widgets
Graphical User Interface Builders

workstation compliance level three
Defense Information Infrastructure Common Operating Environment

World Wide Web
Firewalls and Proxies

X

Y

Z
Zweben metrics

Cyclomatic Complexity

A| B| C| D| E| F| G| H| I| J| K| L| M| N| O| P| Q| R| S| T| U| V| W| X| Y| Z

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/indexes/keywords/index_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/indexes/keywords/index.html (32 of 33)7/28/2008 11:28:37 AM

http://www.sei.cmu.edu/about/disclaimer.html

Keywords Index

Reference and Glossary Items

Reference and glossary items are displayed in this frame.

http://www.sei.cmu.edu/str/indexes/keywords/index.html (33 of 33)7/28/2008 11:28:37 AM

Notes

Notes

1 This spectrum of technologies includes past, present, under-used, and emerging technologies.

http://www.sei.cmu.edu/str/about/notes/background_1.html7/28/2008 11:28:42 AM

Feedback and Participation

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

Glossary &
Indexes

Feedback and Participation

Thank you for taking time to provide information for the Software Technology
Review!

Our goal is to keep this document current and to continually reflect the latest
information. As a reader of this document, you can play a significant role in
updating and expanding the information contained here. You can also help us by
letting us know how you use the document and how it could be improved.

You Can Participate By...

Critiquing or adding information to an existing technology description

Commenting on the overall STR effort

Submitting a new technology description

Includes a list of potential topics for which authors are
sought.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/feedback/index.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/feedback/7/28/2008 11:28:42 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/feedback/index.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/about/disclaimer.html

Notes

Notes

2 As an example of balanced coverage, let's briefly look at information hiding of object-oriented
inheritance, which reduces the amount of information a software developer must understand. Substantial
evidence exists that such object-oriented technologies significantly increase productivity in the early
stages of software development; however, there is also growing recognition that these same technologies
may also encourage larger and less efficient implementations, extend development schedules beyond the
"90% complete" point, undermine maintainability, and preclude error free implementations.

http://www.sei.cmu.edu/str/about/notes/background_2.html7/28/2008 11:28:42 AM

Notes

Notes

3 Similar to a roadmap for highways, the review prescribes neither the destination nor the most
appropriate route. Instead, it identifies a variety of alternative routes that are available, gives an
indication of their condition, and describes where they may lead. Specific DoD applications must chart
their own route through the technological advances.

http://www.sei.cmu.edu/str/about/notes/background_3.html7/28/2008 11:28:42 AM

Status - Section Explanation

Section Explanation

Status. The status indicator provides an assessment of the overall quality and maturity of the technology
description. One of four indicators is assigned by the STR staff: Draft, In Review, Advanced, or
Complete.

Draft technology descriptions have the following attributes:

● They need more work.
● They have generally not been reviewed.
● Overall assessment: While technology descriptions labeled "Draft" will contain some useful

information, readers should not rely on these descriptions as their only source of information
about the topic. Readers should consider these descriptions as starting points for conducting their
own research about the technology.

In Review technology descriptions have the following attributes:

● They are thought to be in fair technical shape.

● They have begun an internal review cycle1.
● They may have major issues that must be resolved, or some sections that may require additional

text.
● Relevant keywords have been added to the Keyword Index.
● Overall assessment: Readers can get some quality information from these, but because these

descriptions have not been completely reviewed, readers should explore some of the references
for additional information and consider conducting their own research about the technology.

Advanced technology descriptions have the following attributes:

● They are in good technical shape.
● Internal review has occurred.
● There are minor issues to be worked, but it is generally polished.
● They are subject to additional review by external reviewers.
● Relevant keywords have been added to the Keyword Index.
● Overall assessment: These descriptions are in rather good shape, but because they have not been

through external review, readers should exercise some caution.
● Note: We encourage readers to critique Advanced technology descriptions, especially for content

accuracy. Please see the feedback section for more details.

Complete technology descriptions have the following attributes:

http://www.sei.cmu.edu/str/descriptions/template/status.html (1 of 2)7/28/2008 11:28:43 AM

Status - Section Explanation

● At least one expert external review has occurred, and issues from that review have been resolved.
● Relevant keywords have been added to the Keyword Index.
● No additional work is necessary at this time.
● Overall assessment: These technology descriptions are believed to be complete and correct. They

would be revised in the future based on additional external reviewers, new information, and
public feedback.

● Note: We encourage readers to critique Complete technology descriptions, especially for content
accuracy. Please see the feedback section for more details.

1 Internal review cycle refers to the review process that takes place within the development/editorial team.

http://www.sei.cmu.edu/str/descriptions/template/status.html (2 of 2)7/28/2008 11:28:43 AM

Note - Section Explanation

Section Explanation

Note. This section appears if prerequisite or follow-on reading is recommended. The prerequisites are
usually overviews of the general topic area that establish a context for the different technologies in the
area.

http://www.sei.cmu.edu/str/descriptions/template/note.html7/28/2008 11:28:43 AM

Purpose and Origin - Section Explanation

Section Explanation

Purpose and Origin. This section provides a general description and brief background of the
technology. It describes what capability or benefit was anticipated for the technology when originally
conceived. It cites quality measures that are significantly influenced by the technology (these quality
measures are italicized), and it identifies common aliases for the technology as well as its originator(s)
or key developer(s) (if known).

http://www.sei.cmu.edu/str/descriptions/template/purpose.html7/28/2008 11:28:43 AM

Technical Detail - Section Explanation

Section Explanation

Technical Detail. This section answers -- succinctly -- the question "what does the technology do?" It
describes the salient quality measures (see the Quality Measures Taxonomy) that are influenced by the
technology in all situations and describes the tradeoffs that are enabled by the technology. It may also
provide some insight into why the technology works and what advances are expected. Since the STR is
not a "how-to" manual, no implementation details are provided.

http://www.sei.cmu.edu/str/descriptions/template/technical.html7/28/2008 11:28:43 AM

Usage Considerations - Section Explanation

Section Explanation

Usage Considerations. This section provides insight for the use of the technology. Issues that are
addressed include

● example applications into which this technology may be incorporated (or should not be
incorporated); for instance, "this technology, because of its emphasis on synchronized
processing, is particularly suited for real-time applications"

● quality measures that may be influenced by this technology, depending on the particular context
in which the application is employed

http://www.sei.cmu.edu/str/descriptions/template/usage.html7/28/2008 11:28:44 AM

Maturity - Section Explanation

Section Explanation

Maturity. The purpose of this section is to provide an indication as to how well-developed the
technology is. A technology that was developed a year or two ago and is still in the experimental stage
(or still being developed at the university research level) will likely be more difficult to adopt than one
that has been in use in many systems for a decade. It is not the intent of this document to provide an
absolute measure of maturity, but to provide enough information to allow the reader to make an
informed judgment as to the technology's maturity for their application area. Details that will help in
this determination include

● the extent to which the technology has been incorporated into real systems, tools, or commercial
products

● the success that developers have had in adopting and using the technology
● notable failures of the technology (if any)

Other information that might appear in this section includes trend information, such as a projection of
the technology's long term potential, observations about the rate of maturation, and implications of rapid
maturation.

http://www.sei.cmu.edu/str/descriptions/template/maturity.html7/28/2008 11:28:44 AM

Costs and Limitations - Section Explanation

Section Explanation

Costs and Limitations. No technology is right for every situation, and each technology has associated
costs (monetary and otherwise). This section points out these limitations and costs. Some examples of
the kinds of costs and limitations that a technology may possess are the following: a technology may
impose an otherwise unnecessary interface standard; it might require investment in other technologies
(see "Dependencies" below); it might require investment of time or money; or it may directly conflict
with security or real-time requirements. Specific items of discussion include

● what is needed to adopt this technology (this could mean training requirements, skill levels
needed, programming languages, or specific architectures)

● how long it takes to incorporate or implement this technology
● barriers to the use of this technology
● reasons why this technology would not be used

http://www.sei.cmu.edu/str/descriptions/template/costs.html7/28/2008 11:28:44 AM

Dependencies - Section Explanation

Section Explanation

Dependencies. This section identifies other technologies that influence or are influenced by the
technology being described. The only dependencies mentioned are those where significant influence in
either direction is expected. An indication as to why the dependency exists (usually in terms of quality
measure or usage consideration) is also provided. If the dependent technology appears in the document,
a cross-reference is provided. This paragraph is omitted if no dependencies are known.

http://www.sei.cmu.edu/str/descriptions/template/dependencies.html7/28/2008 11:28:44 AM

Alternatives - Section Explanation

Section Explanation

Alternatives. An alternative technology is one that could be used for the same purposes as the
technology being described. A technology is an alternative if there is any situation or purpose for which
both technologies are viable or likely to be considered candidates. Alternatives may represent a simple
choice among technologies that achieve the same solution to a problem, or they may represent
completely different approaches to the problem being addressed by the technology.

For each alternative technology, this section provides a concise description of the situations for which it
provides an alternative. Also provided are any special considerations that could help in selecting among
alternatives. If the alternative technology appears in the document, a cross-reference is provided.

Alternative technologies are distinct from dependent or complementary technologies, which must be
used in combination with the technology being described to achieve the given purpose.

http://www.sei.cmu.edu/str/descriptions/template/alternatives.html7/28/2008 11:28:45 AM

Complementary Technologies - Section Explanation

Section Explanation

Complementary Technologies. A complementary technology is one that enhances or is enhanced by
the technology being described, but for which neither is critical to the development or use of the other (if
it were critical, then it would appear in the "Dependencies" section above). Typically, a complementary
technology is one that in combination with this technology will achieve benefits or capabilities that are
not obvious when the technologies are considered separately. For each complementary technology, this
section provides a concise description of the conditions under which it is complementary and the
additional benefits that are provided by the combination. If the complementary technology appears in the
document, a cross-reference is provided.

http://www.sei.cmu.edu/str/descriptions/template/complementary.html7/28/2008 11:28:45 AM

Index Categories - Section Explanation

Section Explanation

Index Categories. This section provides keywords on which this technology may be indexed. Beside
providing the name of the technology, it provides keywords in the following categories:

● Application category. This category refers to how this technology would be employed, either in
support of operational systems (perhaps in a particular phase of the life cycle) or in actual
operation of systems (for example, to provide system security).

● Quality measures category. This is a list of those quality attributes (e.g., reliability or
responsiveness) that are influenced in some way by the application of this technology.

● Computing Reviews category. This category describes the technical subdiscipline within
Computer Science into which the technology falls. The category is based on the ACM Computing
Reviews Classification System developed in 1991 (and currently undergoing revision). A
complete description of the Classification System and its contents can be found in any January
issue of Computing Surveys or in the annual ACM Guide to Computing Literature.

http://www.sei.cmu.edu/str/descriptions/template/index.html7/28/2008 11:28:45 AM

Author - Section Explanation

Section Explanation

References and Information Sources. This section provides bibliographic information. We include
sources cited in the technology description, as well as pointers to additional resources that a reader can
go to for additional information. Typically several references are designated as key references by an
asterisk (*). Key references are those that will, in our opinion, best assist one in learning more about the
technology.

http://www.sei.cmu.edu/str/descriptions/template/references.html7/28/2008 11:28:45 AM

Author - Section Explanation

Section Explanation

Current Author/Maintainer. The author(s)/maintainer(s) of the current version of the technology
description are listed in this section. The only exceptions are Draft technology descriptions, which will
not have an author's name.

http://www.sei.cmu.edu/str/descriptions/template/author.html7/28/2008 11:28:45 AM

External Reviewer - Section Explanation

Section Explanation

External Reviewer. This section contains names of external experts who have reviewed this technology
description. If no "External Reviewer(s)" heading is present, then an external review has not occurred.

http://www.sei.cmu.edu/str/descriptions/template/external.html7/28/2008 11:28:46 AM

Last Modified - Section Explanation

Section Explanation

Modifications. This area lists the modification history of the technology description and includes the
names of contributing authors from earlier versions.

http://www.sei.cmu.edu/str/descriptions/template/date.html7/28/2008 11:28:46 AM

Pending - Section Explanation

Section Explanation

Pending. A known item that needs to be addressed in future versions of the description. These are
posted (when known) so that the reader can pursue these items on their own if necessary.

http://www.sei.cmu.edu/str/descriptions/template/pending.html7/28/2008 11:28:46 AM

Portability - Definition

Glossary Term

Portability
the ease with which a system or component can be transferred from one hardware or software
environment to another [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/portability.html7/28/2008 11:28:46 AM

Maintainability - Definition

Glossary Term

Maintainability
the ease with which a software system or component can be modified to correct faults, improve
performance, or other attributes, or adapt to a changed environment [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/maintainability.html7/28/2008 11:28:47 AM

Flexibility - Definition

Glossary Term

Flexibility
the ease with which a system or component can be modified for use in applications or
environments other than those for which it was specifically designed [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/flexibility.html7/28/2008 11:28:47 AM

Reliability - Definition

Glossary Term

Reliability
the ability of a system or component to perform its required functions under stated conditions for
a specified period of time [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/reliability.html7/28/2008 11:28:47 AM

Interoperability - Definition

Glossary Term

Interoperability
the ability of two or more systems or components to exchange information and to use the
information that has been exchanged [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/interoperability.html7/28/2008 11:28:47 AM

Lawlis 96

References and Information Sources

[Lawlis
96]

Lawlis, Patricia K. Guidelines for Choosing a Computer Language: Support for the
Visionary Organization [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/> (1996).

http://www.sei.cmu.edu/str/indexes/references/Lawlis_96.html7/28/2008 11:28:47 AM

http://sw-eng.falls-church.va.us/

AdaLRM 95

References and Information Sources

[AdaLRM
95]

Ada95 Language Reference Manual, International Standard ISO/IEC 8652: 1995(E),
Version 6.0 [online]. Available WWW
<URL: http://www.adahome.com/rm95/> (1995).

http://www.sei.cmu.edu/str/indexes/references/AdaLRM_95_bold.html7/28/2008 11:28:48 AM

http://www.adahome.com/rm95/

Ada 83

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Ada 83

Status

COMPLETE

Purpose and Origin

Ada is a general-purpose, internationally-standardized computer programming
language developed by the U.S. Department of Defense to help software
designers and programmers develop large, reliable applications. The Ada
language enhances portability, maintainability, flexibility, reliability, and provides
interoperability by standardization. The Ada 83 (1983) version [ANSI 83]
(international standard: ISO/IEC 8652: 1987) is considered object-based as
opposed to object-oriented (see Object-Oriented Programming Languages)
because it does not fully support inheritance or polymorphism [Lawlis 96].

Technical Detail

The Ada language supports principles of good software engineering and
discourages poor practices by prohibiting them when possible. Features that
support code clarity and encapsulation (use of packages, use of generic
packages and subprograms with generic parameters, and private and limited
private types) provide support for maintenance and reusability. Ada also features
strong typing--stronger than C or C++.

The Ada 83 language is independent of any particular hardware or operating
system; the interface to any given platform is defined in a specific "System"
package. Ada features that support portability include the ability to define
numerical types using system-independent declarations and the ability to
encapsulate dependencies.

Ada compilers are validated against established written standards- all standard
language features exist in every validated Ada compiler. To become validated, a
compiler must comply with the Ada Compiler Validation Capability (ACVC) suite
of tests. Because of language standardization and required compiler validation,
Ada provides an extremely high degree of support for interoperability and
portability.

Ada 83 includes features that can be used for object-based programming, but it
stops short of providing full support for object-oriented programming (OOP); this

http://www.sei.cmu.edu/str/descriptions/ada83.html (1 of 6)7/28/2008 11:28:51 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/ada83_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Ada 83

is partly because of concerns regarding runtime performance during Ada's
development.

By requiring specifications such as type specifications, by performing
consistency checks across separately compiled units, and by providing
exception handling facilities, Ada 83 provides a high degree of reliability
compared to other programming languages.

Ada 83 provides features such as tasking, type declarations, and low-level
language features to give explicit support of concurrency and real-time
processing. However, Ada 83 does not specify tasking and type declarations in
such a way that the resulting performance can always be predicted; this has
been a criticism of the language in certain application areas such as embedded,
real-time systems.

Usage Considerations

Ada was originally developed to support embedded software systems, but it has
proven to provide good support for real-time, computationally-intensive,
communication, and information system domains [Lawlis 96].

When combined with static code analysis or formal proofs, Ada can be used in
safety-critical systems. For example, Ada has successfully been used in the
development of the control systems for the safety-critical Boeing 777 Aircraft
[AdaIC 96].

When considering performance, benchmarks performed on both Ada and C
software with language toolsets of equal quality and maturity found that the two
languages execute equally efficiently- with Ada versions having a slight edge
over C versions [Syiek 95]. The quality of the compiled code is determined
mostly by the quality of the compiler and not by the language. The burden of
optimization is somewhat automated in Ada, as opposed to languages like C,
where it is manually performed by the programmer.

When attempting to interface Ada 83 with other languages, several technical
issues must be addressed. In order for Ada to call subroutines written in another
language, an Ada compiler must support the pragma interface for the other
language and its compiler. Similarly, if another language must call Ada
subroutines, that language's compiler may also need modifications. The data
representation between Ada and the other language must be compatible. Also,
the system runtime support environment may need to be modified so that space
is not wasted by functionally redundant support software [Hefley 92].

Ada 83 has recently been superseded by Ada 95 (see Ada 95). This new version
places the software community into a transition period. Among the issues to be
considered in transitioning from Ada 83 to Ada 95 are the following:

● Ada 83 compiler validation status. Validation certificates for all validated
Ada 83 compilers expire at the end of March 1998; this may affect
maintenance on existing systems written in Ada 83.

http://www.sei.cmu.edu/str/descriptions/ada83.html (2 of 6)7/28/2008 11:28:51 AM

Ada 83

● Ada 95 compiler capabilities and availability
● the developmental status of a particular system

The current "philosophy" is that unless a demonstrated need exists, current
operational systems or systems currently in development using Ada 83 do not
need to transition to Ada 95 [Engle 96]. Refer to the Ada 95 technology
description for more information on transitioning from Ada 83 to Ada 95.

A significant resource that addresses management and technical issues
surrounding the adoption of Ada is the Ada Adoption Handbook [Hefley 92].

Maturity

Ada 83, with over 700 validated compilers [Compilers 96], has been used on a
wide variety of programs in embedded, real-time, communication, and
information system domains. It is supported by many development
environments. Over 4 million lines of Ada code were successfully used in
developing the AN/BSY-2 and AN/BQG-5 systems of the Seawolf submarine- a
large, extensive, embedded system [Holzer 96]. Ada has become the standard
programming language for airborne systems at Boeing Commercial Airplane
Group (BCAG). Boeing used Ada to build 60 percent of the systems on the
Boeing 777, which represents 70% of the 2.5 million lines of developed code
[Pehrson 96, ReuseIC 95].

Ada is increasingly being taught in schools- approximately 323 institutions and
companies are teaching Ada- a trend of 25% growth per year in schools and
courses; this indicates increased and continued acceptance of Ada as a
programming language [AdaIC 96].

Costs and Limitations

In a study performed in 1994, it was found that for life-cycle costs, Ada was twice
as cost effective as C [Zeigler 95].

Common perceptions and conventional wisdom regarding Ada 83 (and Ada 95)
have been shown to be incorrect or only partially correct. These perceptions
include the following:

● Ada is far too complex.
● Ada is too difficult to teach, to learn, to use.
● Ada is too expensive.
● Using Ada causes inefficiencies.
● Training in Ada is too expensive.
● Ada is old-fashioned.
● Ada is not object-oriented.
● Ada does not fit into COTS software.

Mangold examines these perceptions in some detail [Mangold 96].

http://www.sei.cmu.edu/str/descriptions/ada83.html (3 of 6)7/28/2008 11:28:51 AM

Ada 83

Alternatives

Other programming languages to consider are Ada 95, C, C++, FORTRAN,
COBOL, Pascal, Assembly Language, LISP, or Smalltalk.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Ada 83

Application category Programming Language (AP.1.4.2.1),
Compiler (AP.1.4.2.3)

Quality measures category Reliability (QM.2.1.2),
Maintainability (QM.3.1),
Interoperability (QM.4.1),
Portability (QM.4.2),
Scalability (QM.4.3),
Reusability (QM.4.4)

Computing reviews category Programming Languages (D.3)

References and Information Sources

[AdaIC 96] AdaIC NEWS [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/news/> (1996).

[ANSI 83] ANSI/MIL-STD-1815A-1983. Reference Manual for the Ada
Programming Language. New York, NY: American National
Standards Institute, Inc., 1983.

[Compilers
96]

Ada 83 Validated Compilers List [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/
compilers/83val/83vcl.txt> (August 1996).

[Engle 96] Engle, Chuck. Re[2]: Ada 83/Ada 95 [email to Gary Haines],
[online]. Available email: ghaines@spacecom.af.mil (August 19,
1996).

[Halang 90] Halang, W.A. & Stoyenko, A.D. "Comparative Evaluation of
High-Level Real-Time Programming Languages." Real-Time
Systems 2, 4 (November 1990): 365-82.

[HBAP 96] Ada Home: The Home of the Brave Ada Programmers (HBAP)
[online]. Available WWW
<URL: http://lglwww.epfl.ch:80/Ada/> (1996).

http://www.sei.cmu.edu/str/descriptions/ada83.html (4 of 6)7/28/2008 11:28:51 AM

http://sw-eng.falls-church.va.us/AdaIC/news/
http://sw-eng.falls-church.va.us/AdaIC/compilers/83val/83vcl.txt
http://sw-eng.falls-church.va.us/AdaIC/compilers/83val/83vcl.txt
mailto:ghaines@spacecom.af.mil
http://lglwww.epfl.ch/Ada/

Ada 83

[Hefley 92] Hefley, W.; Foreman, J.; Engle, C.; & Goodenough, J. Ada
Adoption Handbook: A Program Manager's Guide Version 2.0
(CMU/SEI-92-TR-29, ADA258937). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1992.

[Holzer 96] Holzer, Robert. "Sea Trials Prompt U.S. Navy to Tout Seawolf
Sub's Virtues," Defense News 11, 28 (July 15-20, 1996): 12.

[Lawlis 96] Lawlis, Patricia K. Guidelines for Choosing a Computer
Language: Support for the Visionary Organization [online].
Available WWW
<URL: http://sw-eng.falls-church.va.us/> (1996).

[Mangold 96] Mangold, K. "Ada95-An Approach to Overcome the Software
Crisis?" 4-10. Proceedings of Ada in Europe 1995. Frankfurt,
Germany, October 2-6, 1995. Berlin, Germany: Springer-Verlag,
1996.

[Pehrson 96] Pehrson, Ron J. Software Development for the Boeing 777
[online]. Available WWW
<URL: http://www.stsc.hill.af.mil/CrossTalk/1996/jan/Boein777.
html> (1996).

[Poza 90] Poza, Hugo B. & Cupak Jr., John J. "Ada: The Better Language
for Embedded Applications." Journal of Electronic Defense 13, 1
(January 1990): 47.

[ReuseIC 95] Boeing 777: Flying High with Ada and Reuse [online]. Available
WWW
<URL: http://sw-eng.falls-church.va.us/ReuseIC/pubs/flyers/boe-
reus.shtml> (1995).

[Syiek 95] Syiek, David. "C vs. Ada: Arguing Performance Religion." ACM
Ada Letters 15, 6 (November/December 1995): 67-9.

[Tang 92] Tang, L.S. "A Comparison of Ada and C++," 338-49.
Proceedings of TRI-Ada `92. Orlando, FL, November 16-20,
1992. New York, NY: Association for Computing Machinery,
1992.

[Zeigler 95] Zeigler, Stephen F. Comparing Development Costs of C and Ada
[online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/> (1995).

Current Author/Maintainer

Cory Vondrak, TRW, Redondo Beach, CA
Capt Gary Haines, AFMC SSSG

External Reviewers

John Goodenough, SEI

Modifications

http://www.sei.cmu.edu/str/descriptions/ada83.html (5 of 6)7/28/2008 11:28:51 AM

http://sw-eng.falls-church.va.us/
http://www.stsc.hill.af.mil/CrossTalk/1996/jan/Boein777.html
http://www.stsc.hill.af.mil/CrossTalk/1996/jan/Boein777.html
http://sw-eng.falls-church.va.us/ReuseIC/pubs/flyers/boe-reus.shtml
http://sw-eng.falls-church.va.us/ReuseIC/pubs/flyers/boe-reus.shtml
http://sw-eng.falls-church.va.us/

Ada 83

20 June 97: updated URLs for [AdaIC 96] and [Pehrson 96].
10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/ada83_body.html
Last Modified: 24 July 2008

Section Explanations, References, Terms, Footnotes, and Related Topics

This frame provides additional information, including:

● Explanation of the purpose of various sections
● Full citations for references
● Definitions of italicized terms
● Expansion of footnotes
● Lists of related topics

http://www.sei.cmu.edu/str/descriptions/ada83.html (6 of 6)7/28/2008 11:28:51 AM

http://www.sei.cmu.edu/about/disclaimer.html

AdaIC 97a

References and Information Sources

[AdaIC
97a]

Validation and Evaluation Test Suites: The Ada compiler certification process [online].
Available WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/testing/> (1997).

http://www.sei.cmu.edu/str/indexes/references/AdaIC_97a.html7/28/2008 11:28:52 AM

http://sw-eng.falls-church.va.us/AdaIC/compilers/

AdaIC 97b

References and Information Sources

[AdaIC
97b]

Ada Compiler Validation Capability, Version 2.1 (ACVC 2.1) [online]. Available
WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/compilers/acvc/95acvc/acvc2_1> (1997).

http://www.sei.cmu.edu/str/indexes/references/AdaIC_97b.html7/28/2008 11:28:52 AM

http://sw-eng.falls-church.va.us/AdaIC/compilers/acvc/95acvc/acvc2_1

Reusability - Definition

Glossary Term

Reusability
the degree to which a software module or other work product can be used in more than one
computing program or software system [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/reusability.html7/28/2008 11:28:52 AM

Brosgol 93

References and Information Sources

[Brosgol
93]

Brosgol, Benjamin. "Object-Oriented Programming in Ada 9X." Object Magazine 2, 6
(March-April 1993): 64-65.

http://www.sei.cmu.edu/str/indexes/references/Brosgol_93.html7/28/2008 11:28:52 AM

Taylor 95

References and Information Sources

[Taylor
95]

Taylor, B. Ada Compatibility Guide Version 6.0 [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/docs/compat-guide/compat-guide6-0.txt>
(1995).

http://www.sei.cmu.edu/str/indexes/references/Taylor_95.html7/28/2008 11:28:52 AM

http://sw-eng.falls-church.va.us/AdaIC/docs/compat-guide/compat-guide6-0.txt

Ada 95 - Notes

Notes

1 From John Goodenough, SEI, in email to John Foreman, Re: Ada 95, August 16, 1996.

http://www.sei.cmu.edu/str/descriptions/notes/ada95_1.html7/28/2008 11:28:53 AM

AJPO 95

References and Information Sources

[AJPO
95]

Ada Joint Program Office. Ada 95 Adoption Handbook: A Guide to Investigating Ada 95
Adoption Version 1.1. Falls Church, VA: Ada Joint Program Office, 1995.

http://www.sei.cmu.edu/str/indexes/references/AJPO_95_bold.html7/28/2008 11:28:53 AM

AJPO 94

References and Information Sources

[AJPO
94]

Ada Joint Program Office. Ada 9X Transition Planning Guide: A Living Document and
Working Guide for PEOs and PMs Version 1.0. Falls Church, VA: Ada Joint Program
Office, 1994.

http://www.sei.cmu.edu/str/indexes/references/AJPO_94.html7/28/2008 11:28:53 AM

Patton 95

References and Information Sources

[Patton
95]

Patton II, I. Lee. "Early Experiences Adopting Ada 95," 426-34. Proceedings of TRI-Ada
'95. Anaheim, CA, November 5-10, 1995. New York, NY: Association for Computing
Machinery, 1995.

http://www.sei.cmu.edu/str/indexes/references/Patton_95.html7/28/2008 11:28:53 AM

AdaIC 95

References and Information Sources

[AdaIC
95]

AdaIC News Brief: November 3, 1995 [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/news/weekly/1995/95-11-03.html >
(1995).

http://www.sei.cmu.edu/str/indexes/references/AdaIC_95.html7/28/2008 11:28:54 AM

http://sw-eng.falls-church.va.us/AdaIC/news/weekly/1995/95-11-03.html

AdaIC 96a

References and Information Sources

[AdaIC
96a]

AdaIC NEWS [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/news/>
(1996).

http://www.sei.cmu.edu/str/indexes/references/AdaIC_96a_bold.html7/28/2008 11:28:54 AM

http://sw-eng.falls-church.va.us/AdaIC/news/

Wheeler 96

References and Information Sources

[Wheeler
96]

Wheeler, David A. Java and Ada [online]. Available WWW
<URL: http://www.adahome.com/Tutorials/Lovelace/java.htm>
(1996).

http://www.sei.cmu.edu/str/indexes/references/Wheeler_96.html7/28/2008 11:28:54 AM

http://www.adahome.com/Tutorials/Lovelace/java.htm

Compilers 97

References and Information Sources

[Compilers
97]

Ada 95 Validated Compilers List [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/cgi-bin/vcl/report95.pl>
(1997).

http://www.sei.cmu.edu/str/indexes/references/Compilers_97.html7/28/2008 11:28:54 AM

http://sw-eng.falls-church.va.us/cgi-bin/vcl/report95.pl

Mangold 96

References and Information Sources

[Mangold
96]

Mangold, K. "Ada95-An Approach to Overcome the Software Crisis?" 4-10.
Proceedings of Ada in Europe 1995. Frankfurt, Germany, October 2-6, 1995. Berlin,
Germany: Springer-Verlag, 1996.

http://www.sei.cmu.edu/str/indexes/references/Mangold_96.html7/28/2008 11:28:54 AM

Ada 95

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Ada 95

Status

Complete

Purpose and Origin

Ada is a general-purpose, internationally-standardized computer programming
language developed by the U.S. Department of Defense (DoD) to help software
designers and programmers develop large, reliable applications. The Ada
language enhances portability, maintainability, flexibility, reliability, and provides
interoperability by standardization [Lawlis 96].

The Ada 95 (1995) version [AdaLRM 95] supersedes the 1983 standard Ada 83.
It corrects some shortcomings uncovered from nearly a decade of using Ada 83,
and exploits developments in software technology that were not sufficiently
mature at the time of Ada's original design. Specifically, Ada 95 provides
extensive support for object-oriented programming (OOP) (see Object-Oriented
Programming Languages), efficient real-time concurrent programming, improved
facilities for programming in the large, and increased ability to interface with
code written in other languages.

When distinguishing between the two versions of the language, the 1983 version
is referred to as Ada 83, and the revised version is referred to as Ada or Ada 95.

Technical Detail

Ada 95 consists of a core language that must be supported by all validated
compilers, and a set of specialized needs annexes that may or may not be
implemented by a specific compiler. However, if a compiler supports a special
needs annex, all features of the annex must be supported. The following is the
set of annexes [AdaLRM 95]:

Required annexes (i.e., part of core language)
A. Predefined Language Environment
B. Interface to Other Languages
J. Obsolescent Features

Optional special needs annexes

http://www.sei.cmu.edu/str/descriptions/ada95_body.html (1 of 7)7/28/2008 11:28:55 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/ada95_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Ada 95

C. Systems Programming
D. Real-time Programming
E. Distributed Systems
F. Information Systems
G. Numerics
H. Safety and Security

Annexes K - P are for informational purposes only and are not part of the
standard.

As in Ada 83, Ada 95 compilers are validated against established written
standards- all standard language features exist in every validated Ada compiler.
To become validated, a compiler must comply with the Ada Compiler Validation
Capability (ACVC) suite of tests [AdaIC 97a, 97b]. Because of language
standardization and required compiler validation, Ada provides an extremely
high degree of support for interoperability and portability.

Like Ada 83, the Ada 95 language is independent of any particular hardware or
operating system; the interface to any given platform is defined in a specific
"System" package. Ada 95 improves on the Ada 83 features that support
portability, which include the ability to define numerical types using system-
independent declarations and the ability to encapsulate dependencies.

By requiring specifications such as type specifications, by performing
consistency checks across separately compiled units, and by providing
exception handling facilities, Ada 95, like Ada 83, provides a high degree of
reliability when compared to other programming languages.

The Ada language was developed explicitly to support software engineering- it
supports principles of good software engineering and discourages poor practices
by prohibiting them where possible. Features supporting code clarity and
encapsulation (use of packages, use of generic packages and subprograms with
generic parameters, and private and limited private types) provide support for
maintenance and reusability. Ada 95 also provides full support for object-
oriented programming, which allows for a high level of reusability:

● encapsulation of objects and their operations
● OOP inheritance- allowing new abstractions to be built from existing ones

by inheriting their properties at either compile time or runtime
● an explicit pointer approach to polymorphism- the programmer must

decide to use pointers to represent objects [Brosgol 93]
● dynamic binding

Ada 95 also provides special features (hierarchical libraries and partitions) to
assist in the development of very large and distributed software components and
systems.

Ada 95 improves on the flexibility provided by Ada 83 for interfacing with other
programming languages by better standardizing the interface mechanism and

http://www.sei.cmu.edu/str/descriptions/ada95_body.html (2 of 7)7/28/2008 11:28:55 AM

Ada 95

providing an Interface to Other Languages Annex.

Ada 95 improves the specification of previous Ada features that explicitly support
concurrency and real-time processing, such as tasking, type declarations, and
low-level language features. A Real-Time Programming Annex has been added
to better specify the language definition and model for concurrency. Ada 95 has
paid careful attention to avoid runtime overhead for the new object-oriented
programming (OOP) features and incurs runtime costs commensurate with the
generality actually used. Ada 95 also provides the flexibility for the programmer
to specify the desired storage reclamation technique that is desired for the
application.

Usage Considerations

Ada 95 is essentially an upwardly-compatible extension to Ada 83 with improved
support for embedded software systems, real-time systems, computationally-
intensive systems, communication systems, and information systems [Lawlis
96]. In revising Ada 83 to Ada 95, incompatibilities were catalogued, tracked,
and assessed by the standard revision committee [Taylor 95]. These
incompatibilities have proven to be mostly of academic interest, and they have
not been a problem in practice.1

Combined with at least static code analysis or formal proofs, Ada 95, like Ada
83, is particularly appropriate for use in safety-critical systems.

The Ada Joint Program Office (AJPO) supports Ada 95 by providing an Ada 95
Adoption Handbook [AJPO 95] and an Ada 95 Transition Planning Guide [AJPO
94], and helping form Ada 95 early adoption partnerships with DoD and
commercial organizations. The Handbook helps managers understand and
assess the transition from Ada 83 to Ada 95 and the Transition Guide is
designed to assist managers in developing a transition plan tailored for individual
projects [Patton 95]. Another valuable source for Ada 95 training is a multimedia
CD-ROM titled Discovering Ada. This CD-ROM contains tutorial information,
demo programs, and video clips [AdaIC 95].

Ada 95 is the standard programming language for new DoD systems; the use of
any other language would require a waiver. Early DoD adoption partnerships
who are working Ada 95 projects include the Marine Corps Tactical Systems
Support Activity (MCTSSA), Naval Research and Development (NRAD), and the
Joint Strike Fighter (JSF) aircraft program [AdaIC 96a].

The AJPO supported the creation of an Ada 95-to-Java J-code compiler. This
means that Java programs can be created by using Ada. The compiler
generates Java "class" files just as a Java language compiler does. Ada and
Java components can even call each other [Wheeler 96]. This capability gives
Ada, like Java, extensive portability across platforms and allows Internet
programmers to take advantage of Ada 95 features unavailable in Java.

Maturity

http://www.sei.cmu.edu/str/descriptions/ada95_body.html (3 of 7)7/28/2008 11:28:55 AM

Ada 95

On February 15, 1995, Ada 95 became the first internationally-standardized
object-oriented programming language. As of April 1997, 51 validated compilers
were available [Compilers 97]. The current validation suite (Version 2.1) provides
the capability to validate the core language as well as the additional features in
the annexes [AdalC 97b].

Results from early projects, such as the Joint Automated Message Editing
Software (JAMES) and Airfields [AdaIC 96a], indicate that Ada 95 is upwardly-
compatible with Ada 83 and that some Ada 95 compilers are mature and stable
enough to use on fielded projects [Patton 95]. However, as of the spring of 1996,
Ada 95 tool sets and development environments were, in general, still rather
immature as compared to Ada 83 versions. As such, platform compatibility,
bindings (i.e., database, user interface, network interface) availability, and tool
support should be closely evaluated when considering Ada 95 compilers.

Costs and Limitations

Common perceptions and conventional wisdom regarding Ada 83 and Ada 95
have been shown to be incorrect or only partially correct. These perceptions
include the following:

● Ada is far too complex.
● Ada is too difficult to teach, to learn, to use.
● Ada is too expensive.
● Using Ada causes inefficiencies.
● Training in Ada is too expensive.
● Ada is old-fashioned.
● Ada is not object-oriented.
● Ada does not fit into COTS software.

Mangold examines these perceptions in some detail [Mangold 96].

Alternatives

Other programming languages to consider are Ada 83, C, C++, FORTRAN,
COBOL, Pascal, Assembly Language, LISP, Smalltalk, or Java.

Complementary Technologies

The Ada-95-to-Java J-code compiler (discussed in Usage Considerations)
enables applications for the Internet to be developed in Ada 95.

Index Categories

This technology is classified under the following categories. Select a category for

http://www.sei.cmu.edu/str/descriptions/ada95_body.html (4 of 7)7/28/2008 11:28:55 AM

Ada 95

a list of related topics.

Name of technology Ada 95

Application category Programming Language (AP.1.4.2.1),
Compiler (AP.1.4.2.3)

Quality measures category Reliability (QM.2.1.2),
Maintainability (QM.3.1),
Interoperability (QM.4.1),
Portability (QM.4.2),
Scalability (QM.4.3),
Reusability (QM.4.4)

Computing reviews category Programming Languages (D.3)

References and Information Sources

[AdaLRM
95]

Ada95 Language Reference Manual, International Standard ISO/IEC
8652: 1995(E), Version 6.0 [online]. Available WWW
<URL: http://www.adahome.com/rm95/> (1995).

[AdaIC 95] AdaIC News Brief: November 3, 1995 [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/news/weekly/1995/95-
11-03.html >(1995).

[AdaIC 96a] AdaIC NEWS [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/news/> (1996).

[AdaIC 97a] Validation and Evaluation Test Suites: The Ada compiler certification
process [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/testing/> (1997).

[AdaIC 97b] Ada Compiler Validation Capability, Version 2.1 (ACVC 2.1) [online].
Available WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/compilers/acvc/95acvc/
acvc2_1> (1997).

[AJPO 94] Ada Joint Program Office. Ada 9X Transition Planning Guide: A Living
Document and Working Guide for PEOs and PMs Version 1.0. Falls
Church, VA: Ada Joint Program Office, 1994.

http://www.sei.cmu.edu/str/descriptions/ada95_body.html (5 of 7)7/28/2008 11:28:55 AM

http://www.adahome.com/rm95/
http://sw-eng.falls-church.va.us/AdaIC/news/weekly/1995/95-11-03.html
http://sw-eng.falls-church.va.us/AdaIC/news/weekly/1995/95-11-03.html
http://sw-eng.falls-church.va.us/AdaIC/news/
http://sw-eng.falls-church.va.us/AdaIC/compilers/
http://sw-eng.falls-church.va.us/AdaIC/compilers/acvc/95acvc/acvc2_1
http://sw-eng.falls-church.va.us/AdaIC/compilers/acvc/95acvc/acvc2_1

Ada 95

[AJPO 95] Ada Joint Program Office. Ada 95 Adoption Handbook: A Guide to
Investigating Ada 95 Adoption Version 1.1. Falls Church, VA: Ada
Joint Program Office, 1995.

[Brosgol 93] Brosgol, Benjamin. "Object-Oriented Programming in Ada 9X." Object
Magazine 2, 6 (March-April 1993): 64-65.

[Compilers 97] Ada 95 Validated Compilers List [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/cgi-bin/vcl/report95.pl> (1997).

[HBAP 96] Ada Home: The Home of the Brave Ada Programmers (HBAP) [online].
Available WWW
<URL: http://lglwww.epfl.ch:80/Ada/> (1996).

[Lawlis 96] Lawlis, Patricia K. Guidelines for Choosing a Computer Language:
Support for the Visionary Organization [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/> (1996).

[Mangold 96] Mangold, K. "Ada95-An Approach to Overcome the Software Crisis?"
4-10. Proceedings of Ada in Europe 1995. Frankfurt, Germany, October
2-6, 1995. Berlin, Germany: Springer-Verlag, 1996.

[Patton 95] Patton II, I. Lee. "Early Experiences Adopting Ada 95," 426-34.
Proceedings of TRI-Ada '95. Anaheim, CA, November 5-10, 1995. New
York, NY: Association for Computing Machinery, 1995.

[Taylor 95] Taylor, B. Ada Compatibility Guide Version 6.0 [online]. Available
WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/docs/compat-guide/
compat-guide6-0.txt> (1995).

[Tokar 96] Tokar, Joyce L. "Ada 95: The Language for the 90's and Beyond."
Object Magazine 6, 4 (June 1996): 53-56.

[Wheeler 96] Wheeler, David A. Java and Ada [online]. Available WWW
<URL: http://www.adahome.com/Tutorials/Lovelace/java.htm> (1996).

Current Author/Maintainer

Capt Gary Haines, AFMC SSSG
Cory Vondrak, TRW, Redondo Beach, CA

External Reviewers

Charles (Chuck) Engle (former AJPO director)

http://www.sei.cmu.edu/str/descriptions/ada95_body.html (6 of 7)7/28/2008 11:28:55 AM

http://sw-eng.falls-church.va.us/cgi-bin/vcl/report95.pl
http://lglwww.epfl.ch/Ada/
http://sw-eng.falls-church.va.us/
http://sw-eng.falls-church.va.us/AdaIC/docs/compat-guide/compat-guide6-0.txt
http://sw-eng.falls-church.va.us/AdaIC/docs/compat-guide/compat-guide6-0.txt
http://www.adahome.com/Tutorials/Lovelace/java.htm

Ada 95

John Goodenough, SEI

Modifications

2 October 97: updated URL for [Compilers 97].
20 June 97: updated URLs for [AdaIC 96a] and [AdaLRM 95].
14 April 97: updated number of validated Ada compilers and validation suite
information.
10 Jan 97 (original)

Pending

In March 1997, changes to Ada policy were directed by Mr. Emmett Page (ASD/
C31). This technology does not reflect those changes.

A revised assessment of toolset maturity (see Maturity section) is also needed.

Footnotes

1 From John Goodenough, SEI, in email to John Foreman, Re: Ada 95, August
16, 1996.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/ada95_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/ada95_body.html (7 of 7)7/28/2008 11:28:55 AM

http://www.sei.cmu.edu/about/disclaimer.html

Ada 83 Related Topics

Related Topics

Programming Language (AP.1.4.2.1)

● Ada 83
● Ada 95
● Assembly
● Basic
● C
● C++
● COBOL
● Common LISP Object System (CLOS)
● Eiffel
● FORTRAN
● HTML
● Java
● LISP
● Motif User Interface Language (UIL)
● Object-Oriented Programming Languages
● Object Pascal
● Objective C
● Pascal
● PERL
● Simula
● Smalltalk
● TCL

http://www.sei.cmu.edu/str/taxonomies/ap.1.4.2.1.html7/28/2008 11:28:56 AM

Ada 83 Related Topics

Related Topics

Compiler (AP.1.4.2.3)

● Ada 83
● Ada 95
● Architecture Description Languages
● Assembly
● Basic
● C
● C++
● COBOL
● FORTRAN
● Java
● Module Interconnection Languages
● Object Pascal
● Objective C
● Pascal

http://www.sei.cmu.edu/str/taxonomies/ap.1.4.2.3.html7/28/2008 11:28:56 AM

Ada 83 Related Topics

Related Topics

Reliability (QM.2.1.2)

● Ada 83
● Ada 95
● Cleanroom Software Engineering
● Distributed/Collaborative Enterprise Architecture
● Personal Software Process for Module-Level Development
● Rate Monotonic Analysis
● Simplex Architecture
● Software Inspections
● Three Tier Software Architecture

http://www.sei.cmu.edu/str/taxonomies/qm.2.1.2.html7/28/2008 11:28:56 AM

Related Topics

Related Topics

Maintainability (QM.3.1)

● Ada 83
● Ada 95
● Application Programming Interface
● Argument-Based Design Rationale Capture Methods for Requirements Tracing
● Cleanroom Software Engineering
● Client/Server Software Architectures
● Common Management Information Protocol
● Common Object Request Broker Architecture
● Component-Based Software Development/ COTS Integration
● Component Object Model (COM), DCOM, and Related Capabilities
● COTS and Open Systems - An Overview
● Cyclomatic Complexity
● Distributed/Collaborative Enterprise Architectures
● Distributed Computing Environment
● Domain Engineering and Domain Analysis
● Feature-Based Design Rationale Capture Method for Requirements Tracing
● Feature-Oriented Domain Analysis
● Graphic Tools for Legacy Database Migration
● Graphical User Interface Builders
● Halstead Complexity Measures
● Java
● Mainframe Server Software Architectures
● Maintainability Index Technique for Measuring Program Maintainability
● Maintenance of Operational Systems - An Overview
● Message-Oriented Middleware
● Network Management -- An Overview
● Object-Oriented Analysis
● Object-Oriented Database
● Object-Oriented Design
● Object-Oriented Programming Languages
● Object Request Broker
● Organization Domain Modeling
● Rate Monotonic Analysis
● Reference Models, Architectures, Implementations -- an Overview

http://www.sei.cmu.edu/str/taxonomies/qm.3.1.html (1 of 2)7/28/2008 11:28:56 AM

Related Topics

● Remote Procedure Call
● Requirements Tracing
● Simple Network Management Protocol
● Simplex Architecture
● Software Inspections
● TAFIM Reference Model
● Three Tier Software Architectures
● Transaction Processing Monitor Technology
● Two Tier Software Architectures

http://www.sei.cmu.edu/str/taxonomies/qm.3.1.html (2 of 2)7/28/2008 11:28:56 AM

Related Topics

Related Topics

Interoperability (QM.4.1)

● Ada 83
● Ada 95
● Application Programming Interface
● Client/Server Software Architectures
● Common Object Request Broker Architecture
● Component Object Model (COM), DCOM, and Related Capabilities
● COTS and Open Systems - An Overview
● Defense Information Infrastructure Common Operating Environment
● Distributed Computing Environment
● Java
● Message-Oriented Middleware
● Middleware
● Network Management -- An Overview
● Object Request Broker
● Reference Models, Architectures, Implementations -- An Overview
● Remote Procedure Call
● TAFIM Reference Model

http://www.sei.cmu.edu/str/taxonomies/qm.4.1.html7/28/2008 11:28:57 AM

Related Topics

Related Topics

Portability (QM.4.2)

● Ada 83
● Ada 95
● Common Object Request Broker Architecture
● Defense Information Infrastructure Common Operating Environment
● Distributed Computing Environment
● Java
● Message-Oriented Middleware
● Reference Models, Architectures, Implementations -- An Overview
● Remote Procedure Call

http://www.sei.cmu.edu/str/taxonomies/qm.4.2.html7/28/2008 11:28:57 AM

Related Topics

Related Topics

Scalability (QM.4.3)

● Ada 83
● Ada 95
● Client/Server Software Architectures
● Common Management Information Protocol
● Common Object Request Broker Architecture
● Distributed/Collaborative Enterprise Architectures
● Distributed Computing Environment
● Mainframe Server Software Architectures
● Network Management -- An Overview
● Simple Network Management Protocol
● Three Tier Software Architectures
● Two Tier Software Architectures

http://www.sei.cmu.edu/str/taxonomies/qm.4.3.html7/28/2008 11:28:57 AM

Related Topics

Related Topics

Reusability (QM.4.4)

● Ada 83
● Ada 95
● Architecture Description Languages
● Argument-Based Design Rationale Capture Methods for Requirements Tracing
● Common Object Request Broker Architecture
● Component Object Model (COM), DCOM, and Related Capabilities
● Defense Information Infrastructure Common Operating Environment
● Domain Engineering and Domain Analysis
● Feature-Based Design Rationale Capture Method for Requirements Tracing
● Feature-Oriented Domain Analysis
● Mainframe Server Software Architectures
● Module Interconnection Languages
● Object-Oriented Analysis
● Object-Oriented Design
● Organization Domain Modeling
● Requirements Tracing
● Three Tier Software Architectures
● Transaction Processing Monitor Technology

http://www.sei.cmu.edu/str/taxonomies/qm.4.4.html7/28/2008 11:28:57 AM

Footnotes - Section Explanation

Section Explanation

Footnotes. This section contains all of the footnotes used in this technology description. Individual
footnotes can also be viewed in the lower frame by selecting a superscript number in the upper frame.

http://www.sei.cmu.edu/str/descriptions/template/footnotes.html7/28/2008 11:28:57 AM

Consistency - Definition

Glossary Term

Consistency
the degree of uniformity, standardization, and freedom from contradiction among the documents
or parts of a system or component [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/consistency.html7/28/2008 11:28:58 AM

Smith 93b

References and Information Sources

[Smith
93b]

Smith, Douglas R. "Derivation of Parallel Sorting Algorithms," 55-69. Parallel Algorithm
Derivation and Program Transformation. New York, NY: Kluwer Academic Publishers,
1993.

http://www.sei.cmu.edu/str/indexes/references/Smith_93b.html7/28/2008 11:28:58 AM

Efficiency - Definition

Glossary Term

Efficiency
the degree to which a system or component performs its designated functions with minimum
consumption of resources (CPU, Memory, I/O, Peripherals, Networks) [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/efficiency.html7/28/2008 11:28:58 AM

Smith 90

References and Information Sources

[Smith
90]

Smith, Douglas R. & Lowry, Michael R. "Algorithm Theories and Design Tactics." Science
of Computer Programming 14, 2-3 (1990): 305-321.

http://www.sei.cmu.edu/str/indexes/references/Smith_90_bold.html7/28/2008 11:28:58 AM

Smith 86

References and Information Sources

[Smith
86]

Smith, Douglas R. "Top-Down Synthesis of Divide-and-Conquer Algorithms," 35-61.
Readings in Artificial Intelligence and Software Engineering. Palo Alto, CA: Morgan
Kaufmann, 1986.

http://www.sei.cmu.edu/str/indexes/references/Smith_86.html7/28/2008 11:28:59 AM

Smith 91

References and Information Sources

[Smith
91]

Smith, Douglas R. "KIDS-A Knowledge-Based Software Development System," 483-514.
Automating Software Design. Menlo Park, CA: AAAI Press, 1991.

http://www.sei.cmu.edu/str/indexes/references/Smith_91_bold.html7/28/2008 11:28:59 AM

Smith 93c

References and Information Sources

[Smith
93c]

Smith, Douglas R. "Transformational Approach to Transportation Scheduling," 60-68.
Proceedings of the Eighth Knowledge-Based Software Engineering Conference. Chicago,
IL, September 20-23, 1993. Los Alamitos, CA: IEEE Computer Society Press, 1993.

http://www.sei.cmu.edu/str/indexes/references/Smith_93c.html7/28/2008 11:28:59 AM

Related Topics

Related Topics

Select or Develop Algorithms (AP.1.3.4)

● Algebraic Specification Techniques
● Algorithm Formalization
● Component-Based Software Development / COTS Integration
● Resolution-Based Theorem Proving
● Software Generation Systems

http://www.sei.cmu.edu/str/taxonomies/ap.1.3.4.html7/28/2008 11:28:59 AM

Related Topics

Related Topics

Consistency (QM.1.3.2)

● Algorithm Formalization
● Argument-Based Design Rationale Capture Methods for Requirements Tracing
● Feature-Based Design Rationale Capture Method for Requirements Tracing
● Requirements Tracing

http://www.sei.cmu.edu/str/taxonomies/qm.1.3.2.html7/28/2008 11:28:59 AM

Related Topics

Related Topics

Provably Correct (QM.1.3.4)

● Algorithm Formalization

http://www.sei.cmu.edu/str/taxonomies/qm.1.3.4.html7/28/2008 11:29:00 AM

Related Topics

Related Topics

Throughput (QM.2.2.3)

● Algorithm Formalization
● Distributed Computing Environment
● Graphic Tools for Legacy Database Migration

http://www.sei.cmu.edu/str/taxonomies/qm.2.2.3.html7/28/2008 11:29:00 AM

Modifiability - Definition

Glossary Term

Modifiability
the degree to which a system or component facilitates the incorporation of changes, once the
nature of the desired change has been determined [Boehm 78].

http://www.sei.cmu.edu/str/indexes/glossary/modifiability.html7/28/2008 11:29:00 AM

Krechmer 92

References and Information Sources

[Krechmer
92]

Krechmer, K. "Interface APIs for Wide Area Networks." Business Communications
Review 22, 11 (November 1992): 72-4.

http://www.sei.cmu.edu/str/indexes/references/Krechmer_92_bold.html7/28/2008 11:29:00 AM

Hines 96

References and Information Sources

[Hines
96]

Hines, John R. "Software Engineering." IEEE Spectrum (January 1996): 60-
64.

http://www.sei.cmu.edu/str/indexes/references/Hines_96.html7/28/2008 11:29:01 AM

King 95

References and Information Sources

[King
95]

King, Steven S. "Message Delivery APIs: The Message is the Medium." Data
Communications 21, 6 (April 1995): 85-90.

http://www.sei.cmu.edu/str/indexes/references/King_95.html7/28/2008 11:29:01 AM

Related Topics

Related Topics

Application Program Interfaces (APIs) (AP.2.7)

● Application Programming Interface
● Java

http://www.sei.cmu.edu/str/taxonomies/ap.2.7.html7/28/2008 11:29:01 AM

Architecture Description Languages - Notes

Notes

1 While definitions of architecture, component, and connector vary among researchers, this definition of
architecture serves as a baseline for this technology description. A generally accepted definition
describing the difference between a "design" and an "architecture" is that while a design explicitly
addresses functional requirements, an architecture explicitly addresses functional and non-functional
requirements such as reusability, maintainability, portability, interoperability, testability, efficiency, and
fault-tolerance [Paulisch 94].

http://www.sei.cmu.edu/str/descriptions/notes/adl_1.html7/28/2008 11:29:01 AM

Architecture Description Languages - Notes

Notes

2 Source: Garlan, David, et al. "ACME: An Architecture Interchange Language." Submitted for
publication.

http://www.sei.cmu.edu/str/descriptions/notes/adl_2.html7/28/2008 11:29:01 AM

Garlan 93

References and Information Sources

[Garlan
93]

Garlan, David & Shaw, Mary. "An Introduction to Software Architecture," 1-39.
Advances in Software Engineering and Knowledge Engineering Volume 2. New York,
NY: World Scientific Press, 1993.

http://www.sei.cmu.edu/str/indexes/references/Garlan_93_bold.html7/28/2008 11:29:02 AM

Understandability - Definition

Glossary Term

Understandability
the degree to which the purpose of the system or component is clear to the evaluator [Boehm 78].

http://www.sei.cmu.edu/str/indexes/glossary/understandability.html7/28/2008 11:29:02 AM

Garlan 94a

References and Information Sources

[Garlan
94a]

Garlan, D. & Allen, R. "Formalizing Architectural Connection," 71-80. Proceedings of
the 16th International Conference on Software Engineering. Sorrento, Italy, May 16-21,
1994. Los Alamitos, CA: IEEE Computer Society Press, 1994.

http://www.sei.cmu.edu/str/indexes/references/Garlan_94a.html7/28/2008 11:29:02 AM

Luckham 95

References and Information Sources

[Luckham
95]

Luckham, David C., et al. "Specification and Analysis of System Architecture Using
Rapide." IEEE Transactions on Software Engineering 21, 6 (April 1995): 336-355.

http://www.sei.cmu.edu/str/indexes/references/Luckham_95.html7/28/2008 11:29:02 AM

Shaw 95

References and Information Sources

[Shaw
95]

Shaw, Mary, et al. "Abstractions for Software Architecture and Tools to Support Them."
IEEE Transactions on Software Engineering 21, 6 (April 1995): 314-335.

http://www.sei.cmu.edu/str/indexes/references/Shaw_95.html7/28/2008 11:29:03 AM

Hoare 85

References and Information Sources

[Hoare
85]

Hoare, C.A.R. Communicating Sequential Processes. Englewood Cliffs, NJ: Prentice Hall
International, 1985.

http://www.sei.cmu.edu/str/indexes/references/Hoare_85.html7/28/2008 11:29:03 AM

Architecture Description Languages

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Architecture Description Languages

Status

Complete

Purpose and Origin

When describing a computer software system, software engineers often talk
about the architecture of the system, where an architecture is generally
considered to consist of components and the connectors (interactions) between
them.1 Although architectural descriptions are playing an increasingly important
role in the ability of software engineers to describe and understand software
systems, these abstract descriptions are often informal and ad hoc.2 As a result

● Architectural designs are often poorly understood and not amenable to
formal analysis or simulation.

● Architectural design decisions are based more on default than on solid
engineering principles.

● Architectural constraints assumed in the initial design are not enforced as
the system evolves.

● There are few tools to help the architectural designers with their tasks
[Garlan 93].

In an effort to address these problems, formal languages for representing and
reasoning about software architecture have been developed. These languages,
called architecture description languages (ADLs), seek to increase the
understandability and reusability of architectural designs, and enable greater
degrees of analysis.

Technical Detail

In contrast to Module Interconnection Languages (MILS), which only describe
the structure of an implemented system, ADLs are used to define and model
system architecture prior to system implementation. Further, ADLs typically
address much more than system structure. In addition to identifying the
components and connectors of a system, ADLs typically address:

● Component behavioral specification. Unlike MILs, ADLs are concerned
with component functionality. ADLs typically provide support for

http://www.sei.cmu.edu/str/descriptions/adl_body.html (1 of 7)7/28/2008 11:29:04 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/adl_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Architecture Description Languages

specifying both functional and non-functional characteristics of
components. (Non-functional requirements include those associated with
safety, security, reliability, and performance.) Depending on the ADL,
timing constraints, properties of component inputs and outputs, and data
accuracy may all be specified.

● Component protocol specification. Some ADLs, such as Wright [Garlan
94a] and Rapide [Luckham 95], support the specification of relatively
complex component communication protocols. Other ADLs, such as
UniCon [Shaw 95], allow the type of a component to be specified (e.g.,
filter, process, etc.) which in turn restricts the type of connector that can
be used with it.

● Connector specification. ADLs contain structures for specifying properties
of connectors, where connectors are used to define interactions between
components. In Rapide, connector specifications take the form of partially-
ordered event sequences, while in Wright, connector specifications are
expressed using Hoare's Communicating Sequential Processes (CSP)
language [Hoare 85].

As an example, consider the component shown in Figure 1. This component
defines two data types, two operations (op), and an input and an output
communication port. The component also includes specifications constraining
the behavior of its two operations.

Figure 1: Component

A protocol specification for this component, written in CSP, defines how it
interacts with its environment. Specifically, component Simple will accept a data
value x of type in_type on its input port, and, if the data value is valid, will output f
(x) on its output port. If the data value is not valid, Simple will output an error
message on its output port. Note that component Simple is a specification, not
an implementation. Implementations of ADL components and connectors are
expressed in traditional programming languages such as Ada (see Ada 83 and
Ada 95) or C. Facilities for associating implementations with ADL entities vary
between ADLs.

http://www.sei.cmu.edu/str/descriptions/adl_body.html (2 of 7)7/28/2008 11:29:04 AM

Architecture Description Languages

Usage Considerations

ADLs were developed to address a need that arose from programming in the
large; they are well-suited for representing the architecture of a system or family
of systems. Because of this emphasis, several changes to current system
development practices may occur:

● Training. ADLs are formal, compilable languages that support one or
more architectural styles; developers will need training to understand and
use ADL technology and architectural concepts/styles effectively (e.g., the
use of dataflow, layered, or blackboard architectural styles).

● Change/emphasis in life-cycle phases. The paradigm currently used for
system development and maintenance may be affected. Specifically,
architectural design and analysis will precede code development; results
of analysis may be used to alter system architecture. As such, a growing
role for ADLs is expected in evaluating competing proposed systems
during acquisitions. An ADL specification should provide a good basis for
programming activities [Shaw 95].

● Documentation. Because the structure of a software system can be
explicitly represented in an ADL specification, separate documentation
describing software structure is not necessary. This implies that if ADLs
are used to define system structure, the architectural documentation of a
given system will not become out of date.3 Additionally, ADLs document
system properties in a formal and rigorous way. These formal
characterizations can be used to analyze system properties statically and
dynamically. For example, dynamic simulation of Rapide [Luckham 95]
specifications can be analyzed by automated tools to identify such things
as communication bottlenecks and constraint violations. Further, these
formal characterizations provide information that can be used to guide
reuse.

● Expanding scope of architecture. ADLs are not limited to describing the
software architecture; application to system architecture (to include
hardware, software, and people) is also a significant opportunity.

Maturity

Several ADLs have been defined and implemented that support a variety of
architectural styles, including

● Aesop, which supports the specification and analysis of architectural
styles (formal characterizations of common architectures such as pipe
and filters, and client-server) [Garlan 94b].

● Rapide, which uses event posets to specify component interfaces and
component interaction [Luckham 95].

● Wright, which supports the specification and analysis of communication
protocols [Garlan 94a].

● MetaH, which was developed for the real-time avionics domain [Vestal
96].

● LILEAnna, which is designed for use with Ada and generalizes Ada's

http://www.sei.cmu.edu/str/descriptions/adl_body.html (3 of 7)7/28/2008 11:29:04 AM

Architecture Description Languages

notion of generics [Tracz 93].
● UniCon, which addresses packaging and functional issues associated

with components [Shaw 95].

Further information about these and other languages used to describe software
architectures can be found in the Software Architecture Technology Guide and
Architectural Description Languages [SATG 96, SEI 96].

Because ADLs are an emerging technology, there is little evidence in the
published literature of successful commercial application. However, Rapide and
UniCon have been used on various problems,4 and MetaH appears to be in use
in a commercial setting [Vestal 96]. ADLs often have graphical tools that are
similar to CASE tools.

Costs and Limitations

The lack of a common semantic model coupled with differing design goals for
various ADLs complicates the ability to share tool suites between them.
Researchers are addressing this problem; an ADL called ACME is being
developed with the goal that it will serve as an architecture interchange
language.5 Some ADLs, such as MetaH, are domain-specific.

In addition, support for asynchronous versus synchronous communication
protocols varies between ADLs, as does the ability to express complex
component interactions.

Dependencies

Simulation technology is required by those ADLs supporting event-based
protocol specification.

Alternatives

The alternatives to ADLs include Module Interconnection Languages (which only
represent the defacto structure of a system), object-oriented CASE tools, and
various ad-hoc techniques for representing and reasoning about system
architecture.

Another alternative is the use of VHSIC Hardware Description Language (VHDL)
tools. While VHDL is often thought of exclusively as a hardware description
language, its modularization and communication protocol modeling capabilities
are very similar to the ones under development for use in ADLs.

Complementary Technologies

Behavioral specification technologies and their associated theorem proving
environments are used by several ADLs to provide capabilities to define
component behavior. In addition, formal logics and techniques for representing

http://www.sei.cmu.edu/str/descriptions/adl_body.html (4 of 7)7/28/2008 11:29:04 AM

Architecture Description Languages

relationships between them are being used to define mappings between
architectures within an ADL and to define mappings between ADLs.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Architecture Description Languages

Application category Architectural Design (AP.1.3.1),
Compiler (AP.1.4.2.3),
Plan and Perform Integration (AP.1.4.4)

Quality measures category Correctness (QM.1.3),
Structuredness (QM.3.2.3),
Reusability (QM.4.4)

Computing reviews category Software Engineering Tools and Techniques
(D.2.2),
Organization and Design (D.4.7),
Performance (D.4.8),
Systems Programs and Utilities (D.4.9)

References and Information Sources

[Garlan 93] Garlan, David & Shaw, Mary. "An Introduction to Software
Architecture," 1-39. Advances in Software Engineering and
Knowledge Engineering Volume 2. New York, NY: World
Scientific Press, 1993.

[Garlan 94a] Garlan, D. & Allen, R. "Formalizing Architectural Connection,"
71-80. Proceedings of the 16th International Conference on
Software Engineering. Sorrento, Italy, May 16-21, 1994. Los
Alamitos, CA: IEEE Computer Society Press, 1994.

[Garlan 94b] Garlan, D.; Allen, R.; & Ockerbloom, J. "Exploiting Style in
Architectural Design Environments." SIGSOFT Software
Engineering Notes 19, 5 (December 1994): 175-188.

[Luckham
95]

Luckham, David C., et al. "Specification and Analysis of System
Architecture Using Rapide." IEEE Transactions on Software
Engineering 21, 6 (April 1995): 336-355.

[Hoare 85] Hoare, C.A.R. Communicating Sequential Processes. Englewood
Cliffs, NJ: Prentice Hall International, 1985.

http://www.sei.cmu.edu/str/descriptions/adl_body.html (5 of 7)7/28/2008 11:29:04 AM

Architecture Description Languages

[Paulisch 94] Paulisch, Frances. "Software Architecture and Reuse- An Inherent
Conflict?" 214. Proceedings of the 3rd International Conference
on Software Reuse. Rio de Janeiro, Brazil, November 1-4, 1994.
Los Alamitos, CA: IEEE Computer Society Press, 1994.

[Perry 92] Perry, D.E. & Wolf, A.L. "Foundations for the Study of Software
Architectures."SIGSOFT Software Engineering Notes 17,4
(October 1992): 40-52.

[SATG 96] Software Architecture Technology Guide [online]. Available
WWW <URL: http://www-ast.tds-gn.lmco.com/arch/guide.html>
(1996).

[SEI 96] Architectural Description Languages [online]. Available WWW
<URL: http://www.sei.cmu.edu/architecture/adl.html> (1996).

[Shaw 95] Shaw, Mary, et al. "Abstractions for Software Architecture and
Tools to Support Them." IEEE Transactions on Software
Engineering 21, 6 (April 1995): 314-335.

[Shaw 96] Shaw, M. & Garlan, D. Perspective on an Emerging Discipline:
Software Architecture. Englewood Cliffs, NJ: Prentice Hall, 1996.

[STARS 96] Scenarios for Analyzing Architecture Description Languages
Version 2.0 [online]. Originally available WWW
<URL: http://www.asset.com/WSRD/abstracts/
ABSTRACT_1183.html> (1996).

[Tracz 93] Tracz, W. "LILEANNA: a Parameterized Programming
Language," 66-78. Proceedings of the Second International
Workshop on Software Reuse. Lucca, Italy, March 24-26, 1993.
Los Alamitos, CA: IEEE Computer Society Press, 1993.

[Vestal 93] Vestal, Steve. A Cursory Overview and Comparison of Four
Architecture Description Languages [online]. Originally available
FTP
<URL: ftp://ftp.htc.honeywell.com/pub/dssa/papers/four_adl.ps>
(1996).

[Vestal 96] Vestal, Steve. Languages and Tools for Embedded Software
Architectures [online]. Available WWW
<URL: http://www.htc.honeywell.com/projects/dssa/dssa_tools.
html> (1996).

Current Author/Maintainer

Mark Gerken, Air Force Rome Laboratory

External Reviewers

Paul Clements, SEI
Paul Kogut, Lockheed Martin, Paoli, PA
Will Tracz, Lockheed Martin Federal Systems, Owego, NY

http://www.sei.cmu.edu/str/descriptions/adl_body.html (6 of 7)7/28/2008 11:29:04 AM

http://www-ast.tds-gn.lmco.com/arch/guide.html
http://www.sei.cmu.edu/architecture/adl.html
http://www.htc.honeywell.com/projects/dssa/dssa_tools.html
http://www.htc.honeywell.com/projects/dssa/dssa_tools.html

Architecture Description Languages

Modifications

10 Jan 97 (original)

Footnotes

1 While definitions of architecture, component, and connector vary among
researchers, this definition of architecture serves as a baseline for this
technology description. A generally accepted definition describing the difference
between a "design" and an "architecture" is that while a design explicitly
addresses functional requirements, an architecture explicitly addresses
functional and non-functional requirements such as reusability, maintainability,
portability, interoperability, testability, efficiency, and fault-tolerance [Paulisch
94].

2 Source: Garlan, David, et al. "ACME: An Architecture Interchange Language."
Submitted for publication.

3 However, one can easily imagine a case where an ADL is used to document
the architecture, but then the project moves to the implementation phase and the
ADL is forgotten. The code or low-level design migrates, but the architecture is
lost. This is often referred to as architectural drift [Perry 92].

4 For example, Rapide has been used to specify/ analyze the architecture model
of the Sparc Version 9 64-bit instruction set, a standard published by Sparc
International. Models of the extensions for the Ultra Sparc have also been done;
they are used extensively in benchmarking Rapide simulation algorithms.
Further information is available via the World Wide Web at http://anna.stanford.
edu/rapide/rapide.html.

5 Source: Garlan, David, et al. "ACME: An Architecture Interchange Language."
Submitted for publication.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/adl_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/adl_body.html (7 of 7)7/28/2008 11:29:04 AM

http://anna.stanford.edu/rapide/rapide.html
http://anna.stanford.edu/rapide/rapide.html
http://www.sei.cmu.edu/about/disclaimer.html

Architecture Description Languages - Notes

Notes

3 However, one can easily imagine a case where an ADL is used to document the architecture, but then
the project moves to the implementation phase and the ADL is forgotten. The code or low-level design
migrates, but the architecture is lost. This is often referred to as architectural drift [Perry 92].

http://www.sei.cmu.edu/str/descriptions/notes/adl_3.html7/28/2008 11:29:04 AM

Garlan 94b

References and Information Sources

[Garlan
94b]

Garlan, D.; Allen, R.; & Ockerbloom, J. "Exploiting Style in Architectural Design
Environments." SIGSOFT Software Engineering Notes 19, 5 (December 1994): 175-188.

http://www.sei.cmu.edu/str/indexes/references/Garlan_94b.html7/28/2008 11:29:04 AM

Vestal 96

References and Information Sources

[Vestal
96]

Vestal, Steve. Languages and Tools for Embedded Software Architectures [online].
Available WWW
<URL: http://www.htc.honeywell.com/projects/dssa/dssa_tools.html> (1996).

http://www.sei.cmu.edu/str/indexes/references/Vestal_96.html7/28/2008 11:29:04 AM

http://www.htc.honeywell.com/projects/dssa/dssa_tools.html

Tracz 93

References and Information Sources

[Tracz
93]

Tracz, W. "LILEANNA: a Parameterized Programming Language," 66-78. Proceedings of
the Second International Workshop on Software Reuse. Lucca, Italy, March 24-26, 1993.
Los Alamitos, CA: IEEE Computer Society Press, 1993.

http://www.sei.cmu.edu/str/indexes/references/Tracz_93.html7/28/2008 11:29:05 AM

SATG 96

References and Information Sources

[SATG
96]

Software Architecture Technology Guide [online]. Available WWW <URL: http://www-ast.
tds-gn.lmco.com/arch/guide.html> (1996).

http://www.sei.cmu.edu/str/indexes/references/SATG_96_bold.html7/28/2008 11:29:05 AM

http://www-ast.tds-gn.lmco.com/arch/guide.html
http://www-ast.tds-gn.lmco.com/arch/guide.html

SEI 96

References and Information Sources

[SEI
96]

Architectural Description Languages [online]. Available
WWW
<URL: http://www.sei.cmu.edu/architecture/adl.html> (1996).

http://www.sei.cmu.edu/str/indexes/references/SEI_96a.html7/28/2008 11:29:05 AM

http://www.sei.cmu.edu/architecture/adl.html

Architecture Description Languages - Notes

Notes

4 For example, Rapide has been used to specify/ analyze the architecture model of the Sparc Version 9
64-bit instruction set, a standard published by Sparc International. Models of the extensions for the Ultra
Sparc have also been done; they are used extensively in benchmarking Rapide simulation algorithms.
Further information is available via the World Wide Web at http://anna.stanford.edu/rapide/rapide.html.

http://www.sei.cmu.edu/str/descriptions/notes/adl_4.html7/28/2008 11:29:05 AM

http://anna.stanford.edu/rapide/rapide.html

Architecture Description Languages - Notes

Notes

5 Source: Garlan, David, et al. "ACME: An Architecture Interchange Language." Submitted for
publication.

http://www.sei.cmu.edu/str/descriptions/notes/adl_5.html7/28/2008 11:29:05 AM

Related Topics

Related Topics

Architectural Design (Hardware-Software Co-Design) (AP.1.3.1)

● Architecture Description Languages
● Module Interconnection Languages

http://www.sei.cmu.edu/str/taxonomies/ap.1.3.1.html7/28/2008 11:29:06 AM

Related Topics

Related Topics

Plan and Perform Integration (AP.1.4.4)

● Architecture Description Languages
● Component-Based Software Development/ COTS Integration
● Module Interconnection Languages

http://www.sei.cmu.edu/str/taxonomies/ap.1.4.4.html7/28/2008 11:29:06 AM

Related Topics

Related Topics

Correctness (QM.1.3)

● Architecture Description Languages
● Cleanroom Software Engineering
● Module Interconnection Languages
● Software Inspections

http://www.sei.cmu.edu/str/taxonomies/qm.1.3.html7/28/2008 11:29:06 AM

Related Topics

Related Topics

Structuredness (QM.3.2.3)

● Architecture Description Languages
● Cyclomatic Complexity
● Module Interconnection Languages

http://www.sei.cmu.edu/str/taxonomies/qm.3.2.3.html7/28/2008 11:29:07 AM

Paulisch 94

References and Information Sources

[Paulisch
94]

Paulisch, Frances. "Software Architecture and Reuse- An Inherent Conflict?" 214.
Proceedings of the 3rd International Conference on Software Reuse. Rio de Janeiro,
Brazil, November 1-4, 1994. Los Alamitos, CA: IEEE Computer Society Press, 1994.

http://www.sei.cmu.edu/str/indexes/references/Paulisch_94.html7/28/2008 11:29:07 AM

Perry 92

References and Information Sources

[Perry
92]

Perry, D.E. & Wolf, A.L. "Foundations for the Study of Software Architectures."SIGSOFT
Software Engineering Notes 17,4 (October 1992): 40-52.

http://www.sei.cmu.edu/str/indexes/references/Perry_92.html7/28/2008 11:29:07 AM

Evolvability - Definition

Glossary Term

Evolvability
the ease with which a system or component can be modified to take advantage of new software or
hardware technologies.

http://www.sei.cmu.edu/str/indexes/glossary/evolvability.html7/28/2008 11:29:07 AM

Shum 94

References and Information Sources

[Shum
94]

Shum, Buckingham Simon & Hammond, Nick. "Argumentation-Based Design Rationale:
What Use at What Cost?" International Journal of Human-Computer Studies 40, 4 (April
1994): 603-52.

http://www.sei.cmu.edu/str/indexes/references/Shum_94_bold.html7/28/2008 11:29:07 AM

Ramesh 92

References and Information Sources

[Ramesh
92]

Ramesh, Balasubramaniam & Dhar, Vasant. "Supporting Systems Development by
Capturing Deliberations During Requirements Engineering." IEEE Transactions on
Software Engineering 18, 6 (June 1992): 498-510.

http://www.sei.cmu.edu/str/indexes/references/Ramesh_92.html7/28/2008 11:29:08 AM

Related Topics

Related Topics

Requirements Tracing (AP.1.2.3)

● Argument-Based Design Rationale Capture Methods for Requirements Tracing
● Feature-Based Design Rationale Capture Method for Requirements Tracing
● Maintenance of Operational Systems an Overview
● Representation and Maintenance of Process Knowledge Method
● Requirements Tracing

http://www.sei.cmu.edu/str/taxonomies/ap.1.2.3.html7/28/2008 11:29:08 AM

Related Topics

Related Topics

Completeness/Incompleteness (QM.1.3.1)

● Argument-Based Design Rationale Capture Methods for Requirements Tracing
● Feature-Based Design Rationale Capture Method for Requirements Tracing
● Requirements Tracing

http://www.sei.cmu.edu/str/taxonomies/qm.1.3.1.html7/28/2008 11:29:08 AM

Related Topics

Related Topics

Traceability (QM.1.3.3)

● Argument-Based Design Rationale Capture Methods for Requirements Tracing
● Feature-Based Design Rationale Capture Method for Requirements Tracing
● Requirements Tracing

http://www.sei.cmu.edu/str/taxonomies/qm.1.3.3.html7/28/2008 11:29:08 AM

Related Topics

Related Topics

Effectiveness (QM.1.1)

● Argument-Based Design Rationale Capture Methods for Requirements Tracing
● Feature-Based Design Rationale Capture Method for Requirements Tracing
● Requirements Tracing

http://www.sei.cmu.edu/str/taxonomies/qm.1.1.html7/28/2008 11:29:09 AM

Related Topics

Related Topics

Understandability (QM.3.2)

● Argument-Based Design Rationale Capture Methods for Requirements Tracing
● Cleanroom Software Engineering
● Domain Engineering and Domain Analysis
● Feature-Based Design Rationale Capture Method for Requirements Tracing
● Feature-Oriented Domain Analysis
● Graphic Tools for Legacy Database Migration
● Halstead Complexity Measures
● Maintainability Index Technique for Measuring Program Maintainability
● Organization Domain Modeling
● Requirements Tracing

http://www.sei.cmu.edu/str/taxonomies/qm.3.2.html7/28/2008 11:29:09 AM

IEEE 83

References and Information Sources

[IEEE
83]

IEEE Standard Glossary of Software Engineering Terminology. New York, NY: Institute of
Electrical and Electronic Engineers, 1983.

http://www.sei.cmu.edu/str/indexes/references/IEEE_83.html7/28/2008 11:29:09 AM

Coleman 94

References and Information Sources

[Coleman
94]

Coleman, Don, et al. "Using Metrics to Evaluate Software System Maintainability."
Computer 27, 8 (August 1994): 44-49.

http://www.sei.cmu.edu/str/indexes/references/Coleman_94.html7/28/2008 11:29:09 AM

Coleman 95

References and Information Sources

[Coleman
95]

Coleman, Don; Lowther, Bruce; & Oman, Paul. "The Application of Software
Maintainability Models in Industrial Software Systems." Journal of Systems Software 29,
1 (April 1995): 3-16.

http://www.sei.cmu.edu/str/indexes/references/Coleman_95.html7/28/2008 11:29:09 AM

Maintenance of Operational Systems--An Overview

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Maintenance of Operational Systems--An Overview

Status

Complete

Note

This description provides background information for technologies for optimizing maintenance
environments. We recommend Cyclomatic Complexity; Halstead Complexity Measures;
Maintainability Index Technique for Measuring Program Maintainability; and Function Point
Analysis as concurrent reading, as they contain information about specific technologies.

Purpose and Origin

Technologies specific to the maintenance of software evolved (and are still evolving) out of
development-oriented technologies. As large systems have proliferated and aged, the special
needs of the operational environment have begun to emerge. Maintenance is defined here as
the modification of a software product after delivery to correct faults, improve performance or
other attributes, or to adapt the product to a changed environment [IEEE 83]. Historically, the
software lifecycle has usually focused on development. However, so much of a system's cost is
incurred during its operational lifetime that maintenance issues have become more important
and, arguably, this should be reflected in development practices. Systems are required to last
longer than originally planned; inevitably, the percentage of costs going to maintenance has
been steadily climbing. Hewlett-Packard estimates that 60% to 80% of its R&D personnel are
involved in maintaining existing software, and that 40% to 60% of production costs were directly
related to maintenance [Coleman 94]. There was a rule of thumb that eighty percent of a
Department of Defense (DoD) system's cost is in maintenance; older Cheyenne Mountain
Complex systems may have surpassed ninety percent. Yet software development practices still
do not put much emphasis on making the product highly maintainable.

Cost and risk of maintenance of older systems are further exacerbated by a shortage of
suitable maintenance skills; analysts and programmers are not trained to deal with these
systems. Industry wide, it is claimed that 75%-80% of all operational software was written
without the discipline of structured programming [Coleman 95]. Only a minuscule fraction of
current operational systems were built using the object-oriented techniques taught today.

The purpose of this description is to provide a framework or a contextual reference for some of
the maintenance and reengineering technologies described in this document.

Technical Detail

http://www.sei.cmu.edu/str/descriptions/mos_body.html (1 of 8)7/28/2008 11:29:10 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/mos_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Maintenance of Operational Systems--An Overview

The operational system lifecycle. The operational environment has its own lifecycle that,
while connected to the development lifecycle, has specific and unique characteristics and
needs. As shown in Figure 15, a system's total lifecycle is defined as having four major phases:

● the development or pre-delivery phase
● the early operational phase
● the mature operational phase
● the evolution/replacement phase

Each of the phases has typical characteristics and problems. The operational phases are most
of the lifecycle and cost. The narrative following describes each phase, and identifies specific
technologies in (or planned for) this document that can be applied to correct or improve the
situation. In almost every case, taking the proper action in a given phase can eliminate, or
greatly reduce, problems in a later phase- at much less cost.

Figure 15: Total System Life Cycle

Terminology. To set a baseline for the descriptions of these phases, the following definitions
are used:

Reengineering: rebuilding a piece of software to suit some new purpose (to work on another
platform, to switch to another language, to make it more maintainable, etc.); often preceded by
reverse engineering. Examination and alteration of a subject system to reconstitute it in a new

http://www.sei.cmu.edu/str/descriptions/mos_body.html (2 of 8)7/28/2008 11:29:10 AM

Maintenance of Operational Systems--An Overview

form. Any activity that improves one's understanding of software, or prepares or improves the
software itself for increased maintainability, reusability, or evolvability.

Restructuring: transformation of a program from one representation to another at the same
relative abstraction level, usually to simplify or clarify it in some way (e.g., remove GOTOs,
increase modularity), while preserving external behavior.

Reverse engineering: the process of analyzing a system's code, documentation, and behavior
to identify its current components and their dependencies to extract and create system
abstractions and design information. The subject system is not altered; however, additional
knowledge about the system is produced. Redocumenting and design recovery are techniques
associated with reverse engineering.

Software complexity: some measure of the mental effort required to understand a piece of
software.

Software maintainability: some measure of the ease and/or risk of making a change to a piece
of software. The measured complexity of the software is often used in quantifying
maintainability.

Translation: conversion of a program from one language to another, often as a companion
action to restructuring the program.

Phase 1: The development or pre-delivery phase, when the system is not yet operational.
Most of the effort in this phase goes into making Version One of the system function. But if total
lifecycle costs are to be minimized, planning and preparation for maintenance during the
development phase are essential. Most currently operational systems did not receive this
attention during development. Several areas should be addressed:

● Requirements traceability to code. Requirements are the foundation of a system, and
one of the most common faults of an operational system is that the relationship between
its requirements and its code cannot be determined. Recovering this information for a
system after it goes operational is a costly and time-consuming task. See Requirements
Tracing, Feature-Based Design Rationale Capture Method for Requirements Tracing,
and Argument-Based Design Rationale Capture Methods for Requirements Tracing for
assistance in creating initial mappings from requirements to code.

● Documentation and its usefulness in maintenance. The ostensible purpose of
documentation is to aid in understanding what the system does, and (for the
maintenance programmer) how the system does it. There is at least anecdotal evidence
that

❍ Classical specification-type documentation is not a good primary source of
information for the maintenance programmer looking for a problem's origin,
especially since the documentation is frequently inconsistent with the code.

❍ The most useful maintenance information is derived directly and automatically
from the code; examples include structure charts, program flow diagrams, and
cross-reference lists. This suggests that tools that create and maintain these
documentation forms should be used during development of the code, and
delivered with it.

● The complexity of the software. If the software is too complex to understand when it is
first developed, it will only become more complex and brittle as it is changed. Measuring
complexity during code development is useful for checking code condition, helps in
quantifying testing costs, and aids in forecasting future maintenance costs (see

http://www.sei.cmu.edu/str/descriptions/mos_body.html (3 of 8)7/28/2008 11:29:10 AM

Maintenance of Operational Systems--An Overview

Cyclomatic Complexity, Halstead Complexity Measures, and Maintainability Index
Technique for Measuring Program Maintainability).

● The maintainability of the software. This is perhaps the key issue for the maintainer. The
ability to measure a system's maintainability directly affects the ability to predict future
costs and risks. Maintainability Index Technique for Measuring Program Maintainability
describes a practical approach to such a measurement, applicable throughout the
lifecycle.

Phase 2: The early operational phase, when the delivered system is being maintained and
changed to meet new needs and fix problems. Typically the tools and techniques used for
maintenance are those that were used to develop the system. In this phase, the following
issues are critical:

● Complexity and maintainability must be measured and controlled in this phase if the
major problems of Phase 3 are to be avoided. Ideally, this a continuation of the same
effort that began in Phase 1, and it depends on the same tools and techniques (see
Cyclomatic Complexity, Halstead Complexity Measures, and Maintainability Index
Technique for Measuring Program Maintainability). In a preventative maintenance
regime, use of these types of measures will help establish guidelines about how much
complexity and/or deterioration of maintainability is tolerable. If a critical module
becomes too complex under the guidelines, it should be considered for rework before it
becomes a problem. Early detection of problems, such as risk due to increasing
complexity of a module, is far cheaper than waiting until a serious problem arises.

● A formal release-based maintenance process that suits the environment must be
established. This process should always be subject to inspection, and should be revised
when it does not meet the need.

● The gathering of cost data must be part of the maintenance process if lifecycle costs are
to be understood and controlled. The cost of each change (e.g., person-hours, computer-
hours) should be known down to a suitable granularity such as phase within the release
(e.g., design, code and unit test, integration testing). Without this detailed cost
information, it is very hard to estimate future workload or the cost of a proposed change.

Phase 3: Mature operational phase, in which the system still meets the users' primary needs
but is showing signs of age. For example

● The incidence of bugs caused by changes or "day-one errors" (problems that existed at
initial code delivery) is rising, and the documentation, especially higher-level
specification material, is not trustworthy. Most analyses of changes to the software must
be done by investigating the code itself.

● Code "entropy" and complexity are increasing and, even by subjective measures, its
maintainability is decreasing.

● New requirements increasingly uncover limitations that were designed into the system.
● Because of employee turnover, the programming staff may no longer be intimately

familiar with the code, which increases both the cost of a change and the code's
entropy.

● A change may have a ripple effect: Because the true nature of the code is not well
known, coupling across modules has increased and made it more likely that a change in
one area will affect another area. It may be appropriate to restructure or reengineer
selected parts of the system to lessen this problem.

● Testing has become more time-consuming and/or risky because as code complexity
increases, test path coverage also increases. It may be appropriate to consider more
sophisticated test approaches (see Preventive Maintenance).

http://www.sei.cmu.edu/str/descriptions/mos_body.html (4 of 8)7/28/2008 11:29:10 AM

Maintenance of Operational Systems--An Overview

● The platform is obsolete: The hardware is not supported by the manufacturer and parts
are not readily available; the COTS software is not supported through new releases (or
the new releases will not work with the application, and it is too risky to make the
application changes needed to align with the COTS software).

At this point, the code has not been rewritten en masse or reverse engineered to recover
design, but the risk and cost of evolution by modification of the system have increased
significantly. The system has become brittle with age. It may be appropriate to assess the
system's condition. Sittenauer describes a quick methodology for gauging the need for
reengineering, and the entire approach for measuring maintainability (see Maintainability Index
Technique for Measuring Program Maintainability) allows continuous or spot assessment of the
system's maintainability [Sittenauer 92].

Phase 4: Evolution/Replacement Phase, in which the system is approaching or has reached
insupportability. The software is no longer maintainable. It has become so "entropic" or brittle
that the cost and/or risk of significant change is too high, and/or the host hardware/software
environment is obsolete. Even if none of these is true, the cost of implementing a new
requirement is not tolerable because it takes too long under the maintenance environment. It is
time to consider reengineering (see Cleanroom Software Engineering and Graphical User
Interface Builders).

Usage Considerations

Software maintainability factors. The characteristics influencing or determining a system's
maintainability have been extensively studied, enumerated, and organized. One thorough study
is described in Oman; such characteristics were analyzed and a simplified maintainability
taxonomy was constructed [Oman 91]. Maintainability Index Technique for Measuring Program
Maintainability describes an approach to measuring and controlling code maintainability that
was founded on several years of work and analysis and includes analysis of commercial
software maintenance. References to other maintainability research results also appear in that
technology description.

Preventive maintenance approaches. The approaches listed below are a few of the ways
current technology can help to enhance system maintainability.

● Complexity analysis. Before attempting to reach a destination, it is essential to know
where you are. For a software system, a good first step is measuring the complexity of
the component modules (see Cyclomatic Complexity and Halstead Complexity
Measures). Maintainability Index Technique for Measuring Program Maintainability
describes a method of assessing maintainability of code using those complexity
measures. Test path coverage can also be determined from complexity measures,
which can help in optimizing system testing (see Test generation and optimization).

● Functionality analysis. Function Point Analysis describes the uses and limitations of
function point analysis (also known as functional size measurement) in measuring
software. By measuring a program's functionality, one can arrive at some estimate of its
value in a system, which is of use when making decisions about rewriting the program or
reengineering the system. Measures of functionality can also guide decisions about
where to put testing effort (see Test generation and optimization).

● Reverse engineering / design recovery. Over time, a system's code diverges from the
documentation; this is a well-known tendency of operational systems. Another

http://www.sei.cmu.edu/str/descriptions/mos_body.html (5 of 8)7/28/2008 11:29:10 AM

Maintenance of Operational Systems--An Overview

phenomenon that is frequently underestimated or ignored is that (regardless of the
divergence effect) the information required to make a given change is often found only in
the code. Several approaches are possible here. Various tools offer the ability to
construct program flow diagrams (PFDs) from code. More sophisticated techniques,
often classified as program understanding, are emerging. These technologies are
implemented as tools that act as agents for the human analyst to assist in gathering
information about a program's function at higher levels of abstraction than a program
flow diagram (e.g., retask a satellite).

● Piecewise reengineering. If the system's known lifetime is sufficiently short, and if the
evolutionary changes needed are sufficiently bounded, the system may benefit from a
piecewise reengineering approach:

❍ Brittle, high-risk modules that are likely to need changes are identified and
reengineered to make them more maintainable. Techniques such as wrappers,
an emerging technology, are expected to aid here.

❍ For the sake of prudence, other risky modules are "locked," so that a prospective
change to them can be made only after thoroughly assessing the risks involved.

❍ For database systems, it may be possible to retrofit a modern relational or object-
oriented database to the system; Common Object Request Broker Architecture
and Graphic Tools for Legacy Database Migration describe technologies of
possible use here. Piecewise reengineering can generally be done at a lower
cost than complete reengineering of the system. If it is the right choice, it delays
the inevitable obsolescence. The downsides of piecewise reengineering include
the following:

❍ Platform obsolescence is not reversed. Risks arising from the platform's software
are unchanged; if the original database or operating system has risks, the
application using them will also.

❍ Unforeseen requirements changes still carry high risk if they affect the old parts
of the system.

❍ Performance may suffer because of the interface structures added to splice
reengineered functions to old ones.

● Translation/restructuring/modularizing. Translation and/or restructuring of code are often
of interest when migrating software to a new platform. Frequently the new environment
will not support the old language or dialect. Restructuring/modularizing, or rebuilding the
code to reduce complexity, can be done simply to improve the code's maintainability, but
code to be translated is often restructured first so that the result will be less complex and
more easily understood. There are several commercial tools that do one or more of
these operations, and energetic research to achieve more automated approaches is
being done. Welker cites evidence that translation does little or nothing to enhance
maintainability [Welker 95]. Most often, it simply continues the existing problem in a
different syntactical form; the mechanical forms output by translators decrease
understandability, which is a key component of maintainability. None of these
technologies is a cure-all, and none of them should be applied without first assessing the
quality of the output and the amount of programmer resources required.

Test generation and optimization. Mission criticality of many DoD systems drives the
maintenance activity to test very thoroughly. Boehm reported integration testing activities
consuming only 16-34% of project totals [Boehm 81], but other evidence is available to show
that commercial systems testing activity can take half of a development effort's resources
[Alberts 76, DeMillo 87, Myers 79]. Recent composite post-release reviews of operational
Cheyenne Mountain Complex system releases show that testing consumed 60-70% of the total
release effort.1 Any technology that can improve testing efficiency will have high leverage on
the system's life-cycle costs. Technologies that can possibly help include: automatic test case
generation; generation of test and analysis tools; redundant test case elimination; test data

http://www.sei.cmu.edu/str/descriptions/mos_body.html (6 of 8)7/28/2008 11:29:10 AM

Maintenance of Operational Systems--An Overview

generation by chaining; techniques for software regression testing; and techniques for
statistical test plan generation and coverage analysis.

Index Categories

This technology is classified under the following categories. Select a category for a list of
related topics.

Name of technology Maintenance of Operational Systems--An Overview

Application category Requirements Tracing (AP.1.2.3)
Cost Estimation (AP.1.3.7)
Test (AP.1.4.3)
System Testing (AP.1.5.3.1)
Regression Testing (AP.1.5.3.4)
Reapply Software Lifecycle (AP.1.9.3)
Reverse Engineering (AP.1.9.4)
Reengineering (AP.1.9.5)

Quality measures category Maintainability (QM.3.1)

Computing reviews category Software Engineering Distribution and Maintenance (D.2.7)
Software Engineering Metrics (D.2.8)
Software Engineering Management (D.2.9)

References and Information Sources

[Alberts 76] Alberts, D. "The Economics of Software Quality Assurance." National
Computer Conference. New York, NY, June 7-10, 1976. Montvale, NJ:
American Federation of Information Processing Societies Press, 1976.

[Boehm 81] Boehm, Barry W. Software Engineering Economics. Englewood Cliffs, NJ:
Prentice-Hall, 1981.

[Coleman 94] Coleman, Don, et al. "Using Metrics to Evaluate Software System
Maintainability." Computer 27, 8 (August 1994): 44-49.

[Coleman 95] Coleman, Don; Lowther, Bruce; & Oman, Paul. "The Application of Software
Maintainability Models in Industrial Software Systems." Journal of Systems
Software 29, 1 (April 1995): 3-16.

[DeMillo 87] DeMillo, R., et al. Software Testing and Evaluation. Menlo Park, CA: Benjamin/
Cummings, 1987.

[IEEE 83] IEEE Standard Glossary of Software Engineering Terminology. New York, NY:
Institute of Electrical and Electronic Engineers, 1983.

http://www.sei.cmu.edu/str/descriptions/mos_body.html (7 of 8)7/28/2008 11:29:10 AM

Maintenance of Operational Systems--An Overview

[Myers 79] Myers, G. The Art of Software Testing. New York, NY: John Wiley and Sons,
1979.

[Oman 91] Oman, P.; Hagermeister, J.; & Ash, D. A Definition and Taxonomy for Software
Maintainability (91-08-TR). Moscow, ID: Software Engineering Test
Laboratory, University of Idaho, 1991.

[Sittenauer
92]

Sittenauer, Chris & Olsem, Mike. "Time to Reengineer?" Crosstalk, Journal of
Defense Software Engineering 32 (March 1992): 7-10.

[Welker 95] Welker, Kurt D. & Oman, Paul W. "Software Maintainability Metrics Models in
Practice." Crosstalk, Journal of Defense Software Engineering 8, 11 (November/
December 1995): 19-23.

Current Author/Maintainer

Edmond VanDoren, Kaman Sciences, Colorado Springs

External Reviewers

Brian Gallagher, SEI
Ed Morris, SEI
Dennis Smith, SEI

Modifications

10 Jan 97 (original)

Footnotes

1 Source: Kaman Sciences Corp. Minutes of the 96-1 Composite Post-Release Review
(CPRR), Combined CSS/CSSR and ATAMS Post-Release Review and Software Engineering
Post-Release Review KSWENG Memo # 96-03, 26 July, 1996.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the
U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/mos_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/mos_body.html (8 of 8)7/28/2008 11:29:10 AM

http://www.sei.cmu.edu/about/disclaimer.html

Sittenauer 92

References and Information Sources

[Sittenauer
92]

Sittenauer, Chris & Olsem, Mike. "Time to Reengineer?" Crosstalk, Journal of Defense
Software Engineering 32 (March 1992): 7-10.

http://www.sei.cmu.edu/str/indexes/references/Sittenauer_92.html7/28/2008 11:29:11 AM

Oman 91

References and Information Sources

[Oman
91]

Oman, P.; Hagermeister, J.; & Ash, D. A Definition and Taxonomy for Software
Maintainability (91-08-TR). Moscow, ID: Software Engineering Test Laboratory,
University of Idaho, 1991.

http://www.sei.cmu.edu/str/indexes/references/Oman_91_bold.html7/28/2008 11:29:11 AM

Welker 95

References and Information Sources

[Welker
95]

Welker, Kurt D. & Oman, Paul W. "Software Maintainability Metrics Models in
Practice." Crosstalk, Journal of Defense Software Engineering 8, 11 (November/
December 1995): 19-23.

http://www.sei.cmu.edu/str/indexes/references/Welker_95_bold.html7/28/2008 11:29:11 AM

Boehm 81

References and Information Sources

[Boehm
81]

Boehm, Barry W. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall,
1981.

http://www.sei.cmu.edu/str/indexes/references/Boehm_81.html7/28/2008 11:29:11 AM

Alberts 76

References and Information Sources

[Alberts
76]

Alberts, D. "The Economics of Software Quality Assurance." National Computer
Conference. New York, NY, June 7-10, 1976. Montvale, NJ: American Federation of
Information Processing Societies Press, 1976.

http://www.sei.cmu.edu/str/indexes/references/Alberts_76.html7/28/2008 11:29:12 AM

DeMillo 87

References and Information Sources

[DeMillo
87]

DeMillo, R., et al. Software Testing and Evaluation. Menlo Park, CA: Benjamin/
Cummings, 1987.

http://www.sei.cmu.edu/str/indexes/references/DeMillo_87.html7/28/2008 11:29:12 AM

Myers 79

References and Information Sources

[Myers
79]

Myers, G. The Art of Software Testing. New York, NY: John Wiley and Sons,
1979.

http://www.sei.cmu.edu/str/indexes/references/Myers_79.html7/28/2008 11:29:12 AM

Maintenance of Operational Systems - Notes

Notes

1 Source: Kaman Sciences Corp. Minutes of the 96-1 Composite Post-Release Review (CPRR),
Combined CSS/CSSR and ATAMS Post-Release Review and Software Engineering Post-Release Review
KSWENG Memo # 96-03, 26 July, 1996.

http://www.sei.cmu.edu/str/descriptions/notes/mos_1.html7/28/2008 11:29:12 AM

Related Topics

Related Topics

Cost Estimation (AP.1.3.7)

● COCOMO Method
● Function Point Analysis
● Maintenance of Operational Systems -- an Overview

http://www.sei.cmu.edu/str/taxonomies/ap.1.3.7.html7/28/2008 11:29:12 AM

Related Topics

Related Topics

Test (AP.1.4.3)

● Bowles Metrics
● Cyclomatic Complexity
● Halstead Complexity Measures
● Henry and Kafura Metrics
● Ligier Metrics
● Maintainability Index Technique for Measuring Program Maintainability
● Maintenance of Operational Systems -- an Overview
● Troy and Zweben Metric

http://www.sei.cmu.edu/str/taxonomies/ap.1.4.3.html7/28/2008 11:29:13 AM

Related Topics

Related Topics

System Testing (AP.1.5.3.1)

● Cleanroom Software Engineering
● Maintenance of Operational Systems -- an Overview

http://www.sei.cmu.edu/str/taxonomies/ap.1.5.3.1.html7/28/2008 11:29:13 AM

Related Topics

Related Topics

Regression Testing (AP.1.5.3.4)

● Maintenance of Operational Systems -- an Overview
● Regression Testing Techniques

http://www.sei.cmu.edu/str/taxonomies/ap.1.5.3.4.html7/28/2008 11:29:13 AM

Related Topics

Related Topics

Reapply Software Life Cycle (AP.1.9.3)

● Bowles Metrics
● Cyclomatic Complexity
● Data Complexity
● Design Complexity
● Essential Complexity
● Graphical User Interface Builders
● Halstead Complexity Measures
● Henry and Kafura Metrics
● Ligier Metrics
● Maintainability Index Technique for Measuring Program Maintainability
● Maintenance of Operational Systems -- an Overview
● Personal Software Process for Module-Level Development
● Rate Monotonic Analysis
● Simplex Architecture
● Troy and Zweben Metrics

http://www.sei.cmu.edu/str/taxonomies/ap.1.9.3.html7/28/2008 11:29:13 AM

Related Topics

Related Topics

Reverse Engineering (AP.1.9.4)

● Cyclomatic Complexity
● Data Mining
● Data Warehousing
● Maintenance of Operational Systems -- an Overview

http://www.sei.cmu.edu/str/taxonomies/ap.1.9.4.html7/28/2008 11:29:14 AM

Related Topics

Related Topics

Reengineering (AP.1.9.5)

● Bowles Metrics
● Cleanroom Software Engineering
● Component-Based Software Development/ COTS Integration
● Cyclomatic Complexity
● Data Complexity
● Design Complexity
● Essential Complexity
● Graphic Tools for Legacy Database Migration
● Graphical User Interface Builders
● Halstead Complexity Measures
● Henry and Kafura Metrics
● Ligier Metrics
● Maintainability Index Technique for Measuring Program Maintainability
● Maintenance of Operational Systems -- an Overview
● Object-Oriented Analysis
● Object-Oriented Design
● Personal Software Process for Module-Level Development
● Rate Monotonic Analysis
● Simplex Architecture
● Troy and Zweben Metrics

http://www.sei.cmu.edu/str/taxonomies/ap.1.9.5.html7/28/2008 11:29:14 AM

Complexity - Definition

Glossary Term

Complexity
1. (Apparent) the degree to which a system or component has a design or implementation that is

difficult to understand and verify [IEEE 90].
2. (Inherent) the degree of complication of a system or system component, determined by such

factors as the number and intricacy of interfaces, the number and intricacy of conditional
branches, the degree of nesting, and the types of data structures [Evans 87].

http://www.sei.cmu.edu/str/indexes/glossary/complexity.html7/28/2008 11:29:14 AM

Rao 95

References and Information Sources

[Rao
95]

Rao, B.R. "Making the Most of Middleware." Data Communications International 24, 12
(September 1995): 89-96.

http://www.sei.cmu.edu/str/indexes/references/Rao_95_bold.html7/28/2008 11:29:14 AM

Message-Oriented Middleware

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Message-Oriented Middleware

Status

Advanced

Note

We recommend Middleware as prerequisite reading for this technology
description.

Purpose and Origin

Message-oriented middleware (MOM) is a client/server infrastructure that
increases the interoperability, portability, and flexibility of an application by
allowing the application to be distributed over multiple heterogeneous platforms.
It reduces the complexity of developing applications that span multiple operating
systems and network protocols by insulating the application developer from the
details of the various operating system and network interfaces- Application
Programming Interfaces (APIs) that extend across diverse platforms and
networks are typically provided by the MOM [Rao 95].

Technical Detail

Message-oriented middleware, as shown in Figure 22 [Steinke 95], is software
that resides in both portions of a client/server architecture and typically supports
asynchronous calls between the client and server applications. Message queues
provide temporary storage when the destination program is busy or not
connected. MOM reduces the involvement of application developers with the
complexity of the master-slave nature of the client/server mechanism.

http://www.sei.cmu.edu/str/descriptions/momt_body.html (1 of 4)7/28/2008 11:29:15 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/momt_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Message-Oriented Middleware

Figure 22: Message-Oriented Middleware

MOM increases the flexibility of an architecture by enabling applications to
exchange messages with other programs without having to know what platform
or processor the other application resides on within the network. The
aforementioned messages can contain formatted data, requests for action, or
both. Nominally, MOM systems provide a message queue between
interoperating processes, so if the destination process is busy, the message is
held in a temporary storage location until it can be processed. MOM is typically
asynchronous and peer-to-peer, but most implementations support synchronous
message passing as well.

Usage Considerations

MOM is most appropriate for event-driven applications. When an event occurs,
the client application hands off to the messaging middleware application the
responsibility of notifying a server that some action needs to be taken. MOM is
also well-suited for object-oriented systems because it furnishes a conceptual
mechanism for peer-to-peer communications between objects. MOM insulates
developers from connectivity concerns- the application developers write to APIs
that handle the complexity of the specific interfaces.

Asynchronous and synchronous mechanisms each have strengths and
weaknesses that should be considered when designing any specific application.
The asynchronous mechanism of MOM, unlike Remote Procedure Call (RPC) ,
which uses a a synchronous, blocking mechanism, does not guard against
overloading a network. As such, a negative aspect of MOM is that a client
process can continue to transfer data to a server that is not keeping pace.
Message-oriented middleware's use of message queues, however, tends to be
more flexible than RPC-based systems, because most implementations of MOM
can default to synchronous and fall back to asynchronous communication if a
server becomes unavailable [Steinke 95].

Maturity

Implementations of MOM first became available in the mid-to-late 1980s. Many
MOM implementations currently exist that support a variety of protocols and
operating systems. Many implementations support multiple protocols and
operating systems simultaneously.

http://www.sei.cmu.edu/str/descriptions/momt_body.html (2 of 4)7/28/2008 11:29:15 AM

Message-Oriented Middleware

Some vendors provide tool sets to help extend existing interprocess
communication across a heterogeneous network.

Costs and Limitations

MOM is typically implemented as a proprietary product, which means MOM
implementations are nominally incompatible with other MOM implementations.
Using a single implementation of a MOM in a system will most likely result in a
dependence on the MOM vendor for maintenance support and future
enhancements. This could have a highly negative impact on a system's
flexibility, maintainability, portability, and interoperability.

The message-oriented middleware software (kernel) must run on every platform
of a network. The impact of this varies and depends on the characteristics of the
system in which the MOM will be used:

● Not all MOM implementations support all operating systems and
protocols. The flexibility to choose a MOM implementation may be
dependent on the chosen application platform or network protocols
supported, or vice versa.

● Local resources and CPU cycles must be used to support the MOM
kernels on each platform. The performance impact of the middleware
implementation must be considered; this could possibly require the user
to acquire greater local resources and processing power.

● The administrative and maintenance burden would increase significantly
for a network manager with a large distributed system, especially in a
mostly heterogeneous system.

● A MOM implementation may cost more if multiple kernels are required for
a heterogeneous system, especially when a system is maintaining
kernels for old platforms and new platforms simultaneously.

Alternatives

Other infrastructure technologies that allow the distribution of processing across
multiple processors and platforms are

● Object Request Broker (ORB)
● Distributed Computing Environment (DCE)
● Remote Procedure Call (RPC)
● Transaction Processing Monitor Technology
● Three Tier Software Architectures

Complementary Technologies

MOM can be effectively combined with remote procedure call (RPC) technology-
RPC can be used for synchronous support by a MOM.

http://www.sei.cmu.edu/str/descriptions/momt_body.html (3 of 4)7/28/2008 11:29:15 AM

Message-Oriented Middleware

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Message-Oriented Middleware

Application category Client/Server (AP.2.1.2.1)
Client/Server Communication (AP.2.2.1)

Quality measures category Maintainability (QM.3.1)
Interoperability (QM.4.1)
Portability (QM.4.2)

Computing reviews category Distributed Systems (C.2.4)
Network Architecture and Design (C.2.1)

References and Information Sources

[Rao 95] Rao, B.R. "Making the Most of Middleware." Data
Communications International 24, 12 (September 1995): 89-96.

[Steinke
95]

Steinke, Steve. "Middleware Meets the Network." LAN: The
Network Solutions Magazine 10, 13 (December 1995): 56.

Current Author/Maintainer

Cory Vondrak, TRW, Redondo Beach, CA

External Reviewers

Ed Morris, SEI

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/momt_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/momt_body.html (4 of 4)7/28/2008 11:29:15 AM

http://www.sei.cmu.edu/about/disclaimer.html

Steinke 95

References and Information Sources

[Steinke
95]

Steinke, Steve. "Middleware Meets the Network." LAN: The Network Solutions Magazine
10, 13 (December 1995): 56.

http://www.sei.cmu.edu/str/indexes/references/Steinke_95_bold.html7/28/2008 11:29:15 AM

Related Topics

Related Topics

Client/Server (AP.2.1.2.1)

● Common Object Request Broker Architecture
● Component Object Model (COM), DCOM, and Related Capabilities
● Database Two Phase Commit
● Distributed/Collaborative Enterprise Architectures
● Mainframe Server Software Architectures
● Message-Oriented Middleware
● Middleware
● Object Request Broker
● Remote Data Access (RDA)
● Remote Procedure Call
● Session-Based Technology
● Three Tier Software Architectures
● Transaction Processing Monitor Technology
● Two Tier Software Architectures

http://www.sei.cmu.edu/str/taxonomies/ap.2.1.2.1.html7/28/2008 11:29:15 AM

Related Topics

Related Topics

Client/Server Communication (AP.2.2.1)

● Common Object Request Broker Architecture
● Component Object Model (COM), DCOM, and Related Capabilities
● Message-Oriented Middleware
● Middleware
● Object Request Broker
● Remote Data Access
● Remote Procedure Call
● Session-Based Technology
● Transaction Processing Monitor Technology

http://www.sei.cmu.edu/str/taxonomies/ap.2.2.1.html7/28/2008 11:29:16 AM

Eckerson 95

References and Information Sources

[Eckerson
95]

Eckerson, Wayne. "Searching for the Middle Ground." Business Communications
Review 25, 9 (September 1995): 46-50.

http://www.sei.cmu.edu/str/indexes/references/Eckerson_95_2.html7/28/2008 11:29:16 AM

Middleware

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Middleware

Status

Advanced

Purpose and Origin

Middleware is connectivity software that consists of a set of enabling services
that allow multiple processes running on one or more machines to interact
across a network. Middleware is essential to migrating mainframe applications to
client/server applications and to providing for communication across
heterogeneous platforms. This technology has evolved during the 1990s to
provide for interoperability in support of the move to client/server architectures
(see Client/Server Software Architectures). The most widely-publicized
middleware initiatives are the Open Software Foundation's Distributed
Computing Environment (DCE) , Object Management Group's Common Object
Request Broker Architecture (CORBA), and Microsoft's COM/DCOM (see
Component Object Model (COM), DCOM, and Related Capabilities) [Eckerson
95].

Technical Detail

As outlined in Figure 17, middleware services are sets of distributed software
that exist between the application and the operating system and network
services on a system node in the network.

http://www.sei.cmu.edu/str/descriptions/middleware_body.html (1 of 5)7/28/2008 11:29:17 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/middleware_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Middleware

Figure 17: Use of Middleware [Bernstein 96]

Middleware services provide a more functional set of Application Programming
Interfaces (API) than the operating system and network services to allow an
application to

● locate transparently across the network, providing interaction with another
application or service

● be independent from network services
● be reliable and available
● scale up in capacity without losing function [Schreiber 95]

Middleware can take on the following different forms:

● Transaction processing (TP) monitors (see Transaction Processing
Monitor Technology), which provide tools and an environment for
developing and deploying distributed applications.

● Remote Procedure Call (RPCs), which enable the logic of an application
to be distributed across the network. Program logic on remote systems
can be executed as simply as calling a local routine.

● Message-Oriented Middleware (MOM), which provides program-to-
program data exchange, enabling the creation of distributed applications.
MOM is analogous to email in the sense it is asynchronous and requires
the recipients of messages to interpret their meaning and to take
appropriate action.

● Object Request Brokers (ORBs) , which enable the objects that comprise
an application to be distributed and shared across heterogeneous
networks.

Usage Considerations

The main purpose of middleware services is to help solve many application
connectivity and interoperability problems. However, middleware services are
not a panacea:

http://www.sei.cmu.edu/str/descriptions/middleware_body.html (2 of 5)7/28/2008 11:29:17 AM

Middleware

● There is a gap between principles and practice. Many popular middleware
services use proprietary implementations (making applications dependent
on a single vendor's product).

● The sheer number of middleware services is a barrier to using them. To
keep their computing environment manageably simple, developers have
to select a small number of services that meet their needs for functionality
and platform coverage.

● While middleware services raise the level of abstraction of programming
distributed applications, they still leave the application developer with
hard design choices. For example, the developer must still decide what
functionality to put on the client and server sides of a distributed
application [Bernstein 96].

The key to overcoming these three problems is to fully understand both the
application problem and the value of middleware services that can enable the
distributed application. To determine the types of middleware services required,
the developer must identify the functions required, which fall into one of three
classes:

1. Distributed system services, which include critical communications,
program-to-program, and data management services. This type of service
includes RPCs, MOMs and ORBs.

2. Application enabling services, which give applications access to
distributed services and the underlying network. This type of services
includes transaction monitors (see Transaction Processing Monitor
Technology) and database services such as Structured Query Language
(SQL).

3. Middleware management services, which enable applications and system
functions to be continuously monitored to ensure optimum performance of
the distributed environment [Schreiber 95].

Maturity

A significant number of middleware services and vendors exist. Middleware
applications will continue to grow with the installation of more heterogeneous
networks. An example of middleware in use is the Delta Airlines Cargo Handling
System, which uses middleware technology to link over 40,000 terminals in 32
countries with UNIX services and IBM mainframes. By 1999, middleware sales
are expected to exceed $6 billion [Client 95].

Costs and Limitations

The costs of using middleware technology (i.e., license fees) in system
development are entirely dependent on the required operating systems and the
types of platforms. Middleware product implementations are unique to the
vendor. This results in a dependence on the vendor for maintenance support
and future enhancements. This reliance could have a negative effect on a
system's flexibility and maintainability. However, when evaluated against the
cost of developing a unique middleware solution, the system developer and
maintainer may view the potential negative effect as acceptable.

http://www.sei.cmu.edu/str/descriptions/middleware_body.html (3 of 5)7/28/2008 11:29:17 AM

Middleware

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Middleware

Application category Client/Server (AP.2.1.2.1)
Client/Server Communication (AP.2.2.1)

Quality measures category Interoperability (QM.4.1)

Computing reviews category Distributed Systems (C.2.4)
Network Architecture and Design (C.2.1)
Database Management Languages (D.3.2)

References and Information Sources

[Bernstein
96]

Bernstein, Philip A. "Middleware: A Model for Distributed
Services." Communications of the ACM 39, 2 (February 1996):
86-97.

[Client 95] "Middleware Can Mask the Complexity of your Distributed
Environment." Client/Server Economics Letter 2, 6 (June 1995):
1-5.

[Eckerson 95] Eckerson, Wayne W. "Three Tier Client/Server Architecture:
Achieving Scalability, Performance, and Efficiency in Client
Server Applications." Open Information Systems 10, 1 (January
1995): 3(20).

[Schreiber
95]

Schreiber, Richard. "Middleware Demystified." Datamation 41,
6 (April 1, 1995): 41-45.

Current Author/Maintainer

Mike Bray, Lockheed-Martin Ground Systems

Modifications

25 June 97: modified/updated OLE/COM reference to COM/DCOM
10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

http://www.sei.cmu.edu/str/descriptions/middleware_body.html (4 of 5)7/28/2008 11:29:17 AM

Middleware

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/middleware_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/middleware_body.html (5 of 5)7/28/2008 11:29:17 AM

http://www.sei.cmu.edu/about/disclaimer.html

Bernstein 96

References and Information Sources

[Bernstein
96]

Bernstein, Philip A. "Middleware: A Model for Distributed Services." Communications
of the ACM 39, 2 (February 1996): 86-97.

http://www.sei.cmu.edu/str/indexes/references/Bernstein_96_bold.html7/28/2008 11:29:17 AM

Schreiber 95

References and Information Sources

[Schreiber
95]

Schreiber, Richard. "Middleware Demystified." Datamation 41, 6 (April 1, 1995): 41-
45.

http://www.sei.cmu.edu/str/indexes/references/Schreiber_95_bold.html7/28/2008 11:29:17 AM

Client 95

References and Information Sources

[Client
95]

"Middleware Can Mask the Complexity of your Distributed Environment." Client/Server
Economics Letter 2, 6 (June 1995): 1-5.

http://www.sei.cmu.edu/str/indexes/references/Client_95.html7/28/2008 11:29:17 AM

Gluch 98

References and Information Sources

[Gluch 98] Gluch, D. & Weinstock, C. Model-Based Verification: A Technology for Dependable
System Upgrade (CMU/SEI-98-TR-009, ADA 354756). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, 1998. Available WWW: <http://www.
sei.cmu.edu/publications/documents/98.reports/98tr009/98tr009abstract.html>

http://www.sei.cmu.edu/str/indexes/references/Gluch_98.html7/28/2008 11:29:17 AM

http://www.sei.cmu.edu/publications/documents/98.reports/98tr009/98tr009abstract.html
http://www.sei.cmu.edu/publications/documents/98.reports/98tr009/98tr009abstract.html

Clark 95

References and Information Sources

[Clark 95] Clarke, Edmund M., et al. "Verification of the Futurebus+ Cache Coherence Protocol."
Formal Methods in System Design 6, 2 (March 1995): 217-232.

http://www.sei.cmu.edu/str/indexes/references/Clarke_95.html7/28/2008 11:29:18 AM

Fujita 96

References and Information Sources

[Fujita 96] Fujita, M. "Debugging a Communications Chip." IEEE Spectrum 33, 6 (June 1996): 64.

http://www.sei.cmu.edu/str/indexes/references/Fujita_96.html7/28/2008 11:29:18 AM

Raimi 97

References and Information Sources

[Raimi 97] Raimi, R. & Lear, J. "Analyzing a PowerPCTM 620 Microprocessor Silicon Failure Using
Model Checking," 964-973. Proceedings of the International Test Conference 1997,
Washington, D.C., November 1-6, 1997.

http://www.sei.cmu.edu/str/indexes/references/Raimi_97.html7/28/2008 11:29:18 AM

Gluch 99

References and Information Sources

[Gluch 99] Gluch, D. & Brockway, J. An Introduction to Software Engineering Practices Using Model-
Based Verification (CMU/SEI-99-TR-005, ESC-TR-99-005). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, 1999. Available WWW: <http://www.
sei.cmu.edu/publications/documents/99.reports/99tr005/99tr005abstract.html>

http://www.sei.cmu.edu/str/indexes/references/Gluch_99.html7/28/2008 11:29:18 AM

http://www.sei.cmu.edu/publications/documents/99.reports/99tr005/99tr005abstract.html
http://www.sei.cmu.edu/publications/documents/99.reports/99tr005/99tr005abstract.html

Related Topics

Related Topics

Models (AP.2.1.1)

● Client/Server Software Architectures
● Component Object Model (COM), DCOM, and Related Capabilities
● Defense Information Infrastructure Common Operating Environment
● European Computing Manufacturer's Association Reference Model (ECMA)
● Joint Technical Architecture
● Project Support Environment Reference Model (PSERM)
● Reference Models, Architectures, Implementations -- An Overview
● TAFIM Reference Model

http://www.sei.cmu.edu/str/taxonomies/ap.2.1.1.html7/28/2008 11:29:19 AM

Related Topics

Related Topics

Real-time Responsiveness/Latency (QM.2.2.2)

● Rate Monotonic Analysis
● Simplex Architecture

http://www.sei.cmu.edu/str/taxonomies/qm.2.2.2.html7/28/2008 11:29:19 AM

DeRemer 76

References and Information Sources

[DeRemer
76]

DeRemer, F. & Kron, H. "Programming-in-the-Large Versus Programming-in-the-
Small." IEEE Transactions on Software Engineering SE-2, 2 (June 1976): 321-327.

http://www.sei.cmu.edu/str/indexes/references/DeRemer_76.html7/28/2008 11:29:19 AM

Prieto-Diaz 86

References and Information Sources

[Prieto-Diaz
86]

Prieto-Diaz, Ruben & Neighbors, James. "Module Interconnection Languages."
Journal of Systems and Software 6, 4 (1986): 307-334.

http://www.sei.cmu.edu/str/indexes/references/Prieto-Diaz_86_bold.html7/28/2008 11:29:19 AM

Tichy 79

References and Information Sources

[Tichy
79]

Tichy, W. F. "Software Development Control Based on Module Interconnection," 29-41.
Proceedings of the 4th International Conference on Software Engineering. Munich,
Germany, September 17-19, 1979. New York, NY: IEEE Computer Society Press, 1979.

http://www.sei.cmu.edu/str/indexes/references/Tichy_79.html7/28/2008 11:29:20 AM

Cooprider 79

References and Information Sources

[Cooprider
79]

Cooprider, Lee W. The Representation of Families of Software Systems (CMU-CS-79-
116). Pittsburgh, PA: Computer Science Department, Carnegie Mellon University,
1979.

http://www.sei.cmu.edu/str/indexes/references/Cooprider_79.html7/28/2008 11:29:20 AM

Module Interconnection Languages

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Module Interconnection Languages

Status

Complete

Purpose and Origin

As software system size and complexity increase, the task of integrating
independently-developed subsystems becomes increasingly difficult. In the
1970s, manual integration was augmented with various levels of automated
support, including support from module interconnection languages (MILs). The
first MIL, MIL75, was described by DeRemer and Kron [DeRemer 76], who
argued with integrators and developers about the differences between
programming in the small, for which typical languages are suitable, and
programming in the large, for which a MIL is required for knitting modules
together [Prieto-Diaz 86]. MILs provide formal grammar constructs for identifying
software system modules and for defining the interconnection specifications
required to assemble a complete program [Prieto-Diaz 86]. MILs increase the
understandability of large systems in that they formally describe the structure of
a software system; they consolidate design and module assembly in a single
language. MILs can also improve the maintainability of a large system in that
they can be used to prohibit maintainers from accidentally changing the
architectural design of a system, and they can be integrated into a larger
development environment in which changes in the MIL specification of a system
are automatically reflected at the code level and vice versa.

Technical Detail

A MIL identifies the system modules and states how they fit together to
implement the system's function; MILs are not concerned with what the system
does, how the major parts of the system are embedded in the organization, or
how the individual modules implement their functions [Prieto-Diaz 86]. A MIL
specification of a system constitutes a written description of the system design.
A MIL specification can be used to

● Enforce system integrity and inter-modular compatibility.
● Support incremental modification. Modules can be independently

compiled and linked; full recompilation of a modified system is not
needed.

● Enforce version control. Different versions (implementations) of a module

http://www.sei.cmu.edu/str/descriptions/mil_body.html (1 of 7)7/28/2008 11:29:21 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/mil_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Module Interconnection Languages

can be identified and used in the construction of a software system. This
idea has been generalized to allow different versions of subsystems to be
defined in terms of different versions of modules. Thus MILs can be used
to describe families of modules and systems [Tichy 79, Cooprider 79].

For example, consider the simplified MIL specification shown in Figure 24 and its
associated graphical representation shown in Figure 25. The hypothetical MIL
used in Figure 24 contains structures for identifying the modules of interest (in
this case the modules are ABC, Z, and YBC); structures for identifying required
and provided data; provided functions; and structures for identifying module and
function versions. The module ABC defined in the figure consists of two parts, a
function XA and a module YBC; the structure of each of these entities is also
defined. Note that function XA has three versions, a Pascal, an Ada, and a
FORTRAN version. These three versions would be written and compiled using
their respective language development environments. A compilation system for
this hypothetical MIL would process the specification given in Figure 24 to check
that all required resources (such as x and z) are provided, and to check data
type compatibility between required and provided resources. Provided these
checks passed, the MIL compilation system, in conjunction with outside (user or
environmental) inputs such as version availability and language choices, would
select, compile (if necessary), and link the system. Incremental compilation is
supported; for example, if the implementations for function XA change, the MIL
compilation system will analyze the system structure and recompile and relink
only those portions of the overall system affected by that change.

Figure 24: MIL Specification of a Simple Module

http://www.sei.cmu.edu/str/descriptions/mil_body.html (2 of 7)7/28/2008 11:29:21 AM

Module Interconnection Languages

Figure 25: Graphical Representation

MILs do not attempt to do the following [Prieto-Diaz 86]:

● Load compiled images. This function is left to a separate facility within the
development environment.

● Define system function. A MIL defines only the structure, not the function,
of a system.

● Provide type specifications. A MIL is concerned with showing or
identifying the separate paths of communication between modules.
Syntactic checks along these communications paths may be performed
by a MIL, but because MILs are independent of the language chosen to
implement the modules they reference, such type checking will be limited
to simple syntactic- not semantic- compatibility.

● Define embedded link-edit instructions.

Recently, MILs have been extended with notions of communication protocols
[Garlan 94] and with constructs for defining semantic properties of system
function. These extended MILs are referred to as Architecture Description
Languages (ADLs).

Usage Considerations

MILs were developed to address the need for automated integration support
when programming in the large; they are well-suited for representing the
structure of a system or family of systems, and are typically used for project
management and support. When adopting the use of MILs, an organization will
need to consider the effect on its current system development and maintenance
philosophy.

Because the structure of a software system can be explicitly represented in a
MIL specification, separate documentation describing software structure may be
unnecessary. This implies that if MILs are used to define the structure, then the
architectural documentation of a given system will not become outdated.

http://www.sei.cmu.edu/str/descriptions/mil_body.html (3 of 7)7/28/2008 11:29:21 AM

Module Interconnection Languages

Although some support is provided for ensuring data type compatibility, MILs
typically lack the structures required to define or enforce protocol compatibility
between modules, and the structures necessary to enforce semantic
compatibility.

Maturity

The MESA system at Xerox PARC was developed during 1975 and has been
used extensively within Xerox [Geschke 77, Mitchell 79, Prieto-Diaz 86]. Other
MILs have been proposed, defined, and implemented, but most of these appear
to have been within a research context. For example, MIL concepts have been
used to help design and build software reuse systems such as Goguen's library
interconnection language (LIL) that was extended by Tracz for use with
parameterized Ada components [Tracz 93]. Zand, et al., describe a system
called ROPCO that can be used to "facilitate the selection and integration of
reusable modules" [Zand 93].

At the time of publication, however, there are no tools supporting MILs and little
research in this area.1 Recent MIL-based research has shifted focus and now
centers around the themes of software reuse and architecture description
languages (ADLs). Architecture Description Languages can be viewed as
extended MILs in that ADLs augment the structural information of a MIL with
information about communication protocols [Garlan 94] and system behavior.

Costs and Limitations

MILs are formal compilable languages. Developers will need training to
understand and use a MIL effectively. Training in architectural concepts may
also be required.

The lack of a formal semantic for defining module function has at least the
following implications:

● Limited inter-module consistency checking. MIL-based consistency
checking is limited to simple type checking and- if supported- simple
protocol checking.

● Limited consistency checking among module versions. MILs lack the
facilities to ensure that different versions of a module satisfy a common
specification, and may potentially lead to inconsistent versions within a
family.

● Limited type checking. If mixing languages with a system, a developer
may need to augment standard MIL tools with more sophisticated type
checking utilities. For example, data types may be represented differently
in C than in Ada, but the simple type checking found in a typical MIL will
not flag unconverted value passing between languages.

Dependencies

Incremental compilers and linkers are required by most MILs.

http://www.sei.cmu.edu/str/descriptions/mil_body.html (4 of 7)7/28/2008 11:29:21 AM

Module Interconnection Languages

Alternatives

Alternatives to MILs include documenting the structure of a system externally,
such as in an interface control document or a structure chart. Architecture
Description Languages (ADLs) can also be used to define the structure of a
system, and are believed to be the current direction for this technology area.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Module Interconnection Languages

Application category Architectural Design (AP.1.3.1)
Compiler (AP.1.4.2.3)
Plan and Perform Integration (AP.1.4.4)

Quality measures category Correctness (QM.1.3)
Structuredness (QM.3.2.3)
Reusability (QM.4.4)

Computing reviews category Software Engineering Tools and Techniques
(D.2.2)
Organization and Design (D.4.7)
Performance (D.4.8)
Systems Programs and Utilities (D.4.9)

References and Information Sources

[Cooprider 79] Cooprider, Lee W. The Representation of Families of Software
Systems (CMU-CS-79-116). Pittsburgh, PA: Computer Science
Department, Carnegie Mellon University, 1979.

[DeRemer 76] DeRemer, F. & Kron, H. "Programming-in-the-Large Versus
Programming-in-the-Small." IEEE Transactions on Software
Engineering SE-2, 2 (June 1976): 321-327.

[Garlan 94] Garlan, David & Allen, Robert. "Formalizing Architectural
Connection," 71-80. Proceedings of the 16th International
Conference on Software Engineering. Sorrento, Italy, May 16-
21, 1994. Los Alamitos, CA: IEEE Computer Society Press,
1994.

http://www.sei.cmu.edu/str/descriptions/mil_body.html (5 of 7)7/28/2008 11:29:21 AM

Module Interconnection Languages

[Geschke 77] Geschke, C.; Morris, J.; & Satterthwaite, E. "Early Experience
with MESA." Communications of the ACM 20, 8 (August
1977): 540-553.

[Mitchell 79] Mitchell, J.; Maybury, W.; & Sweet, R. MESA Language
Manual (CSL-79-3). Palo Alto, CA: Xerox Palo Alto Research
Center, April 1979.

[Prieto-Diaz
86]

Prieto-Diaz, Ruben & Neighbors, James. "Module
Interconnection Languages." Journal of Systems and Software
6, 4 (1986): 307-334.

[Tichy 79] Tichy, W. F. "Software Development Control Based on
Module Interconnection," 29-41. Proceedings of the 4th
International Conference on Software Engineering. Munich,
Germany, September 17-19, 1979. New York, NY: IEEE
Computer Society Press, 1979.

[Tracz 93] Tracz, W. "LILEANNA: a Parameterized Programming
Language," 66-78. Proceedings of the Second International
Workshop on Software Reuse. Lucca, Italy, March 24-26, 1993.
Los Alamitos, CA: IEEE Computer Society Press, 1993.

[Zand 93] Zand, M., et al. "An Interconnection Language for Reuse at the
Template/Module Level." Journal of Systems and Software 23,
1 (October 1993): 9-26.

Current Author/Maintainer

Mark Gerken, Air Force Rome Laboratory

External Reviewers

Will Tracz, Lockheed Martin Federal Systems, Owego, NY

Modifications

10 Jan 97 (original)

Footnotes

1 Source: Will Tracz in Re: External Review - MILS, email to Bob Rosenstein
(1996).

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use

http://www.sei.cmu.edu/str/descriptions/mil_body.html (6 of 7)7/28/2008 11:29:21 AM

http://www.sei.cmu.edu/about/disclaimer.html

Module Interconnection Languages

URL: http://www.sei.cmu.edu/str/descriptions/mil_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/mil_body.html (7 of 7)7/28/2008 11:29:21 AM

Garlan 94

References and Information Sources

[Garlan
94]

Garlan, David & Allen, Robert. "Formalizing Architectural Connection," 71-80.
Proceedings of the 16th International Conference on Software Engineering. Sorrento,
Italy, May 16-21, 1994. Los Alamitos, CA: IEEE Computer Society Press, 1994.

http://www.sei.cmu.edu/str/indexes/references/Garlan_94_bold.html7/28/2008 11:29:21 AM

Geschke 77

References and Information Sources

[Geschke
77]

Geschke, C.; Morris, J.; & Satterthwaite, E. "Early Experience with MESA."
Communications of the ACM 20, 8 (August 1977): 540-553.

http://www.sei.cmu.edu/str/indexes/references/Geschke_77.html7/28/2008 11:29:21 AM

Mitchell 79

References and Information Sources

[Mitchell
79]

Mitchell, J.; Maybury, W.; & Sweet, R. MESA Language Manual (CSL-79-3). Palo Alto,
CA: Xerox Palo Alto Research Center, April 1979.

http://www.sei.cmu.edu/str/indexes/references/Mitchell_79.html7/28/2008 11:29:21 AM

Zand 93

References and Information Sources

[Zand
93]

Zand, M., et al. "An Interconnection Language for Reuse at the Template/Module Level."
Journal of Systems and Software 23, 1 (October 1993): 9-26.

http://www.sei.cmu.edu/str/indexes/references/Zand_93.html7/28/2008 11:29:22 AM

Module Interconnection Languages - Notes

Notes

1 Source: Will Tracz in Re: External Review - MILS, email to Bob Rosenstein (1996).

http://www.sei.cmu.edu/str/descriptions/notes/mil_1.html7/28/2008 11:29:22 AM

Multi-Level Secure Database Management Schemes

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Multi-Level Secure Database Management Schemes

Status

Advanced

Note

We recommend Computer System Security--An Overview as prerequisite reading for this
technology description.

Purpose and Origin

Conventional database management systems (DBMS) do not recognize different security levels of
the data they store and retrieve. They treat all data at the same security level. Multi-level secure
(MLS) DBMS schemes provide a means of maintaining a collection of data with mixed security
levels. The access mechanisms allow users or programs with different levels of security clearance
to store and obtain only the data appropriate to their level.

Technical Detail

As shown in Figure 20, multi-level secure DBMS architecture schemes are categorized into two
general types:

● the Trusted Subject architecture
● the Woods Hole architectures

http://www.sei.cmu.edu/str/descriptions/mlsdms_body.html (1 of 5)7/28/2008 11:29:23 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/mlsdms_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Multi-Level Secure Database Management Schemes

Figure 20: MLS DBMS Schemes

The Woods Hole architectures are named after an Air Force-sponsored study on multi-level data
management security that was conducted at Woods Hole, Massachusetts.

The Trusted Subject architecture is a scheme that contains a trusted DBMS and operating system
(see Trusted Operating Systems). The DBMS is custom-developed with all the required security
policy (the security rules that must be enforced) developed in the DBMS itself. The DBMS uses the
associated trusted operating system to make actual disk data accesses. This is the traditional way
of developing MLS DBMS capabilities and can achieve high mandatory assurance for a particular
security policy at the sacrifice of some DBMS functionality [Abrams 95]. This scheme results in a
special purpose DBMS and operating system that requires a large amount of trusted code to be
developed and verified along with the normal DBMS features.Trusted code provides security
functionality and has been designed and developed using a rigorous process, tested, and protected
from tampering in a manner that ensures the Designated Approving Authority (DAA) that it performs
the security functions correctly. The DAA is the security official with the authority to say a system is
secure and is permitted to be used. A benefit of the trusted subject architecture is that the DBMS
has access to all levels of data at the same time, which minimizes retrieval and update processing.
This scheme also can handle a wide range of sensitivity labels and supports complex access
control. A sensitivity label identifies the classification level (e.g., confidential, secret) and a set of
categories or compartments that apply to the data associated with the label.

The Woods Hole architectures assume that an untrusted (usually commercial-off-the-shelf (COTS))
DBMS is used to access data and that trusted code is developed around that DBMS to provide an
overall secure DBMS system. The three different Woods Hole architectures address three different
ways to wrap code around the untrusted DBMS.

The Integrity Lock architecture scheme places a trusted front end filter between the users and the

http://www.sei.cmu.edu/str/descriptions/mlsdms_body.html (2 of 5)7/28/2008 11:29:23 AM

Multi-Level Secure Database Management Schemes

DBMS. The filter provides security for the MLS. When data is added to the database, the trusted
front end filter adds an encrypted integrity lock to each unit of data added to the database. The lock
is viewed by the DBMS as just another element in the unit stored by the DBMS. The encrypted lock
is used to assure that the retrieved data has not been tampered with and contains the security label
of the data. When data is retrieved, the filter decrypts the lock to determine if the data can be
returned to the requester. The filter is designed and trusted to keep users separate and to store and
provide data appropriate to the user. A benefit of this scheme is that an untrusted COTS DBMS can
perform most indexed data storage and retrieval.

The Kernalized architecture scheme uses a trusted operating system and multiple copies of the
DBMS; each is associated with a trusted front end. The trusted front end-DBMS pair is associated
with a particular security level. Between the DBMS and the database, a portion of the trusted
operating system keeps the data separated by security level. Each trusted front end is trusted to
supply requests to the proper DBMS. The database is separated by security level. The trusted
operating system separates the data when it is added to the database by a DBMS and combines
the data when it is retrieved (if allowed by the security rules it enforces for the requesting DBMS).
The high DBMS gets data combined from the high and low segments of the database. The low
DBMS can only get data from the low segment of the database. A benefit of this scheme is that
access control and separation of data at different classification levels is performed by a trusted
operating system rather than the DBMS. Data at different security levels is isolated in the database,
which allows for higher level assurance. Users interact with a DBMS at the user's single-session
level.

The Distributed architecture scheme uses multiple copies of the trusted front end and DBMS, each
associated with its own database storage. In this architecture scheme, low data is replicated in the
high database. When data is retrieved, the DBMS retrieves it only from its own database. A benefit
of this architecture is that data is physically separated into separate hardware databases. Since
separate replicated databases are used for each security level, the front end does not need to
decompose user query data to different DBMSs.

Castano and Abrams provide thorough discussions of these alternative architecture schemes and
their merits [Castano 95, Abrams 95].

Usage Considerations

This technology is most likely to be used when relational databases must be accessed by users
with different security clearances. This is typical of Command and Control systems. The different
architectures suit different needs. The Trusted Subject architecture is best for applications where
the trusted operating system and the hardware used in the architecture already provide an assured,
trusted path between applications and the DBMS [Castano 95]. The Integrity Lock architecture
provides the ability to label data down to the row (or record) level, the ability to implement a wide
range of categories, and is easiest to validate [Castano 95]. The Kernalized architecture scheme is
suited to MLS DBMS systems with more simple table structures because it is economical and
easier to implement for simple structures [Castano 95]. The Distributed architecture is best suited
for DBMSs where physical separation of data by security level is required [Abrams 95].

Maturity

The four different architectures have different maturity characteristics. As of August 1996, an R&D
A11 system and six commercial2 DBMSs have been implemented using the Trusted Subject
architecture scheme for different assurance levels and security policies. One R&D system and one
commercial DBMS have been implemented using the Integrity Lock architecture scheme. One R&D
system and one commercial DBMS have been implemented using the Kernalized architecture

http://www.sei.cmu.edu/str/descriptions/mlsdms_body.html (3 of 5)7/28/2008 11:29:23 AM

Multi-Level Secure Database Management Schemes

scheme [Castano 95]. The Distributed architecture scheme has only been used in prototype
systems because of the high performance cost of the replicater, although one commercial DBMS
claims to have this feature [Abrams 95]. This DBMS however, has not been evaluated by the
National Computer Security Center (NCSC) [TPEP 96].

Costs and Limitations

Each of the different MLS architecture schemes has different costs and limitations. The Trusted
Subject architecture scheme has a closely linked DBMS and Operating System that must be proven
trusted together. This makes it hardest to validate and gives it the highest accreditation cost
compared to the other schemes. The Integrity Lock architecture scheme requires that a Crypto Key
management system is implemented and supported in operation. The Kernalized architecture
requires a DBMS for each security level, which makes it expensive as more than two or three levels
are considered. The Distributed architecture requires a different hardware platform for each security
level and the data replicater provides a heavy processor and I/O load for high access data.

Dependencies

The MLS architecture schemes have individual dependencies. The Trusted Subject scheme is
dependent on trusted schemes for a related DBMS and operating system. The Integrity Lock
scheme is dependent on cryptographic technologies to provide the integrity lock. The Kernalized
architecture scheme depends on Trusted Operating Systems technologies. The Distributed
architecture scheme is dependent on efficient automatic data replication techniques.

Alternatives

The alternative to these technologies is to use a single-level DBMS and use manual review of
retrieved data or have every user cleared for the data in the database. That may not be feasible in a
Command and Control system.

Index Categories

This technology is classified under the following categories. Select a category for a list of related
topics.

Name of technology Multi-Level Secure Database Management Schemes

Application category Data Management Security (AP.2.4.2)

Quality measures category Security (QM.2.1.5)

Computing reviews category Operating Systems Security & Protection (D.4.6)
Security & Protection (K.6.5)
Computer-Communications Network Security and Protection (C.2.0)

References and Information Sources

http://www.sei.cmu.edu/str/descriptions/mlsdms_body.html (4 of 5)7/28/2008 11:29:23 AM

Multi-Level Secure Database Management Schemes

[Abrams 95] Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J. Information Security An
Integrated Collection of Essays. Los Alamitos, CA: IEEE Computer Society Press,
1995.

[Castano
95]

Castano, Silvana, et al. Database Security. New York, NY: ACM Press, 1995.

[DoD 85] Department of Defense (DoD) Trusted Computer System Evaluation Criteria
(TCSEC) (DoD 5200.28-STD 1985). Fort Meade, MD: Department of Defense, 1985.
Also available WWW
<URL: http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html> (1985).

[TPEP 96] Trusted Product Evaluation Program Evaluated Product List [online]. Available
WWW
<URL: http://www.radium.ncsc.mil/tpep/index.html> (1996).

Current Author/Maintainer

Tom Mills, Lockheed Martin

Modifications

10 Jan 97 (original)

Footnotes

1 An A1 system is one that meets the highest (most stringent) set of requirements in the
Department of Defense Trusted Computer Systems Evaluation Criteria (the Orange Book) [DoD
85]. See Trusted Operating Systems for a further description of the classes of trusted operating
systems.

2 A commercial DBMS does not imply a general-purpose DBMS. It means that it can be packaged
and sold to other people. If a MLS DBMS has been developed to provide specific security functions
that customers need, and the customer is willing to be restricted to that set of functions and use the
same hardware and support software, then it can be sold as a product. It is then a commercial
DBMS. The six commercial DBMSs that have been implemented with the Trusted Subject
architecture are all different from each other, as they have been developed with different security
policies for different hardware and software environments.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the U.S.
Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/mlsdms_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/mlsdms_body.html (5 of 5)7/28/2008 11:29:23 AM

http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html
http://www.radium.ncsc.mil/tpep/index.html
http://www.sei.cmu.edu/about/disclaimer.html

Abrams 95

References and Information Sources

[Abrams
95]

Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J. Information Security An
Integrated Collection of Essays. Los Alamitos, CA: IEEE Computer Society Press, 1995.

http://www.sei.cmu.edu/str/indexes/references/Abrams_95.html7/28/2008 11:29:23 AM

Castano 95

References and Information Sources

[Castano
95]

Castano, Silvana, et al. Database Security. New York, NY: ACM Press,
1995.

http://www.sei.cmu.edu/str/indexes/references/Castano_95_bold.html7/28/2008 11:29:23 AM

Multi-Level Secure Database Management Schemes - Notes

Notes

1 An A1 system is one that meets the highest (most stringent) set of requirements in the Department of
Defense Trusted Computer Systems Evaluation Criteria (the Orange Book) [DoD 85]. See Trusted
Operating Systems for a further description of the classes of trusted operating systems.

http://www.sei.cmu.edu/str/descriptions/notes/mlsdms_1.html7/28/2008 11:29:23 AM

Multi-Level Secure Database Management Schemes - Notes

Notes

2 A commercial DBMS does not imply a general-purpose DBMS. It means that it can be packaged and
sold to other people. If a MLS DBMS has been developed to provide specific security functions that
customers need, and the customer is willing to be restricted to that set of functions and use the same
hardware and support software, then it can be sold as a product. It is then a commercial DBMS. The six
commercial DBMSs that have been implemented with the Trusted Subject architecture are all different
from each other, as they have been developed with different security policies for different hardware and
software environments.

http://www.sei.cmu.edu/str/descriptions/notes/mlsdms_2.html7/28/2008 11:29:24 AM

TPEP 96

References and Information Sources

[TPEP
96]

Trusted Product Evaluation Program Evaluated Product List [online]. Available
WWW
<URL: http://www.radium.ncsc.mil/tpep/index.html> (1996).

http://www.sei.cmu.edu/str/indexes/references/TPEP_96.html7/28/2008 11:29:24 AM

http://www.radium.ncsc.mil/tpep/index.html

Related Topics

Related Topics

Data Management Security (AP.2.4.2)

● Multi-Level Secure Database Management Schemes
● Trusted DBMS

http://www.sei.cmu.edu/str/taxonomies/ap.2.4.2.html7/28/2008 11:29:24 AM

Related Topics

Related Topics

Security (see also QM.2.1.4) (QM.2.1.5)

● Common Management Information Protocol
● Computer System Security -- an Overview
● Distributed Computing Environment
● Firewalls and Proxies
● Intrusion Detection
● Multi-Level Secure One Way Guard with Random Acknowledgment
● Multi-Level Secure Database Management Schemes
● Network Management -- An Overview
● Rule-Based Intrusion Detection
● Simple Network Management Protocol
● Statistical-Based Intrusion Detection
● Trusted Operating Systems
● Virus Detection

http://www.sei.cmu.edu/str/taxonomies/qm.2.1.5.html7/28/2008 11:29:24 AM

DoD 85

References and Information Sources

[DoD
85]

Department of Defense (DoD) Trusted Computer System Evaluation Criteria (TCSEC) (DoD
5200.28-STD 1985). Fort Meade, MD: Department of Defense, 1985. Also available WWW
<URL: http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html> (1985).

http://www.sei.cmu.edu/str/indexes/references/DoD_85.html7/28/2008 11:29:24 AM

http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html

Weiderman 97

References and Information Sources

[Weiderman
97]

Weiderman, Nelson; Northrop, Linda; Smith, Dennis; Tilley, Scott; & Wallnau, Kurt;
Implications of Distributed Object Technology for Reengineering (CMU/SEI-97-TR-
005 ADA326945). Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon
University, [online]. Available WWW URL: http://www.sei.cmu.edu/publications/
documents/
97.reports/97tr005/97tr005abstract.html (1997).

http://www.sei.cmu.edu/str/indexes/references/Weiderman_97.html7/28/2008 11:29:25 AM

http://www.sei.cmu.edu/publications/documents/97.reports/97tr005/97tr005abstract.html
http://www.sei.cmu.edu/publications/documents/97.reports/97tr005/97tr005abstract.html
http://www.sei.cmu.edu/publications/documents/97.reports/97tr005/97tr005abstract.html
http://www.sei.cmu.edu/publications/documents/97.reports/97tr005/97tr005abstract.html

Carr 98

References and Information Sources

[Carr
98]

Carr, David F. Web-Enabling Legacy Data When Resources Are Tight. Internet World.
August 10 1998.

http://www.sei.cmu.edu/str/indexes/references/Carr_98.html7/28/2008 11:29:25 AM

Karpinski 98

References and Information Sources

[Karpinski
98]

Karpinski, Richard. Databases, Tools Push XML Into Enterprise. Internet Week Online.
Available WWW URL: http://www.internetwk.com/news1198/news111698-3.htm
(November 1998).

http://www.sei.cmu.edu/str/indexes/references/Karpinski_98.html7/28/2008 11:29:25 AM

http://www.internetwk.com/news1198/news111698-3.htm

Shklar

References and Information Sources

[Shklar] Shklar, Leon. Web Access to Legacy Data [online]. Available WWW: URL: http://athos.rutgers.
edu/~shklar/web-legacy/summary.html.

http://www.sei.cmu.edu/str/indexes/references/Shklar.html7/28/2008 11:29:25 AM

http://athos.rutgers.edu/~shklar/web-legacy/summary.html
http://athos.rutgers.edu/~shklar/web-legacy/summary.html

Eichman 95

References and Information Sources

[Eichman
95]

David Eichmann. Application Architectures for Web-Based Data Access [online].
Available WWW: URL: http://www.cs.rutgers.edu/~shklar/www4/eichmann.html

http://www.sei.cmu.edu/str/indexes/references/Eichman_95.html7/28/2008 11:29:26 AM

http://www.cs.rutgers.edu/~shklar/www4/eichmann.html

Phoenix Group 97

References and Information Sources

[Phoenix Group
97]

Phoenix Group. Legacy Systems Wrapping with Objects [online]. Available WWW
URL: http://www.phxgrp.com/jodewp.htm.

http://www.sei.cmu.edu/str/indexes/references/Phoenix_Group_97.html7/28/2008 11:29:26 AM

http://www.phxgrp.com/jodewp.htm

De Lucia 97

References and Information Sources

[De Lucia
97]

De Lucia, A.; Di Lucca, G.A.; Fasolino, A.R.; Guerra, P.; & Petruzzelli, S. Migrating
Legacy Systems towards Object-Oriented Platforms, International Conference of
Software Maintenance (ICSM97), 1997.

http://www.sei.cmu.edu/str/indexes/references/DeLucia_97.html7/28/2008 11:29:26 AM

Bisdal 97

References and Information Sources

[Bisdal
97]

Bisdal, Jesus; Lawless, Deirdre; Wu, Bing; Grimson, Jane; Wade, Vincent; Richardson,
Ray; & O'Sullivan, D. An Overview of Legacy Information System Migration, Proceedings
of the 4th Asian-Pacific Software Engineering and International Computer Science
Conference (APSEC 97, ICSC 97), 1997.

http://www.sei.cmu.edu/str/indexes/references/Bisdal_97.html7/28/2008 11:29:26 AM

Technology Descriptions

Empty Taxonomy Category

Currently, no technology descriptions are classified into the taxonomy category you have selected.

http://www.sei.cmu.edu/str/taxonomies/ap.1.9.3.2.html7/28/2008 11:29:26 AM

Linger 94

References and Information Sources

[Linger
94]

Linger, R.C. "Cleanroom Process Model." IEEE Software 11, 2 (March 1994): 50-
58.

http://www.sei.cmu.edu/str/indexes/references/Linger_94.html7/28/2008 11:29:28 AM

Mills 87

References and Information Sources

[Mills
87]

Mills, H.; Dyer, M.; & Linger, R. "Cleanroom Software Engineering." IEEE Software 4, 5
(September 1987): 19-25.

http://www.sei.cmu.edu/str/indexes/references/Mills_87_bold.html7/28/2008 11:29:28 AM

Correctness - Definition

Glossary Term

Correctness
the degree to which a system or component is free from faults in its specification, design, and
implementation [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/correctness.html7/28/2008 11:29:29 AM

Hausler 94

References and Information Sources

[Hausler
94]

Hausler, P. A.; Linger, R. C.; & Trammel, C. J. "Adopting Cleanroom Software
Engineering with a Phased Approach." IBM Systems Journal 33, 1 (1994): 89-109.

http://www.sei.cmu.edu/str/indexes/references/Hausler_94.html7/28/2008 11:29:29 AM

Cleanroom Software Technology - Notes

Notes

1 STARS: Software Technology for Adaptable Reliable Systems

http://www.sei.cmu.edu/str/descriptions/notes/cleanroom_1.html7/28/2008 11:29:29 AM

STARSSCAI 95

References and Information Sources

[STARSSCAI
95]

Air Force/STARS Demonstration Project Home Page [online]. Available
WWW
<URL: http://www.asset.com/stars/afdemo/home.html> (1995).

http://www.sei.cmu.edu/str/indexes/references/STARSSCAI_95_bold.html7/28/2008 11:29:29 AM

http://www.asset.com/stars/afdemo/home.html

Sherer 96a

References and Information Sources

[Sherer
96a]

Sherer, S. W. Cleanroom Software Engineering- the Picatinny Experience [online].
Available WWW
<URL: http://software.pica.army.mil/cleanroom/cseweb.html> (1996).

http://www.sei.cmu.edu/str/indexes/references/Sherer_96a_bold.html7/28/2008 11:29:29 AM

http://software.pica.army.mil/cleanroom/cseweb.html

Sherer 96b

References and Information Sources

[Sherer
96b]

Sherer, S.W.; Kouchakdjian, A.; & Arnold, P.G. "Experience Using Cleanroom Software
Engineering." IEEE Software 13, 3 (May 1996): 69-76.

http://www.sei.cmu.edu/str/indexes/references/Sherer_96b.html7/28/2008 11:29:30 AM

Ett 96

References and Information Sources

[Ett
96]

Ett, William & Trammell, Carmen. A Guide to Integration of Object-Oriented Methods and
Cleanroom Software Engineering [online]. Available WWW
<URL: http://www.asset.com/stars/loral/cleanroom/oo/guidhome.htm> (1996).

http://www.sei.cmu.edu/str/indexes/references/Ett_96.html7/28/2008 11:29:30 AM

http://www.asset.com/stars/loral/cleanroom/oo/guidhome.html

Linger 96b

References and Information Sources

[Linger
96b]

Linger, R.C. & Trammel, C.J. Cleanroom Software Engineering Reference Model (CMU/
SEI-96-TR-022). Pittsburgh, PA: Carnegie Mellon University, Software Engineering
Institute, 1996.

http://www.sei.cmu.edu/str/indexes/references/Linger_96b.html7/28/2008 11:29:30 AM

Linger 96a

References and Information Sources

[Linger
96a]

Linger, R.C.; Paulk, M.C.; & Trammel, C.J. Cleanroom Software Engineering
Implementation of the CMM for Software (CMU/SEI-96-TR-023). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 1996.

http://www.sei.cmu.edu/str/indexes/references/Linger_96a.html7/28/2008 11:29:30 AM

Paulk 93

References and Information Sources

[Paulk
93]

Paulk, M.; Curtis B.; Chrissis, M.; & Weber, C. Capability Maturity Model for Software
Version 1.1 (CMU/SEI-96-TR-24, ADA263403). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1993.

http://www.sei.cmu.edu/str/indexes/references/Paulk_93.html7/28/2008 11:29:31 AM

Related Topics

Related Topics

Detailed Design (Design Notations, Design Techniques) (AP.1.3.5)

● Cleanroom Software Engineering
● Dynamic Simulation
● Finite State Automata
● Object-Oriented Design
● Peer Reviews
● Personal Software Process for Module-Level Development
● Probabilistic Automata
● Rate Monotonic Analysis
● Software Inspections
● Software Walkthroughs
● Stochastic Methods
● Structured Analysis and Design

http://www.sei.cmu.edu/str/taxonomies/ap.1.3.5.html7/28/2008 11:29:31 AM

Related Topics

Related Topics

Component Testing (AP.1.4.3.5)

● Cleanroom Software Engineering
● Halstead Complexity Measures
● Maintainability Index Technique for Measuring Program Maintainability
● Personal Software Process for Module-Level Development
● Simplex Architecture

http://www.sei.cmu.edu/str/taxonomies/ap.1.4.3.5.html7/28/2008 11:29:31 AM

Related Topics

Related Topics

Performance Testing (Statistical Testing) (AP.1.5.3.5)

● Cleanroom Software Engineering
● Rate Monotonic Analysis

http://www.sei.cmu.edu/str/taxonomies/ap.1.5.3.5.html7/28/2008 11:29:31 AM

Related Topics

Related Topics

Availability/Robustness (Error Tolerance, Fault Tolerance, Fail Safe, Fail Soft) (QM.2.1.1)

● Cleanroom Software Engineering
● Personal Software Process for Module-Level Development
● Simplex Architecture
● Software Inspections

http://www.sei.cmu.edu/str/taxonomies/qm.2.1.1.html7/28/2008 11:29:31 AM

Usability - Definition

Glossary Term

Usability
the ease with which a user can learn to operate, prepare inputs for, and interpret outputs of a
system or component [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/usability.html7/28/2008 11:29:32 AM

Scalability - Definition

Glossary Term

Scalability
the ease with which a system or component can be modified to fit the problem area.

http://www.sei.cmu.edu/str/indexes/glossary/scalability.html7/28/2008 11:29:32 AM

Schussel 96

References and Information Sources

[Schussel
96]

Schussel, George. Client/Server Past, Present, and Future [online]. Available
WWW
<URL: http://news.dci.com/geos/dbsejava.htm> (1995).

http://www.sei.cmu.edu/str/indexes/references/Schussel_96_bold.html7/28/2008 11:29:32 AM

http://news.dci.com/geos/dbsejava.htm

Edelstein 94

References and Information Sources

[Edelstein
94]

Edelstein, Herb. "Unraveling Client/Server Architecture." DBMS 7, 5 (May 1994): 34
(7).

http://www.sei.cmu.edu/str/indexes/references/Edelstein_94_bold.html7/28/2008 11:29:33 AM

OMG 96

References and Information Sources

[OMG
96]

Object Management Group home page [online]. Available
WWW
<URL: http://www.omg.org> (1996).

http://www.sei.cmu.edu/str/indexes/references/OMG_96.html7/28/2008 11:29:33 AM

http://www.omg.org/

Shelton 93

References and Information Sources

[Shelton
93]

Shelton, Robert E. "The Distributed Enterprise (Shared, Reusable Business Models the
Next Step in Distributed Object Computing)." Distributed Computing Monitor 8, 10
(October 1993): 1.

http://www.sei.cmu.edu/str/indexes/references/Shelton_93.html7/28/2008 11:29:33 AM

Adler 95

References and Information Sources

[Adler
95]

Adler, R. M. "Distributed Coordination Models for Client/Sever Computing." Computer 28,
4 (April 1995): 14-22.

http://www.sei.cmu.edu/str/indexes/references/Adler_95.html7/28/2008 11:29:33 AM

Related Topics

Related Topics

Usability (QM.2.3)

● Client/Server Software Architectures
● Graphical User Interface Builders
● Two Tier Software Architectures

http://www.sei.cmu.edu/str/taxonomies/qm.2.3.html7/28/2008 11:29:33 AM

Common Management Information Protocol - Notes

Notes

1 The OSI model is a framework for defining communications protocols. It consists of seven layers of
protocols that range from low level methods for dealing with a physical communications medium, to
high level methods for dealing with the communications needs of user applications. Developed by the
International Standards Organization (ISO), specific protocols have been designed to implement the
functionality specified by the OSI model.

http://www.sei.cmu.edu/str/descriptions/notes/cmip_1.html7/28/2008 11:29:34 AM

Common Management Information Protocol - Notes

Notes

2 International Telegraph and Telephone Consultative Committee: This organization is part of the United
National International Telecommunications Union (ITU) and is responsible for making technical
recommendations about telephone and data communications systems.

http://www.sei.cmu.edu/str/descriptions/notes/cmip_2.html7/28/2008 11:29:34 AM

Common Management Information Protocol - Notes

Notes

3 International Organization for Standardization (ISO). A voluntary, non-treaty organization
founded in 1946 which is responsible for creating international standards in many areas, including
computers and communications. Its members are the national standards organizations of the 89 member
countries, including ANSI for the U.S.
International Electrotechnical Commission (NEC). The international standards and conformity
assessment body for all fields of electrotechnology. IEC and ISO technical committees collaborate in
fields of mutual interest.

http://www.sei.cmu.edu/str/descriptions/notes/cmip_3.html7/28/2008 11:29:34 AM

Vallillee 96

References and Information Sources

[Vallillee
96]

Vallillee, Tyler. SNMP & CMIP: An Introduction To Network Management [online].
Available WWW
<URL: http://www.inforamp.net/~kjvallil/t/snmp.html> (1996).

http://www.sei.cmu.edu/str/indexes/references/Vallillee_96_bold.html7/28/2008 11:29:35 AM

http://www.inforamp.net/~kjvallil/t/snmp.html

Stallings 93

References and Information Sources

[Stallings
93]

Stallings, William. SNMP, SNMPv2, and CMIP: The Practical Guide to Network
Management Standards. Reading, MA: Addison-Wesley, 1993.

http://www.sei.cmu.edu/str/indexes/references/Stallings_93.html7/28/2008 11:29:35 AM

Common Management Information Protocol - Notes

Notes

4 The ITU is an international organization within which governments and the private sector coordinate
global telecom networks and services. It also develops standards to facilitate the interconnection of
telecommunication systems on a worldwide scale regardless of the type of technology used.

http://www.sei.cmu.edu/str/descriptions/notes/cmip_4.html7/28/2008 11:29:35 AM

Common Management Information Protocol - Notes

Notes

5 A management architecture framework developed by the International Telecommunication Union
(ITU), which provides an environment for interfacing a telecommunication network with computer
systems to provide different management functions at several different levels. The framework allows the
management of business information between different components (operations systems,
communication equipment, network and computer systems) and provides control of service operations
and information flow.

http://www.sei.cmu.edu/str/descriptions/notes/cmip_5.html7/28/2008 11:29:35 AM

Common Management Information Protocol

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Common Management Information Protocol

Status

Advanced

Note

We recommend Network Management--An Overview as prerequisite reading for
this technology description.

Purpose and Origin

Common Management Information Protocol (CMIP) is an Open Systems
Interconnection (OSI)1 -based network management protocol that supports
information exchange between network management applications and
management agents. CMIP is part of the X.700 (CCITT2 number for the OSI
Management Framework, also designated as ISO/IEC 7498-43) OSI series of
management standards. Its design is similar to the Simple Network Management
Protocol (SNMP). CMIP was developed and funded by government and
corporations to replace and makeup for the deficiencies in SNMP, thus
improving the capabilities of network management systems.

Technical Detail

CMIP is a well designed protocol that defines how network management
information is exchanged between network management applications and
management agents. It uses an ISO reliable connection-oriented transport
mechanism and has built in security that supports access control, authorization
and security logs. The management information is exchanged between the
network management application and management agents thru managed
objects. Managed objects are a characteristic of a managed device that can be
monitored, modified or controlled and can be used to perform tasks. The network
management application can initiate transactions with management agents using
the following operations:

● ACTION - Request an action to occur as defined by the managed object.
● CANCEL_GET - Cancel an outstanding GET request.
● CREATE - Create an instance of a managed object.
● DELETE - Delete an instance of a managed object.

http://www.sei.cmu.edu/str/descriptions/cmip_body.html (1 of 5)7/28/2008 11:29:36 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/cmip_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Common Management Information Protocol

● GET - Request the value of a managed object instance.
● SET - Set the value of a managed object instance.

A management agent can initiate a transaction with the network management
application using the EVENT_REPORT operation. This operation can be used to
send notifications or alarms to the network management application based upon
predetermined conditions set by the network management application using the
ACTION operation.

CMIP does not specify the functionality of the network management application,
it only defines the information exchange mechanism of the managed objects and
not how the information is to be used or interpreted.

The major advantages of CMIP over SNMP are [Vallillee 96]:

● CMIP variables not only relay information, but also can be used to
perform tasks. This is impossible under SNMP.

● CMIP is a safer system as it has built in security that supports
authorization, access control, and security logs.

● CMIP provides powerful capabilities that allow management applications
to accomplish more with a single request.

● CMIP provides better reporting of unusual network conditions

The CMIP specification for TCP/IP networks is called CMOT (CMIP Over TCP)
and the version for IEEE 802 LAN's is called CMOL (CMIP Over LLC) [Stallings
93].

Usage Considerations

CMIP is widely used in the telecommunication domain and telecommunication
devices typically support CMIP. The International Telecommunication Union
(ITU)4 endorses CMIP as the protocol for the management of devices in the
Telecommunication Management Network (TMN)5 standard.

The CMIP protocol is designed to run on the ISO protocol stack [Stallings 93].
However, the technology standard used today in most LAN environments is TCP/
IP and most LAN devices only support SNMP. Implementations of CMOT are
extremely scarce.

CMIP requires a large amount of system resources, this has resulted in very few
implementations. Additionally, CMIP is very complex thus making it difficult to
program; therefore skilled personnel with specialized training may be required to
deploy, maintain and operate a CMIP based network management system.

Maturity

CMIP was developed over a decade ago; however few implementations exist
because of the problems described above in Usage Considerations.

http://www.sei.cmu.edu/str/descriptions/cmip_body.html (2 of 5)7/28/2008 11:29:36 AM

Common Management Information Protocol

Costs and Limitations

Systems may not be capable of supporting the resource requirements of CMIP
and difficulties may exist in the procurement of CMIP software because of limited
availability.

Alternatives

SNMP is widely available and is the de facto standard network management
protocol; however, it does not provide all of the functionality of CMIP. SNMP
deficiencies are discussed in Usage Considerations for SNMP.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Common Management Information Protocol
(CMIP)

Application category Protocols (AP.2.2.3)
Network Management (AP.2.2.2)

Quality measures category Maintainability (QM.3.1)
Simplicity (QM.3.2.2)
Complexity (QM.3.2.1)
Efficiency/Resource Utilization (QM.2.2)
Scalability (QM.4.3)
Security (QM.2.1.5)

Computing reviews category Network Operations (C.2.3)
Distributed Systems (C.2.4)

References and Information Sources

[Korinko
96]

Korinko, Joe. CMIP-Common Management Information Protocol
[online]. Available WWW
<URL: http://www.rit.edu/~jek0539/icsa750/exam2/ex2pg1.htm>
(1996).

[Stallings
93]

Stallings, William. SNMP, SNMPv2, and CMIP: The Practical
Guide to Network Management Standards. Reading, MA:
Addison-Wesley, 1993.

http://www.sei.cmu.edu/str/descriptions/cmip_body.html (3 of 5)7/28/2008 11:29:36 AM

http://www.rit.edu/~jek0539/icsa750/exam2/ex2pg1.htm

Common Management Information Protocol

[Vallillee
96]

Vallillee, Tyler. SNMP & CMIP: An Introduction To Network
Management [online]. Available WWW
<URL: http://www.inforamp.net/~kjvallil/t/snmp.html> (1996).

[X.700 96] X.700 and Other Network Management Services [online].
Available WWW
<URL: http://ganges.cs.tcd.ie/4ba2/x700/index.html> (1996).

Current Author/Maintainer

Dan Plakosh, SEI

Modifications

9 February 98: minor modifications

13 May 97 (Original)

Footnotes

1 The OSI model is a framework for defining communications protocols. It
consists of seven layers of protocols that range from low level methods for
dealing with a physical communications medium, to high level methods for
dealing with the communications needs of user applications. Developed by the
International Standards Organization (ISO), specific protocols have been
designed to implement the functionality specified by the OSI model.

2 International Telegraph and Telephone Consultative Committee: This
organization is part of the United National International Telecommunications
Union (ITU) and is responsible for making technical recommendations about
telephone and data communications systems.

3 International Organization for Standardization (ISO). A voluntary, non-
treaty organization founded in 1946 which is responsible for creating
international standards in many areas, including computers and
communications. Its members are the national standards organizations of the 89
member countries, including ANSI for the U.S.
International Electrotechnical Commission (NEC). The international
standards and conformity assessment body for all fields of electrotechnology.
IEC and ISO technical committees collaborate in fields of mutual interest.

4 The ITU is an international organization within which governments and the
private sector coordinate global telecom networks and services. It also develops
standards to facilitate the interconnection of telecommunication systems on a
worldwide scale regardless of the type of technology used.

5 A management architecture framework developed by the International
Telecommunication Union (ITU), which provides an environment for interfacing a
telecommunication network with computer systems to provide different

http://www.sei.cmu.edu/str/descriptions/cmip_body.html (4 of 5)7/28/2008 11:29:36 AM

http://www.inforamp.net/~kjvallil/t/snmp.html
http://ganges.cs.tcd.ie/4ba2/x700/index.html

Common Management Information Protocol

management functions at several different levels. The framework allows the
management of business information between different components (operations
systems, communication equipment, network and computer systems) and
provides control of service operations and information flow.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/cmip_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/cmip_body.html (5 of 5)7/28/2008 11:29:36 AM

http://www.sei.cmu.edu/about/disclaimer.html

Related Topics

Related Topics

Protocols (AP.2.2.3)

● ATM
● Common Management Information Protocol
● Network Management -- An Overview
● OSI
● Simple Network Management Protocol
● TCP/IP
● X.25

http://www.sei.cmu.edu/str/taxonomies/ap.2.2.3.html7/28/2008 11:29:36 AM

Related Topics

Related Topics

Network Management (AP.2.2.2)

● Common Management Information Protocol
● Network Management -- An Overview
● Simple Network Management Protocol

http://www.sei.cmu.edu/str/taxonomies/ap.2.2.2.html7/28/2008 11:29:36 AM

Related Topics

Related Topics

Simplicity (QM.3.2.2)

● Common Management Information Protocol
● Simple Network Management Protocol

http://www.sei.cmu.edu/str/taxonomies/qm.3.2.2.html7/28/2008 11:29:37 AM

Related Topics

Related Topics

Complexity (Apparent, Inherent) (QM.3.2.1)

● Common Management Information Protocol
● Cyclomatic Complexity
● Distributed Computing Environment
● Halstead Complexity Measures
● Java
● Remote Procedure Call
● Simple Network Management Protocol

http://www.sei.cmu.edu/str/taxonomies/qm.3.2.1.html7/28/2008 11:29:37 AM

Related Topics

Related Topics

Efficiency/Resource Utilization (Speed, Compactness) (QM.2.2)

● Common Management Information Protocol
● Simple Network Management Protocol
● Transaction Processing Monitor Technology

http://www.sei.cmu.edu/str/taxonomies/qm.2.2.html7/28/2008 11:29:37 AM

OMG 96

References and Information Sources

[OMG
96]

Object Management Group home page [online]. Available
WWW
<URL: http://www.omg.org> (1996).

http://www.sei.cmu.edu/str/indexes/references/OMG_96_bold.html7/28/2008 11:29:37 AM

http://www.omg.org/

Common Object Request Broker Architecture

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Common Object Request Broker Architecture

Status

ADVANCED

Note

We recommend Object Request Broker, as prerequisite reading for this
technology description.

Purpose and Origin

The Common Object Request Broker Architecture (CORBA) is a specification of
a standard architecture for object request brokers (ORBs) (see Object Request
Broker). A standard architecture allows vendors to develop ORB products that
support application portability and interoperability across different programming
languages, hardware platforms, operating systems, and ORB implementations:

"Using a CORBA-compliant ORB, a client can transparently invoke a method on
a server object, which can be on the same machine or across a network. The
ORB intercepts the call, and is responsible for finding an object that can
implement the request, passing it the parameters, invoking its method, and
returning the results of the invocation. The client does not have to be aware of
where the object is located, its programming language, its operating system or
any other aspects that are not part of an object's interface" [OMG 96]. The
"vision" behind CORBA is that distributed systems are conceived and
implemented as distributed objects. The interfaces to these objects are
described in a high-level, architecture-neutral specification language that also
supports object-oriented design abstraction. When combined with the Object
Management Architecture (see Technical Detail), CORBA can result in
distributed systems that can be rapidly developed, and can reap the benefits that
result from using high-level building blocks provided by CORBA, such as
maintainability and adaptability.

The CORBA specification was developed by the Object Management Group
(OMG), an industry group with over six hundred member companies
representing computer manufacturers, independent software vendors, and a
variety of government and academic organizations [OMG 96]. Thus, CORBA
specifies an industry/consortium standard, not a "formal" standard in the IEEE/

http://www.sei.cmu.edu/str/descriptions/corba_body.html (1 of 11)7/28/2008 11:29:39 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/corba_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Common Object Request Broker Architecture

ANSI/ISO sense of the term. The OMG was established in 1988, and the initial
CORBA specification emerged in 1992. Since then, the CORBA specification
has undergone significant revision, with the latest major revision (CORBA v2.0)
released in July 1996.

Technical Detail

CORBA ORBs are middleware mechanisms (see Middleware), as are all ORBs.
CORBA can be thought of as a generalization of remote procedure call (RPC)
that includes a number of refinements of RPC, including:

● a more abstract and powerful interface definition language
● direct support for a variety of object-oriented concepts
● a variety of other improvements and generalizations of the more primitive

RPC

CORBA and the Object Management Architecture. It is impossible to
understand CORBA without appreciating its role in the Object Management
Architecture (OMA), shown in Figure 2. The OMA is itself a specification
(actually, a collection of related specifications) that defines a broad range of
services for building distributed applications. The OMA goes far beyond RPC in
scope and complexity. The distinction between CORBA and the OMA is an
important one because many services one might expect to find in a middleware
product such as CORBA (e.g., naming, transaction, and asynchronous event
management services) are actually specified as services in the OMA. For
reference, the OMA reference architecture encompasses both the ORB and
remote service/object depicted in Figure 21, Middleware.

Figure 2: Object Management Architecture

OMA services are partitioned into three categories: CORBAServices,
CORBAFacilities, and ApplicationObjects. The ORB (whose details are specified
by CORBA) is a communication infrastructure through which applications access
these services, and through which objects interact with each other.
CORBAServices, CORBAFacilities, and ApplicationObjects define different
categories of objects in the OMA; these objects (more accurately object types)
define a range of functionality needed to support the development of distributed
software systems.

● CORBAServices are considered fundamental to building non-trivial

http://www.sei.cmu.edu/str/descriptions/corba_body.html (2 of 11)7/28/2008 11:29:39 AM

Common Object Request Broker Architecture

distributed applications. These services currently include asynchronous
event management, transactions, persistence, externalization,
concurrency, naming, relationships, and lifecycle. Table 1 summarizes
the purpose of each of these services.

● CORBAFacilities may be useful for distributed applications in some
settings, but are not considered as universally applicable as
CORBAServices. These "facilities" include: user interface, information
management, system management, task management, and a variety of
"vertical market" facilities in domains such as manufacturing, distributed
simulation, and accounting.

● Application Objects provide services that are particular to an application
or class of applications. These are not (currently) a topic for
standardization within the OMA, but are usually included in the OMA
reference model for completeness, i.e., objects are either application-
specific, support common facilities, or are basic services.

Table 1: Overview of CORBA Services

Naming Service
Provides the ability to bind a name to an object.
Similar to other forms of directory service.

Event Service
Supports asynchronous message-based communication
among objects. Supports chaining of event channels,
and a variety of producer/consumer roles.

Lifecycle Service
Defines conventions for creating, deleting, copying
and moving objects.

Persistence Service
Provides a means for retaining and managing the
persistent state of objects.

Transaction Service
Supports multiple transaction models, including
mandatory "flat" and optional "nested" transactions.

Concurrency Service
Supports concurrent, coordinated access to objects
from multiple clients.

Relationship Service
Supports the specification, creation and maintenance
of relationships among objects.

Externalization Service
Defines protocols and conventions for externalizing
and internalizing objects across processes and across
ORBs.

CORBA in detail. Figure 3 depicts most of the basic components and interfaces

http://www.sei.cmu.edu/str/descriptions/corba_body.html (3 of 11)7/28/2008 11:29:39 AM

Common Object Request Broker Architecture

defined by CORBA. This figure is an expansion of the ORB component of the
OMA depicted in Figure 2.

Figure 3: Structure of CORBA Interfaces

One element (not depicted in Figure 2) that is crucial to the understanding of
CORBA is the interface definition language (IDL) processor. All objects are
defined in CORBA (actually, in the OMA) using IDL. IDL is an object-oriented
interface definition formalism that has some syntactic similarities with C++.
Unlike C++, IDL can only define interfaces; it is not possible to specify behavior
in IDL. Language mappings are defined from IDL to C, C++, Ada95, and
Smalltalk80.

An important point to note is that CORBA specifies that clients and object
implementations can be written in different programming languages and execute
on different computer hardware architectures and different operating systems,
and that clients and object implementations can not detect any of these details
about each other. Put another way, the IDL interface completely defines the
interface between clients and objects; all other details about objects (such as
their implementation language and location) can be made "transparent."

Table 2 summarizes the components of CORBA and their functional role.

Table 2: Components of the CORBA Specification

ORB Core
The CORBA runtime infrastructure. The
interface to the ORB Core is not defined by
CORBA, and will be vendor proprietary.

http://www.sei.cmu.edu/str/descriptions/corba_body.html (4 of 11)7/28/2008 11:29:39 AM

Common Object Request Broker Architecture

ORB Interface
A standard interface (defined in IDL) to
functions provided by all CORBA- compliant
ORBs.

IDL Stubs

Generated by the IDL processor for each
interface defined in IDL. Stubs hide the low-
level networking details of object
communication from the client, while
presenting a high-level, object type-specific
application programming interface (API).

Dynamic Invocation Interface
(DII)

An alternative to stubs for clients to access
objects. While stubs provide an object type-
specific API, DII provides a generic
mechanism for constructing requests at run
time (hence "dynamic invocation"). An
interface repository (another CORBA
component not illustrated in Figure 2) allows
some measure of type checking to ensure that
a target object can support the request made by
the client.

Object Adaptor

Provides extensibility of CORBA- compliant
ORBs to integrate alternative object
technologies into the OMA. For example,
adaptors may be developed to allow remote
access to objects that are stored in an object-
oriented database. Each CORBA-compliant
ORB must support a specific object adaptor
called the Basic Object Adaptor (BOA) (not
illustrated in Figure 2). The BOA defines a
standard API implemented by all ORBs.

IDL Skeletons

The server-side (or object implementation-
side) analogue of IDL stubs. IDL skeletons
receive requests for services from the object
adaptor, and call the appropriate operations in
the object implementation.

http://www.sei.cmu.edu/str/descriptions/corba_body.html (5 of 11)7/28/2008 11:29:39 AM

Common Object Request Broker Architecture

Dynamic Skeleton Interface
(DSI)

The server-side (or object implementation-
side) analogue of the DII. While IDL skeletons
invoke specific operations in the object
implementation, DSI defers this processing to
the object implementation. This is useful for
developing bridges and other mechanisms to
support inter-ORB interoperation.

Usage Considerations

Compliance. As noted, CORBA is a specification, not an implementation.
Therefore, the question of compliance is important: How does a consumer know
if a product is CORBA-compliant, and, if so, what does that mean? CORBA
compliance is defined by the OMG:

"The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping" [CORBA 96] where "mapping"
refers to a mapping from IDL to a programming language (C, C++ or
Smalltalk80; Ada95 is specified but has not been formally adopted by the OMG
at the time of this writing). The CORBA Core (not the same as the ORB Core
denoted in Figure 3 and Table 2) is defined for compliance as including the
following:

● the interfaces to all of the elements depicted in Figure 3
● interfaces to the interface repository (not shown in Figure 3)
● a definition of IDL syntax and semantics
● the definition of the object model that underlies CORBA (e.g., what is an

object, how is it defined, where do they come from)

Significantly, the CORBA Core does not include CORBA interoperability, nor
does it include interworking, the term used to describe how CORBA is intended
to work with Microsoft's COM (see Component Object Model (COM), DCOM,
and Related Capabilities). A separate but related point is that CORBA ORBs
need not provide implementations of any OMA services.

There are as yet no defined test suites for assessing CORBA compliance. Users
must evaluate vendor claims on face value, and assess the likelihood of vendor
compliance based upon a variety of imponderables, such as the role played by
the vendor in the OMG; vendor market share; and press releases and
testimonials. Hands-on evaluation of ORB products is an absolute necessity.
However, given the lack of a predefined compliance test suite, the complexity of
the CORBA specification (see next topic), and the variability of vendor
implementation choices, even this will be inadequate to fully assess
"compliance."

Although not concerned with compliance testing in a formal sense, one
organization has developed an operational testbed for demonstrating ORB

http://www.sei.cmu.edu/str/descriptions/corba_body.html (6 of 11)7/28/2008 11:29:39 AM

Common Object Request Broker Architecture

interoperability [CORBANet 96]. It is conceivable that other similar centers may
be developed that address different aspects of CORBA (e.g., real time, security),
or that do formal compliance testing. However, no such centers exist at the time
of this writing.

Complexity. CORBA is a complex specification, and considerable effort may be
required to develop expertise in its use. A number of factors compound the
inherent complexity of the CORBA specification.

● While CORBA defines a standard, there is great latitude in many of the
implementation details- ORBs developed by different vendors may have
significantly different features and capabilities. Thus, users must learn a
specification, the way vendors implement the specification, and their
value-added features (which are often necessary to make a CORBA
product usable).

● While CORBA makes the development of distributed applications easier
than with previous technologies, this ease of use may be deceptive: The
difficult issues involved in designing robust distributed systems still
remain (e.g., performance prediction and analysis, failure mode analysis,
consistency and caching, and security).

● Facility with CORBA may require deep expertise in related technologies,
such as distributed systems design, distributed and multi-threaded
programming and debugging; inter-networking; object-oriented design,
analysis, and programming. In particular, expertise in object-oriented
technology may require a substantial change in engineering practice, with
all the technology transition issues that implies (see The Technology
Adoption Challenge).

Stability. CORBA (and the OMA) represent a classical model of distributed
computing, despite the addition of object-oriented abstraction. Recent advances
in distributed computing have altered the landscape CORBA occupies.
Specifically, the recent emergence of mobile objects via Java (see Java), and
the connection of Java with "web browser" technologies has muddied the waters
concerning the role of CORBA in future distributed systems. CORBA vendors
are responding by supporting the development of "ORBlets", i.e., Java applets
that invoke the services of remote CORBA objects. However, recent additions to
Java support remote object invocation directly in a native Java form. The upshot
is that, at the time of this writing, there is great instability in the distributed object
technology marketplace.

Industry standards such as CORBA have the advantage of flexibility in response
to changes in market conditions and technology advances (in comparison,
formal standards bodies move much more slowly). On the other hand, changes
to the CORBA specifications- while technically justified- have resulted in
unstable ORB implementations. For example, CORBA v2.0, released in July
1995 with revisions in July 1996, introduced features to support interoperation
among different vendor ORBs. These features are not yet universally available in
all CORBA ORBs, and those ORBs that implement these features do so in
uneven ways. Although the situation regarding interoperation among CORBA
ORBs is improving, instability of implementations is the price paid for flexibility
and evolvability of specification.

http://www.sei.cmu.edu/str/descriptions/corba_body.html (7 of 11)7/28/2008 11:29:39 AM

Common Object Request Broker Architecture

The OMA is also evolving, and different aspects are at different maturity levels.
For instance, CORBAFacilities defines more of a framework for desired services
than a specification suitable for implementation. The more fundamental
CORBAServices, while better defined, are not rigorously defined; a potential
consequence is that different vendor implementations of these services may
differ widely both in performance and in semantics. The consequence is
particularly troubling in light of the new interoperability features; prior to inter-
ORB interoperability the lack of uniformity among CORBAServices
implementations would not have been an issue.

Maturity

A large and growing number of implementations of CORBA are available in the
marketplace, including implementations from most major computer
manufacturers and independent software vendors. See Object Request Broker
for a listing of available CORBA-compliant ORBs. CORBA ORBs are also being
developed by university research and development projects, for example
Stanford's Fresco, XeroxPARC's ILU, Cornell's Electra, and others.

At the same time, it must be noted that not all CORBA ORBs are equally mature,
nor has the OMA sufficiently matured to support the vision that lies behind
CORBA (see Purpose and Origin). While CORBA and OMA products are
maturing and are being used in increasingly complex and demanding situations,
the specifications and product implementations are not entirely stable. This is in
no small way a result of the dynamism of distributed object technology and
middleware in general and is no particular fault of the OMG. Fortunately
techniques exist for evaluating technology in the face of such dynamism
[Wallace 96, Brown 96].

Costs and Limitations

Costs and limitations include the following:

● Real time. CORBA v2.0 does not address real-time issues.
● Programming language support. IDL is a "least-common denominator"

language. It does not fully exploit the capabilities of programming
languages to which it is mapped, especially where the definition of
abstract types is concerned.

● Pricing and licensing. The price of ORBs varies greatly, from a few
hundred to several thousand dollars. Licensing schemes also vary.

● Training. Training is essential for the already experienced programmer:
five days of hands-on training for CORBA programming fundamentals is
suggested [Mowbray 93].

● Security. CORBA specifies only a minimal range of security mechanisms;
more ambitious and comprehensive mechanisms have not yet been
adopted by the OMG. Deng discusses the potential integration of security
into CORBA-based systems [Deng 95].

Dependencies

http://www.sei.cmu.edu/str/descriptions/corba_body.html (8 of 11)7/28/2008 11:29:39 AM

Common Object Request Broker Architecture

Dependencies include the following:

● TCP/IP is needed to support the CORBA-defined inter-ORB
interoperability protocol (IIOP).

● Most commercial CORBA ORBs rely on C++ as the principal client and
server programming environment. Java-specific ORBs are also emerging.

Alternatives

Alternatives include the following:

● The Open Group's Distributed Computing Environment (DCE) is
sometimes cited as an alternative "open" specification for distributed
computing (see Distributed Computing Environment).

● Where openness is not a concern and PC platforms are dominant,
Microsoft's COM/DCOM (see Component Object Model (COM), DCOM,
and Related Capabilities) may be suitable alternatives.

● Other middleware technologies may be appropriate in different settings (e.
g., message-oriented middleware (see Message-Oriented Middleware)).

Complementary Technologies

Complementary technologies include the following:

● Java and/or web browsers can be used in conjunction with CORBA,
although precise usage patterns have not yet emerged and are still highly
volatile.

● Object-oriented database management systems (OODBMS) vendors are
developing object adaptors to support more robust three-tier architecture
(see Three Tier Software Architectures) development using CORBA.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Common Object Request Broker Architecture

Application category Client/Server (AP.2.1.2.1),
Client/Server Communication (AP.2.2.1)

Quality measures category Maintainability (QM.3.1),
Interoperability (QM.4.1),
Portability (QM.4.2),
Scalability (QM.4.3),
Reusability (QM.4.4)

http://www.sei.cmu.edu/str/descriptions/corba_body.html (9 of 11)7/28/2008 11:29:39 AM

Common Object Request Broker Architecture

Computing reviews category Distributed Systems (C.2.4),
Object-Oriented Programming (D.1.5)

References and Information Sources

[Baker 94] Baker, S. "CORBA Implementation Issues." IEEE Colloquium
on Distributed Object Management Digest 1994 7 (January
1994): 24-25.

[Brando 96] Brando, T. "Comparing CORBA & DCE." Object Magazine 6,
1 (March 1996): 52-7.

[Brown 96] Brown, A. & Wallnau, K. "A Framework for Evaluating
Software Technology." IEEE Software 13, 5 (September 1996):
39-49.

[CORBA 96] The Common Object Request Broker: Architecture and
Specification, Version 2.0. Framingham, MA: Object
Management Group, 1996. Also available [online] WWW
<URL: http://www.omg.org> (1996).

[CORBANet 96] Distributed Software Technology Center Home Page [online].
Available WWW
<URL: http://corbanet.dstc.edu.au> (1996).

[Deng 95] Deng, R.H., et al. "Integrating Security in CORBA-Based
Object Architectures," 50-61. Proceedings of the 1995 IEEE
Symposium on Security and Privacy. Oakland, CA, May 8-10,
1995. Los Alamitos, CA: IEEE Computer Society Press, 1995.

[Foody 96] Foody, M.A. "OLE and COM vs. CORBA." UNIX Review 14,
4. (April 1996): 43-45.

[Jell 95] Jell, T. & Stal, M. "Comparing, Contrasting, and Interweaving
CORBA and OLE," 140-144. Object Expo Europe 1995.
London, UK, September 25-29, 1995. Newdigate, UK: SIGS
Conferences, 1995.

[Kain 94] Kain, J.B. "An Overview of OMG's CORBA," 131-134.
Proceedings of OBJECT EXPO `94. New York, NY, June 6-
10, 1994. New York, NY: SIGS Publications, 1994.

[Mowbray 93] Mowbray, T.J. & Brando, T. "Interoperability and CORBA-
Based Open Systems." Object Magazine 3, 3 (September/
October 1993): 50-4.

[OMG 96] Object Management Group home page [online]. Available
WWW
<URL: http://www.omg.org> (1996).

[Roy 95] Roy, Mark & Ewald, Alan. "Distributed Object
Interoperability." Object Magazine 5, 1 (March/April 1995):
18.

[Steinke 95] Steinke, Steve. "Middleware Meets the Network." LAN: The
Network Solutions Magazine 10, 13 (December 1995): 56.

http://www.sei.cmu.edu/str/descriptions/corba_body.html (10 of 11)7/28/2008 11:29:39 AM

http://www.omg.org/
http://corbanet.dstc.edu.au/
http://www.omg.org/

Common Object Request Broker Architecture

[Tibbets 95] Tibbets, Fred. "CORBA: A Common Touch for Distributed
Applications." Data Comm Magazine 24, 7 (May 1995): 71-75.

[Wallace 96] Wallnau, Kurt & Wallace, Evan. "A Situated Evaluation of the
Object Management Group's (OMG) Object Management
Architecture (OMA)," 168-178. Proceedings of the
OOPSLA'96. San Jose, CA, October 6-10, 1996. New York,
NY: ACM, 1996. Presentation available [online] FTP.
<URL: ftp://ftp.sei.cmu.edu/pub/corba/OOPSLA/present>
(1996).

[Watson 96] Watson, A. "The OMG After CORBA 2." Object Magazine 6,
1 (March 1996): 58-60.

Current Author/Maintainer

Kurt Wallnau, SEI

External Reviewers

Dave Carney, SEI
Ed Morris, SEI

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/corba_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/corba_body.html (11 of 11)7/28/2008 11:29:39 AM

ftp://ftp.sei.cmu.edu/pub/corba/OOPSLA/present
http://www.sei.cmu.edu/about/disclaimer.html

Adaptability - Definition

Glossary Term

Adaptability
the ease with which software satisfies differing system constraints and user needs [Evans 87].

http://www.sei.cmu.edu/str/indexes/glossary/adaptability.html7/28/2008 11:29:39 AM

CORBA 96

References and Information Sources

[CORBA 96] The Common Object Request Broker: Architecture and Specification, Version 2.0.
Framingham, MA: Object Management Group, 1996. Also available [online] WWW
<URL: http://www.omg.org> (1996).

http://www.sei.cmu.edu/str/indexes/references/CORBA_96.html7/28/2008 11:29:39 AM

http://www.omg.org/

CORBANet 96

References and Information Sources

[CORBANet 96] Distributed Software Technology Center Home Page [online]. Available
WWW
<URL: http://corbanet.dstc.edu.au> (1996).

http://www.sei.cmu.edu/str/indexes/references/CORBANet_96.html7/28/2008 11:29:39 AM

http://corbanet.dstc.edu.au/

Wallace 96

References and Information Sources

[Wallace
96]

Wallnau, Kurt & Wallace, Evan. "A Situated Evaluation of the Object Management
Group's (OMG) Object Management Architecture (OMA)," 168-178. Proceedings of the
OOPSLA'96. San Jose, CA, October 6-10, 1996. New York, NY: ACM, 1996.
Presentation available [online] FTP.
<URL: ftp://ftp.sei.cmu.edu/pub/corba/OOPSLA/present> (1996).

http://www.sei.cmu.edu/str/indexes/references/Wallace_96.html7/28/2008 11:29:40 AM

ftp://ftp.sei.cmu.edu/pub/corba/OOPSLA/present

Brown 96

References and Information Sources

[Brown 96] Brown, A. & Wallnau, K. "A Framework for Evaluating Software Technology." IEEE
Software 13, 5 (September 1996): 39-49.

http://www.sei.cmu.edu/str/indexes/references/Brown_96.html7/28/2008 11:29:40 AM

Mowbray 93

References and Information Sources

[Mowbray
93]

Mowbray, T.J. & Brando, T. "Interoperability and CORBA-Based Open Systems."
Object Magazine 3, 3 (September/October 1993): 50-4.

http://www.sei.cmu.edu/str/indexes/references/Mowbray_93.html7/28/2008 11:29:40 AM

Deng 95

References and Information Sources

[Deng 95] Deng, R.H., et al. "Integrating Security in CORBA-Based Object Architectures," 50-61.
Proceedings of the 1995 IEEE Symposium on Security and Privacy. Oakland, CA, May 8-
10, 1995. Los Alamitos, CA: IEEE Computer Society Press, 1995.

http://www.sei.cmu.edu/str/indexes/references/Deng_95.html7/28/2008 11:29:40 AM

Brooks 87

References and Information Sources

[Brooks
87]

Brooks, F. P. Jr. "No Silver Bullet: Essence and Accidents of Software Engineering,"
Computer 20, 4 (April 1987): 10-9.

http://www.sei.cmu.edu/str/indexes/references/Brooks_87.html7/28/2008 11:29:41 AM

Brown 96a

References and Information Sources

[Brown
96a]

Brown, Alan W. "Preface: Foundations for Component-Based Software Engineering," vii-
x. Component-Based Software Engineering: Selected Papers from the Software
Engineering Institute. Los Alamitos, CA: IEEE Computer Society Press, 1996.

http://www.sei.cmu.edu/str/indexes/references/Brown_96a.html7/28/2008 11:29:41 AM

Brown 96b

References and Information Sources

[Brown
96b]

Brown, Alan W. & Wallnau, Kurt C. "Engineering of Component-Based Systems," 7-15.
Component-Based Software Engineering: Selected Papers from the Software
Engineering Institute. Los Alamitos, CA: IEEE Computer Society Press, 1996.

http://www.sei.cmu.edu/str/indexes/references/Brown_96b_bold.html7/28/2008 11:29:41 AM

Component-Based Software Development - Notes

Notes

1 See the definition of NDI in COTS and Open Systems - An Overview.

http://www.sei.cmu.edu/str/descriptions/notes/cbsd_1.html7/28/2008 11:29:41 AM

Clements 95

References and Information Sources

[Clements
95]

Clements, Paul C. "From Subroutines to Subsystems: Component-Based Software
Development," 3-6. Component-Based Software Engineering: Selected Papers from the
Software Engineering Institute. Los Alamitos, CA: IEEE Computer Society Press, 1996.

http://www.sei.cmu.edu/str/indexes/references/Clements_95_bold.html7/28/2008 11:29:42 AM

Component-Based Software Development / COTS Integration

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Component-Based Software Development / COTS Integration

Status

Advanced

Note

We recommend COTS and Open Systems--An Overview as prerequisite reading
for this technology description.

Purpose and Origin

Component-based software development (CBSD) focuses on building large
software systems by integrating previously-existing software components. By
enhancing the flexibility and maintainability of systems, this approach can
potentially be used to reduce software development costs, assemble systems
rapidly, and reduce the spiraling maintenance burden associated with the
support and upgrade of large systems. At the foundation of this approach is the
assumption that certain parts of large software systems reappear with sufficient
regularity that common parts should be written once, rather than many times,
and that common systems should be assembled through reuse rather than
rewritten over and over. CBSD embodies the "buy, don't build" philosophy
espoused by Fred Brooks [Brooks 87]. CBSD is also referred to as component-
based software engineering (CBSE) [Brown 96a, Brown 96b].

Component-based systems encompass both commercial-off-the-shelf (COTS)
products and components acquired through other means, such as
nondevelopmental items (NDIs).1 Developing component-based systems is
becoming feasible due to the following:

● the increase in the quality and variety of COTS products
● economic pressures to reduce system development and maintenance

costs
● the emergence of component integration technology (see Object Request

Broker)
● the increasing amount of existing software in organizations that can be

reused in new systems

http://www.sei.cmu.edu/str/descriptions/cbsd_body.html (1 of 11)7/28/2008 11:29:43 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/cbsd_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Component-Based Software Development / COTS Integration

CBSD shifts the development emphasis from programming software to
composing software systems [Clements 95].

Technical Detail

In CBSD, the notion of building a system by writing code has been replaced with
building a system by assembling and integrating existing software components.
In contrast to traditional development, where system integration is often the tail
end of an implementation effort, component integration is the centerpiece of the
approach; thus, implementation has given way to integration as the focus of
system construction. Because of this, integrability is a key consideration in the
decision whether to acquire, reuse, or build the components.

As shown in Figure 4, four major activities characterize the component-based
development approach; these have been adapted from Brown [Brown 96b]:

● component qualification (sometimes referred to as suitability testing)
● component adaptation
● assembling components into systems
● system evolution

Figure 4: Activities of the Component-Based Development Approach

Each activity is discussed in more detail in the following paragraphs.

Component qualification. Component qualification is a process of determining
"fitness for use" of previously-developed components that are being applied in a
new system context. Component qualification is also a process for selecting
components when a marketplace of competing products exists. Qualification of a
component can also extend to include qualification of the development process
used to create and maintain it (for example, ensuring algorithms have been
validated, and that rigorous code inspections have taken place). This is most
obvious in safety-critical applications, but can also reduce some of the attraction

http://www.sei.cmu.edu/str/descriptions/cbsd_body.html (2 of 11)7/28/2008 11:29:43 AM

Component-Based Software Development / COTS Integration

of using preexisting components.

There are two phases of component qualification: discovery and evaluation. In
the discovery phase, the properties of a component are identified. Such priorities
include component functionality (what services are provided) and other aspects
of a component's interface (such as the use of standards). These properties also
include quality aspects that are more difficult to isolate, such as component
reliability, predictability, and usability. In some circumstances, it is also
reasonable to discover "non-technical" component properties, such as the
vendor's market share, past business performance, and process maturity of the
component developer's organization. Discovery is a difficult and ill-defined
process, with much of the needed information being difficult to quantify and, in
some cases, difficult to obtain.

There are some relatively mature evaluation techniques for selecting from
among a group of peer products. For example, the International Standards
Organization (ISO) describes general criteria for product evaluation [ISO 91]
while others describe techniques that take into account the needs of particular
application domains [IEEE 93, Poston 92]. These evaluation approaches
typically involve a combination of paper-based studies of the components,
discussion with other users of those components, and hands-on benchmarking
and prototyping.

One recent trend is toward a "product line" approach that is based on a reusable
set of components that appear in a range of software products. This approach
assumes that similar systems (e.g., most radar systems) have a similar software
architecture and that a majority of the required functionality is the same from one
product to the next. (See Domain Engineering and Domain Analysis for further
details on techniques to help determine similarity). The common functionality can
therefore be provided by the same set of components, thus simplifying the
development and maintenance life cycle. Results of implementing this approach
can be seen in two different efforts [Lettes 96, STARSSCAI 95].

Component adaptation. Because individual components are written to meet
different requirements, and are based on differing assumptions about their
context, components often must be adapted when used in a new system.
Components must be adapted based on rules that ensure conflicts among
components are minimized. The degree to which a component's internal
structure is accessible suggests different approaches to adaptation [Valetto 95]:

● white box, where access to source code allows a component to be
significantly rewritten to operate with other components

● grey box, where source code of a component is not modified but the
component provides its own extension language or application
programming interface (API) (see Application Programming Interface)

● black box, where only a binary executable form of the component is
available and there is no extension language or API

Each of these adaptation approaches has its own positives and negatives;

http://www.sei.cmu.edu/str/descriptions/cbsd_body.html (3 of 11)7/28/2008 11:29:43 AM

Component-Based Software Development / COTS Integration

however, white box approaches, because they modify source code, can result in
serious maintenance and evolution concerns in the long term. Wrapping,
bridging, and mediating are specific programming techniques used to adapt
grey- and black-box components.

Assembling components into systems. Components must be integrated
through some well-defined infrastructure. This infrastructure provides the binding
that forms a system from the disparate components. For example, in developing
systems from COTS components, several architectural styles are possible:

● database, in which centralized control of all operational data is the key to
all information sharing among components in the system

● blackboard, in which data sharing among components is opportunistic,
involving reduced levels of system overhead

● message bus, in which components have separate data stores
coordinated through messages announcing changes among components

● object request broker (ORB) mediated, in which the ORB technology (see
Object Request Broker) provides mechanisms for language-independent
interface definition and object location and activation

Each style has its own particular strengths and weaknesses. Currently, most
active research and product development is taking place in object request
brokers (ORBs) conforming to the Common Object Request Broker Architecture

(CORBA).2

System evolution. At first glance, component-based systems may seem
relatively easy to evolve and upgrade since components are the unit of change.
To repair an error, an updated component is swapped for its defective
equivalent, treating components as plug-replaceable units. Similarly, when
additional functionality is required, it is embodied in a new component that is
added to the system.

However, this is a highly simplistic (and optimistic) view of system evolution.
Replacement of one component with another is often a time-consuming and
arduous task since the new component will never be identical to its predecessor
and must be thoroughly tested, both in isolation and in combination with the rest
of the system. Wrappers must typically be rewritten, and side-effects from
changes must be found and assessed. One possible approach to remedying this
problem is Simplex (see Simplex Architecture).

Usage Considerations

Several items need to be considered when implementing component-based
systems:

Short-term considerations

http://www.sei.cmu.edu/str/descriptions/cbsd_body.html (4 of 11)7/28/2008 11:29:43 AM

Component-Based Software Development / COTS Integration

● Development process. An organization's software development process
and philosophy may need to change. System integration can no longer be
at the end of the implementation phase, but must be planned early and be
continually managed throughout the development process. It is also
recommended that as tradeoffs are being made among components
during the development process, the rationale used in making the tradeoff
decisions should be recorded and then evaluated in the final product
[Brown 96b].

● Planning. Many of the problems encountered when integrating COTS
components cannot be determined before integration begins. Thus,
estimating development schedules and resource requirements is
extremely difficult [Vigder 96].

● Requirements. When using a preexisting component, the component has
been written to a preexisting, and possibly unknown, set of requirements.
In the best case, these requirements will be very general, and the system
to be built will have requirements that either conform or can be made to
conform to the preexisting general requirements. In the worst case, the
component will have been written to requirements that conflict in some
critical manner with those of the new system, and the system designer
must choose whether using the existing component is viable at all.

● Architecture. The selection of standards and components needs to have a
sound architectural foundation, as this becomes the foundation for system
evolution. This is especially important when migrating from a legacy
system to a component-based system.

● Standards. If an organization chooses to use the component-based
system development approach and it also has the goal of making a
system open, then interface standards need to come into play as criteria
for component qualification. The degree to which a software component
meets certain standards can greatly influence the interoperability and
portability of a system. Reference the COTS and Open Systems--An
Overview description for further discussion.

● Reuse of existing components. Component-based system development
spotlights reusable components. However, even though organizations
have increasing amounts of existing software that can be reused, most
often some amount of reengineering must be accomplished on those
components before they can be adapted to new systems.

● Component qualification. While there are several efforts focusing on
component qualification, there is little agreement on which quality
attributes or measures of a component are critical to its use in a
component-based system. A useful work that begins to address this issue
is "SAAM: A Method for Analyzing the Properties of Software
Architecture" [Abowd 94]. Another technique addresses the complexity of
component selection and provides a decision framework that supports
multi-variable component selection analysis [Kontio 96]. Other
approaches, such as the qualification process defined by the US Air
Force PRISM program, emphasize "fitness for use" within specific
application domains, as well as the primacy of integrability of components
[PRISM 96]. Another effort is Product Line Asset Support [PLAS 96].

Long-term considerations

http://www.sei.cmu.edu/str/descriptions/cbsd_body.html (5 of 11)7/28/2008 11:29:43 AM

Component-Based Software Development / COTS Integration

● External dependencies/vendor-driven upgrade problem. An organization
loses a certain amount of autonomy and acquires additional
dependencies when integrating COTS components. COTS component
producers frequently upgrade their components based on error reports,
perceived market needs and competition, and product aesthetics. DoD
systems typically change at a much slower rate and have very long
lifetimes. An organization must juggle its new functionality requirements
to accommodate the direction in which a COTS product may be going.
New component releases require a decision from the component-based
system developer/integrator on whether to include the new component in
the system. To answer "yes" implies facing an undetermined amount of
rewriting of wrapper code and system testing. To answer "no" implies
relying on older versions of components that may be behind the current
state-of-the-art and may not be adequately supported by the COTS
supplier. This is why the component-based system approach is
sometimes considered a risk transfer and not a risk reduction approach.

● System evolution/technology insertion. System evolution is not a simple
plug-and-play approach. Replacing one component often has rippling
affects throughout the system, especially when many of the components
in the system are black box components; the system's integrator does not
know the details of how a component is built or will react in an
interdependent environment. Further complicating the situation is that
new versions of a component often require enhanced versions of other
components, or in some cases may be incompatible with existing
components.

Over the long-term life of a system, additional challenges arise, including
inserting COTS components that correspond to new functionality (for
example, changing to a completely new communications approach) and
"consolidation engineering" wherein several components may be
replaced by one "integrated" component. In such situations, maintaining
external interface compatibility is very important, but internal data flows
that previously existed must also be analyzed to determine if they are still
needed.

Maturity

To date, the commercial components available and reliable enough for
operational systems, and whose interfaces are well-enough understood, have
primarily been operating systems, databases, email and messaging systems,
office automation software (e.g., calendars, word processors, spreadsheets),
and Graphical User Interface Builders. The number of available components
continues to grow and quality and applicability continue to improve. As such,
most successful applications have been in the AIS/MIS and C3I areas, with
rather limited success in applications having real-time performance, safety, and
security requirements. Indeed, in spite of the possible savings, using COTS
components to build safety-critical systems where reliability, availability,
predictability, and security are essential is frequently too risky [Brown 96b]. An
organization will typically not have complete understanding or control of the

http://www.sei.cmu.edu/str/descriptions/cbsd_body.html (6 of 11)7/28/2008 11:29:43 AM

Component-Based Software Development / COTS Integration

COTS components and their development.

Examples of apparently successful integration of COTS into operational systems
include the following

● Deep Space Network Program at the NASA Jet Propulsion Laboratory
[NASA 96a]

● Lewis Mission at NASA's Goddard Space Center [NASA 96b]
● Boeing's new 777 aircraft with 4 million lines of COTS software [Vidger 96]
● Air Force Space and Missile System Center's telemetry, tracking, and

control (TT&C) system called the Center for Research Support (CERES)
[Monfort 96]

In addition to the increasing availability of components applicable to certain
domains, understanding of the issues and technologies required to expand
CBSD practice is also growing, although significant work remains. Various new
technical developments and products, including Common Object Request Broker
Architecture and Component Object Model (COM), DCOM, and Related
Capabilities [Vidger 96] and changes in acquisition and business practices
should further stimulate the move to CBSD.

Costs and Limitations

It is widely assumed that the component-based software development approach,
particularly in the sense of using COTS components, will be significantly less
costly (i.e., shorter development cycles and lower development costs) than the
traditional method of building systems "from scratch." In the case of using such
components as databases and operating systems, this is almost certainly true.
However, there is little data available concerning the relative costs of using the
component-based approach and, as indicated in Usage Considerations, there
are a number of new issues that must be considered.

In addition, if integrating COTS components, an additional system development
and maintenance cost will be to negotiate, manage, and track licenses to ensure
uninterrupted operation of the system. For example, a license expiring in the
middle of a mission might have disastrous consequences.

Dependencies

Adapting preexisting components to a system requires techniques such as
Application Programming Interface, wrapping, bridging, or mediating, as well as
an increased understanding of architectural interactions and components'
properties.

Alternatives

http://www.sei.cmu.edu/str/descriptions/cbsd_body.html (7 of 11)7/28/2008 11:29:43 AM

Component-Based Software Development / COTS Integration

The alternatives include using preexisting components or creating the entire
system as a new item.

Complementary Technologies

The advantages of using the CBSD/COTS integration approach can be greatly
enhanced by coupling the approach with open systems (see COTS and Open
Systems--An Overview).

Domain Engineering and Domain Analysis aid in identifying common functions
and data among a domain of systems which in turn identifies possible reusable
components.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Component-Based Software Development/ COTS
Integration

Application category System Allocation (AP.1.2.1),
Select or Develop Algorithms (AP.1.3.4),
Plan and Perform Integration (AP.1.4.4),
Reengineering (AP.1.9.5)

Quality measures category Maintainability (QM.3.1)

Computing reviews category Software Engineering Design (D.2.10),
Software Engineering Miscellaneous (D.2.m)

References and Information Sources

[Abowd 94] Abowd, G., et al. "SAAM: A Method for Analyzing the Properties of
Software Architecture," 81-90. Proceedings of the 16th International
Conference on Software Engineering. Sorrento, Italy, May 16-21,
1994. Los Alamitos, CA: IEEE Computer Society Press, 1994.

[Brooks 87] Brooks, F. P. Jr. "No Silver Bullet: Essence and Accidents of
Software Engineering," Computer 20, 4 (April 1987): 10-9.

http://www.sei.cmu.edu/str/descriptions/cbsd_body.html (8 of 11)7/28/2008 11:29:43 AM

Component-Based Software Development / COTS Integration

[Brown 96a] Brown, Alan W. "Preface: Foundations for Component-Based
Software Engineering," vii-x. Component-Based Software
Engineering: Selected Papers from the Software Engineering
Institute. Los Alamitos, CA: IEEE Computer Society Press, 1996.

[Brown 96b] Brown, Alan W. & Wallnau, Kurt C. "Engineering of Component-
Based Systems," 7-15. Component-Based Software Engineering:
Selected Papers from the Software Engineering Institute. Los
Alamitos, CA: IEEE Computer Society Press, 1996.

[Clements 95] Clements, Paul C. "From Subroutines to Subsystems: Component-
Based Software Development," 3-6. Component-Based Software
Engineering: Selected Papers from the Software Engineering
Institute. Los Alamitos, CA: IEEE Computer Society Press, 1996.

[IEEE 93] IEEE Recommended Practice on the Selection and Evaluation of
CASE Tools (IEEE Std. 1209-1992). New York, NY: Institute of
Electrical and Electronics Engineers, 1993.

[ISO 91] Information Technology - Software Product Evaluation - Quality
Characteristics and Guidelines for their Use. Geneve, Switzerland:
International Standards Organization/International Electrochemical
Commission, 1991.

[Kontio 96] Kontio, J. "A Case Study in Applying a Systematic Method for
COTS Selection," 201-209. Proceedings of the 18th International
Conference on Software Engineering. Berlin, Germany, March 25-
30, 1996. Los Alamitos, CA: IEEE Computer Society Press, 1996.

[Lettes 96] Lettes, Judith A. & Wilson, John. Army STARS Demonstration
Project Experience Report (STARS-VC-A011/003/02). Manassas,
VA: Loral Defense Systems-East, 1996.

[Monfort 96] Monfort, Lt. Col. Ralph D. "Lessons Learned in the Development
and Integration of a COTS-Based Satellite TT&C System." 33rd
Space Congress. Cocoa Beach, FL, April 23-26, 1996.

[NASA 96a] COTS Based Development [online]. Available WWW
<URL: http://www-isds.jpl.nasa.gov/cwo/cwo_23/handbook/
Dsnswdhb.htm> (1996).

[NASA 96b] Create Mechanisms/Incentives for Reuse and COTS Use [online].
Available WWW
<URL: http://bolero.gsfc.nasa.gov/c600/workshops/sswssp4b.htm>
(1996).

http://www.sei.cmu.edu/str/descriptions/cbsd_body.html (9 of 11)7/28/2008 11:29:43 AM

http://www-isds.jpl.nasa.gov/cwo/cwo_23/handbook/Dsnswdhb.htm
http://www-isds.jpl.nasa.gov/cwo/cwo_23/handbook/Dsnswdhb.htm
http://bolero.gsfc.nasa.gov/c600/workshops/sswssp4b.htm

Component-Based Software Development / COTS Integration

[PLAS 96] PLAS [online]. Available WWW
<URL: http://www.cards.com/plas> (1996).

[Poston 92] Poston R.M. & Sexton M.P. "Evaluating and Selecting Testing
Tools." IEEE Software 9, 3 (May 1992): 33-42.

[PRISM 96] Portable, Reusable, Integrated Software Modules (PRISM) Program
[online]. Available WWW
<URL: http://www.cards.com/PRISM/prism_ov.html>(1996).

[STARSSCAI 95] Air Force/STARS Demonstration Project Home Page [online].
Available WWW
<URL: http://www.asset.com/stars/afdemo/home.html> (1995).

[Thomas 92] Thomas, I. & Nejmeh. B. "Definitions of Tool Integration for
Environments." IEEE Software 9, 3 (March 1992): 29-35.

[Valetto 95] Valetto, G. & Kaiser, G.E. "Enveloping Sophisticated Tools into
Computer-Aided Software Engineering Environments," 40-48.
Proceedings of 7th IEEE International Workshop on CASE. Toronto,
Ontario, Canada, July 10-14, 1995. Los Alamitos, CA: IEEE
Computer Society Press, 1995.

[Vidger 96] Vidger, M.R.; Gentleman, W.M.; & Dean, J. COTS Software
Integration: State-of-the-Art [online]. Available WWW
<URL: http://wwwsel.iit.nrc.ca/abstracts/NRC39198.abs> (1996).

Current Author/Maintainer

Capt Gary Haines, AFMC SSSG
David Carney, SEI
John Foreman, SEI

External Reviewers

Paul Kogut, Lockheed Martin, Paoli, PA
Ed Morris, SEI
Tricia Oberndorf, SEI
Kurt Wallnau, SEI

Modifications

7 Oct 97: minor edits
20 Jun 97: updated URL for [NASA 96a]
10 Jan 97 (original)

http://www.sei.cmu.edu/str/descriptions/cbsd_body.html (10 of 11)7/28/2008 11:29:43 AM

http://www.cards.com/plas
http://www.cards.com/PRISM/prism_ov.html
http://www.asset.com/stars/afdemo/home.html
http://wwwsel.iit.nrc.ca/abstracts/NRC39198.abs

Component-Based Software Development / COTS Integration

Footnotes

1 See the definition of NDI in COTS and Open Systems - An Overview.

2 From Wallnau, K. & Wallace, E. A Robust Evaluation of the Object
Management Architecture: A Focused Case Study in Legacy Systems Migration.
Submitted for publication to OOPLSA'96.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/cbsd_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/cbsd_body.html (11 of 11)7/28/2008 11:29:43 AM

http://www.sei.cmu.edu/about/disclaimer.html

ISO 91

References and Information Sources

[ISO
91]

Information Technology - Software Product Evaluation - Quality Characteristics and
Guidelines for their Use. Geneve, Switzerland: International Standards Organization/
International Electrochemical Commission, 1991.

http://www.sei.cmu.edu/str/indexes/references/ISO_91.html7/28/2008 11:29:43 AM

IEEE 93

References and Information Sources

[IEEE
93]

IEEE Recommended Practice on the Selection and Evaluation of CASE Tools (IEEE Std.
1209-1992). New York, NY: Institute of Electrical and Electronics Engineers, 1993.

http://www.sei.cmu.edu/str/indexes/references/IEEE_93.html7/28/2008 11:29:43 AM

Poston 92

References and Information Sources

[Poston
92]

Poston R.M. & Sexton M.P. "Evaluating and Selecting Testing Tools." IEEE Software 9, 3
(May 1992): 33-42.

http://www.sei.cmu.edu/str/indexes/references/Poston_92.html7/28/2008 11:29:44 AM

Lettes 96

References and Information Sources

[Lettes
96]

Lettes, Judith A. & Wilson, John. Army STARS Demonstration Project Experience Report
(STARS-VC-A011/003/02). Manassas, VA: Loral Defense Systems-East, 1996.

http://www.sei.cmu.edu/str/indexes/references/Lettes_96.html7/28/2008 11:29:44 AM

STARSSCAI 95

References and Information Sources

[STARSSCAI
95]

Air Force/STARS Demonstration Project Home Page [online]. Available
WWW
<URL: http://www.asset.com/stars/afdemo/home.html> (1995).

http://www.sei.cmu.edu/str/indexes/references/STARSSCAI_95.html7/28/2008 11:29:44 AM

http://www.asset.com/stars/afdemo/home.html

Valetto 95

References and Information Sources

[Valetto
95]

Valetto, G. & Kaiser, G.E. "Enveloping Sophisticated Tools into Computer-Aided
Software Engineering Environments," 40-48. Proceedings of 7th IEEE International
Workshop on CASE. Toronto, Ontario, Canada, July 10-14, 1995. Los Alamitos, CA:
IEEE Computer Society Press, 1995.

http://www.sei.cmu.edu/str/indexes/references/Valetto_95.html7/28/2008 11:29:44 AM

Component-Based Software Development - Notes

Notes

2 From Wallnau, K. & Wallace, E. A Robust Evaluation of the Object Management Architecture: A
Focused Case Study in Legacy Systems Migration. Submitted for publication to OOPLSA'96.

http://www.sei.cmu.edu/str/descriptions/notes/cbsd_2.html7/28/2008 11:29:44 AM

Vidger 96

References and Information Sources

[Vidger
96]

Vidger, M.R.; Gentleman, W.M.; & Dean, J. COTS Software Integration: State-of-the-Art
[online]. Available WWW
<URL: http://wwwsel.iit.nrc.ca/abstracts/NRC39198.abs> (1996).

http://www.sei.cmu.edu/str/indexes/references/Vidger_96_bold.html7/28/2008 11:29:45 AM

http://wwwsel.iit.nrc.ca/abstracts/NRC39198.abs

Abowd 94

References and Information Sources

[Abowd
94]

Abowd, G., et al. "SAAM: A Method for Analyzing the Properties of Software
Architecture," 81-90. Proceedings of the 16th International Conference on Software
Engineering. Sorrento, Italy, May 16-21, 1994. Los Alamitos, CA: IEEE Computer
Society Press, 1994.

http://www.sei.cmu.edu/str/indexes/references/Abowd_94.html7/28/2008 11:29:45 AM

Kontio 96

References and Information Sources

[Kontio
96]

Kontio, J. "A Case Study in Applying a Systematic Method for COTS Selection," 201-209.
Proceedings of the 18th International Conference on Software Engineering. Berlin,
Germany, March 25-30, 1996. Los Alamitos, CA: IEEE Computer Society Press, 1996.

http://www.sei.cmu.edu/str/indexes/references/Kontio_96.html7/28/2008 11:29:45 AM

PRISM 96

References and Information Sources

[PRISM
96]

Portable, Reusable, Integrated Software Modules (PRISM) Program [online]. Available
WWW
<URL: http://www.cards.com/PRISM/prism_ov.html>(1996).

http://www.sei.cmu.edu/str/indexes/references/PRISM_96.html7/28/2008 11:29:45 AM

http://www.cards.com/PRISM/prism_ov.html

PLAS 96

References and Information Sources

[PLAS
96]

PLAS [online]. Available WWW
<URL: http://www.cards.com/plas>
(1996).

http://www.sei.cmu.edu/str/indexes/references/PLAS_96.html7/28/2008 11:29:46 AM

http://www.cards.com/plas

NASA 96a

References and Information Sources

[NASA
96a]

COTS Based Development [online]. Available WWW
<URL: http://www-isds.jpl.nasa.gov/isds/Cwo's%20bak/CWO_23/PBD.HTM>
(1996).

http://www.sei.cmu.edu/str/indexes/references/NASA_96a.html7/28/2008 11:29:46 AM

http://www-isds.jpl.nasa.gov/isds/Cwo%27s%20bak/CWO_23/PBD.HTM

NASA 96b

References and Information Sources

[NASA
96b]

Create Mechanisms/Incentives for Reuse and COTS Use [online]. Available
WWW
<URL: http://bolero.gsfc.nasa.gov/c600/workshops/sswssp4b.htm> (1996).

http://www.sei.cmu.edu/str/indexes/references/NASA_96b.html7/28/2008 11:29:46 AM

http://bolero.gsfc.nasa.gov/c600/workshops/sswssp4b.htm

Monfort 96

References and Information Sources

[Monfort
96]

Monfort, Lt. Col. Ralph D. "Lessons Learned in the Development and Integration of a
COTS-Based Satellite TT&C System." 33rd Space Congress. Cocoa Beach, FL, April 23-
26, 1996.

http://www.sei.cmu.edu/str/indexes/references/Monfort_96.html7/28/2008 11:29:46 AM

Related Topics

Related Topics

System Allocation (AP.1.2.1)

● Component-Based Software Development/ COTS Integration

http://www.sei.cmu.edu/str/taxonomies/ap.1.2.1.html7/28/2008 11:29:47 AM

COM 95

References and Information Sources

[COM
95]

Microsoft Corporation. The Component Object Model Specification, Version 0.9, October
24, 1995 [online]. Available WWW
<URL: http://www.microsoft.com/Com/resources/comdocs.asp> (1995).

http://www.sei.cmu.edu/str/indexes/references/COM_95_bold.html7/28/2008 11:29:47 AM

http://www.microsoft.com/Com/resources/comdocs.asp

DCOM 97

References and Information Sources

[DCOM
97]

Microsoft Corporation. Distributed Component Object Model Protocol-DCOM/1.0, draft,
November 1996 [online]. Available WWW
<URL: http://www.microsoft.com/Com/resources/comdocs.asp> (1996).

http://www.sei.cmu.edu/str/indexes/references/DCOM_97_bold.html7/28/2008 11:29:47 AM

http://www.microsoft.com/Com/resources/comdocs.asp

Brockschmidt 95

References and Information Sources

[Brockschmidt
95]

Brockschmidt, Kraig. Inside OLE, 2nd edition, Microsoft Press,
1995

http://www.sei.cmu.edu/str/indexes/references/Brockschmidt_95.html7/28/2008 11:29:47 AM

Active 97

References and Information Sources

[Active
97]

Active Group home page [online]. Available
WWW
<URL: http://www.activex.org/> (1997).

http://www.sei.cmu.edu/str/indexes/references/Active_97.html7/28/2008 11:29:48 AM

http://www.activex.org/

COM 95

References and Information Sources

[Harmon 99] Harmon, Paul. Microsoft transaction Server. Component development Strategies Vol IX
No 3. Available WWW <URL: http://www.cutter.com/cds/1999toc.htm#mar > 1999

http://www.sei.cmu.edu/str/indexes/references/Harmon_99.html7/28/2008 11:29:48 AM

http://www.cutter.com/cds/1999toc.htm#mar

Component Object Model (COM), DCOM, and Related Capabilities

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Component Object Model (COM), DCOM, and Related
Capabilities

Status

Advanced

Note

We recommend Object Request Broker, Remote Procedure Call, and
Component-Based Software Development/COTS Integration, as prerequisite
readings for this technology description.

Purpose and Origin

COM [COM 95] refers to both a specification and implementation developed by
Microsoft Corporation which provides a framework for integrating components.
This framework supports interoperability and reusability of distributed objects by
allowing developers to build systems by assembling reusable components from
different vendors which communicate via COM. By applying COM to build
systems of preexisting components, developers hope to reap benefits of
maintainability and adaptability.

COM defines an application programming interface (API) to allow for the creation
of components for use in integrating custom applications or to allow diverse
components to interact. However, in order to interact, components must adhere
to a binary structure specified by Microsoft. As long as components adhere to
this binary structure, components written in different languages can interoperate.

Distributed COM [DCOM 97] is an extension to COM that allows network-based
component interaction. While COM processes can run on the same machine but
in different address spaces, the DCOM extension allows processes to be spread
across a network. With DCOM, components operating on a variety of platforms
can interact, as long as DCOM is available within the environment.

It is best to consider COM and DCOM as a single technology that provides a
range of services for component interaction, from services promoting component
integration on a single platform, to component interaction across heterogeneous
networks. In fact, COM and its DCOM extensions are merged into a single
runtime. This single runtime provides both local and remote access.

http://www.sei.cmu.edu/str/descriptions/com_body.html (1 of 13)7/28/2008 11:29:49 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/com_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Component Object Model (COM), DCOM, and Related Capabilities

While COM and DCOM represent "low-level" technology that allows components
to interact, OLE [Brockschmidt 95], ActiveX [Active 97] and MTS [Harmon 99]
represent higher-level application services that are built on top of COM and
DCOM. OLE builds on COM to provide services such as object "linking" and
"embedding" that are used in the creation of compound documents (documents
generated from multiple tool sources). ActiveX extends the basic capabilities to
allow components to be embedded in Web sites. MTS expands COM
capabilities with enterprise services such as transaction and security to allow
Enterprise Information Systems (EIS) to be built using COM components. COM+
is the evolution of COM.

COM+ integrates MTS services and message queuing into COM, and makes
COM programming easier through a closer integration with Microsoft languages
as Visual Basic, Visual C++, and J++. COM+ will not only add MTS-like quality of
service into every COM+ object, but it will hide some of the complexities in COM
coding.

The distinctions among various Microsoft technologies and products are
sometimes blurred. Thus, one might read about "OLE technologies" which
encompass COM, or "Active Platform" as a full web solution. In this technology
description, we focus on the underlying technology represented by COM,
DCOM, and COM+.

Technical Detail

COM is a binary compatibility specification and associated implementation that
allows clients to invoke services provided by COM-compliant components (COM
objects). As shown in Figure 5, services implemented by COM objects are
exposed through a set of interfaces that represent the only point of contact
between clients and the object.

Figure 5: Client Using COM Object Through an Interface Pointer [COM 95]

COM defines a binary structure for the interface between the client and the
object. This binary structure provides the basis for interoperability between
software components written in arbitrary languages. As long as a compiler can
reduce language structures down to this binary representation, the
implementation language for clients and COM objects does not matter - the point
of contact is the run-time binary representation. Thus, COM objects and clients
can be coded in any language that supports Microsoft's COM binary structure.

A COM object can support any number of interfaces. An interface provides a
grouped collection of related methods. For example, Figure 6 depicts a COM

http://www.sei.cmu.edu/str/descriptions/com_body.html (2 of 13)7/28/2008 11:29:49 AM

Component Object Model (COM), DCOM, and Related Capabilities

object that emulates a clock. IClock, IAlarm and ITimer are the interfaces of the
clock object. The IClock interface can provide the appropriate methods (not
shown) to allow setting and reading the current time. The IAlarm and ITimer
interfaces can supply alarm and stopwatch methods.

Figure 6: Clock COM object

COM objects and interfaces are specified using Microsoft Interface Definition
Language (IDL), an extension of the DCE Interface Definition Language
standard (see Distributed Computing Environment). To avoid name collisions,
each object and interface must have a unique identifier.

Interfaces are considered logically immutable. Once an interface is defined, it
should not be changed-new methods should not be added and existing methods
should not be modified. This restriction on the interfaces is not enforced, but it is
a rule that component developers should follow. Adhering to this restriction
removes the potential for version incompatibility-if an interface never changes,
then clients depending on the interface can rely on a consistent set of services. If
new functionality has to be added to a component, it can be exposed through a
different interface. For our clock example, we can design an enhanced clock
COM object supporting the IClock2 interface that inherits from IClock. IClock2
may expose new functionality.

Every COM object runs inside of a server. A single server can support multiple
COM objects. As shown in Figure 7, there are three ways in which a client can
access COM objects provided by a server:

1. In-process server: The client can link directly to a library containing the
server. The client and server execute in the same process.
Communication is accomplished through function calls.

2. Local Object Proxy: The client can access a server running in a different
process but on the same machine through an inter-process
communication mechanism. This mechanism is actually a lightweight
Remote Procedure Call (RPC).

3. Remote Object Proxy: The client can access a remote server running on
another machine. The network communication between client and server
is accomplished through DCE RPC. The mechanism supporting access to
remote servers is called DCOM.

http://www.sei.cmu.edu/str/descriptions/com_body.html (3 of 13)7/28/2008 11:29:49 AM

Component Object Model (COM), DCOM, and Related Capabilities

Figure 7: Three Methods for Accessing COM Objects [COM 95]

If the client and server are in the same process, the sharing of data between the
two is simple. However, when the server process is separate from the client
process, as in a local server or remote server, COM must format and bundle the
data in order to share it. This process of preparing the data is called marshalling.
Marshalling is accomplished through a "proxy" object and a "stub" object that
handle the cross-process communication details for any particular interface
(depicted in Figure 8). COM creates the "stub" in the object's server process and
has the stub manage the real interface pointer. COM then creates the "proxy" in
the client's process, and connects it to the stub. The proxy then supplies the
interface pointer to the client.

The client calls the interfaces of the server through the proxy, which marshals
the parameters and passes them to the server stub. The stub unmarshals the
parameters and makes the actual call inside the server object. When the call
completes, the stub marshals return values and passes them to the proxy, which
in turn returns them to the client. The same proxy/stub mechanism is used when
the client and server are on different machines. However, the internal
implementation of marshalling and unmarshalling differs depending on whether
the client and server operate on the same machine (COM) or on different
machines (DCOM). Given an IDL file, the Microsoft IDL compiler can create
default proxy and stub code that performs all necessary marshalling and
unmarshalling.

http://www.sei.cmu.edu/str/descriptions/com_body.html (4 of 13)7/28/2008 11:29:49 AM

Component Object Model (COM), DCOM, and Related Capabilities

Figure 8: Cross-process communication in COM [COM 95]

All COM objects are registered with a component database. As shown in Figure
9, when a client wishes to create and use a COM object:

1. It invokes the COM API to instantiate a new COM object.
2. COM locates the object implementation and initiates a server process for

the object.
3. The server process creates the object, and returns an interface pointer at

the object.
4. The client can then interact with the newly instantiated COM object

through the interface pointer.

An important aspect in COM is that objects have no identity, i.e. a client can ask
for a COM object of some type, but not for a particular object. Every time that
COM is asked for a COM object, a new instance is returned. The main
advantage of this policy is that COM implementations can pool COM objects and
return these pooled objects to requesting clients. Whenever a client has finished
using an object the instance is returned to the pool. However, there are
mechanisms to simulate identity in COM such as monikers (reviewed later).

http://www.sei.cmu.edu/str/descriptions/com_body.html (5 of 13)7/28/2008 11:29:49 AM

Component Object Model (COM), DCOM, and Related Capabilities

Figure 9: Creating a COM object pointer [COM 95]

COM includes interfaces and API functions that expose operating system
services, as well as other mechanisms necessary for a distributed environment
(naming, events, etc.). These are sometimes referred to as COM technologies
(or services), and are shown in Table 3.

Table 3: COM Technologies

Service Explanation

Type
Information

Some clients need runtime access to type information
about COM objects. This type information is generated by
the Microsoft IDL compiler and is stored in a type library.
COM provides interfaces to navigate the type library.

Structured
Storage and Persistence

COM objects need a way to store their data when they are
not running. The process of saving data for an object is
called making an object persistent. COM supports object
persistence through "Structured Storage", which creates
an analog of a file system within a file. Individual COM
objects can store data within the file, thus providing
persistence.

Monikers Clients often require a way to allow them to connect to
the exact same object instance with the exact same state at
a later point in time. This support is provided via
"monikers". A moniker is a COM object that knows how
to create and initialize the content of a single COM object
instance. A moniker can be asked to bind to the COM
object it represents, such as a COM object residing on
specific machine on the network, or a group of cells
inside a spreadsheet.

http://www.sei.cmu.edu/str/descriptions/com_body.html (6 of 13)7/28/2008 11:29:49 AM

Component Object Model (COM), DCOM, and Related Capabilities

Uniform Data Transfer COM objects often need to pass data amongst themselves.
Uniform Data Transfer provides for data transfers and
notifications of data changes between a source called the
data object, and something that uses the data, called the
consumer object.

Connectable Objects Some objects require a way to notify clients that an event
that has occurred. COM allows such objects to define
outgoing interfaces to clients as well as incoming
interfaces. The object defines an interface it would like to
use (e.g., a notification interface) and the client
implements the interface. This enables two-way
communication between the client and the component.

COM has enjoyed great industrial support with thousands of ISVs developing
COM components and applications. However, COM suffers from some
weaknesses that have been recognized by Microsoft and addressed in
Component Object Model+, which is the ongoing upgrade of COM.

1. COM is hard to use. Reference counting, Microsoft IDL, Global Unique
Identifiers (GUID), etc. require deep knowledge of COM specification from
developers.

2. COM is not robust enough for enterprise deployments. Services such as
security, transactions, reliable communications, and load balancing are
not integrated in COM.

Both issues were partially mitigated by add-ons of COM, complexity by
integrated development environments and robustness by MTS. However, to
further address those problems, the company is working to turn COM+ and the
MTS (Microsoft Transaction Server) into one programming model that will
simplifying the lives of developers building distributed, enterprise-wide COM
applications. COM+ integrates seamlessly with all COM-aware languages
(basically Microsoft languages). Users write components in their favorite
language. The tool chosen and the COM+ runtime take care of turning these
classes into COM components [Kirtland 97].

Usage Considerations

A number of issues must be evaluated when considering COM, DCOM, and
COM+. They include

● Platform support. COM and DCOM are best supported on Windows 95
and NT platforms. However, Microsoft has released a version of COM/
DCOM for MacOS that supports OLE-style compound documents and the
creation of ActiveX controls. Software AG, a Microsoft partner, has

http://www.sei.cmu.edu/str/descriptions/com_body.html (7 of 13)7/28/2008 11:29:49 AM

Component Object Model (COM), DCOM, and Related Capabilities

released DCOM for some UNIX operating systems, concretely OS/390,
HP-UX 11.0, SUN Solaris, AIX 4.2, 4.3, Tru64 Unix 4.0 and Linux.
However, DCOM over non-Windows platforms has few supporters. Until
DCOM for alternate platforms has solidified, the technology is best
applied in environments that are primarily Windows-based.

● Platform specificity of COM/DCOM components. Because COM and
DCOM are based on a native binary format, components written to these
specifications are not platform independent. Thus, either they must be
recompiled for a specific platform, or an interpreter for the binary format
must become available. Depending on your perspective, the use of a
binary format may be either an advantage (faster execution, better use of
native platform capabilities) or a disadvantage (ActiveX controls, unlike
Java applets, are NOT machine independent). See Java for more
information.

● Security. Because COM/DCOM components have access to a version of
the Microsoft Windows API, "bad actors" can potentially damage the
user's computing environment. In order to address this problem, Microsoft
employs "Authenticode" [Microsoft 96] which uses public key encryption
to digitally sign components. Independent certification authorities such as
VeriSign issue digital certificates to verify the identity of the source of the
component [VeriSign 97]. However, even certified code can contain
instructions that accidentally, or even maliciously, compromise the user's
environment.

● Support for distributed objects. COM/DCOM provides basic support for
distributed objects. There is currently no support for situations requiring
real time processing, high reliability, or other such specialized component
interaction.

● Stability of APIs. In October of 1996 Microsoft turned over COM/DCOM,
parts of OLE, and ActiveX to the Open Group (a merger of Open
Software Foundation and X/Open). The Open Group has formed the
Active Group to oversee the transformation of the technology into an
open standard. The aim of the Active Group is to promote the
technology's compatibility across systems (Windows, UNIX, and MacOS)
and to oversee future extension by creating working groups dedicated to
specific functions. However, it is unclear how much control Microsoft will
relinquish over the direction of the technology. Certainly, as the inventor
and primary advocate of COM and DCOM, Microsoft is expected to have
strong influence on the overall direction of the technology and underlying
APIs.

● Long-term system maintainability. Microsoft is actively supporting COM
and DCOM technology and pushing it in distributed and Web-based
directions. Microsoft is also trying to preserve existing investments in
COM technology while introducing incremental changes. Microsoft, for
example, has ensured backward compatibility of COM+. Although this
affirmation is in general true, COM objects that access local information in
the registry or in system folders may require modification. In general, the
PC community has not been faced with the concern of very long-lived
systems, and vendors often provide support only for recent releases.

Maturity

COM has its roots in OLE version 1, which was created in 1991 and was a

http://www.sei.cmu.edu/str/descriptions/com_body.html (8 of 13)7/28/2008 11:29:49 AM

Component Object Model (COM), DCOM, and Related Capabilities

proprietary document integration and management framework for the Microsoft
Office suite. Microsoft later realized that document integration is just a special
case of component integration. OLE version 2, released in 1995 was a major
enhancement over its predecessor. The foundation of OLE version 2, now called
COM, provided a general-purpose mechanism for component integration on
Windows platforms [Brockschmidt 95]. While this early version of COM included
some notions of distributed components, more complete support for distribution
became available with the DCOM specifications and implementations for
Windows95 and Windows NT released in 1996. Beta versions of DCOM for Mac,
Solaris and other operating systems followed shortly after.

There are many PC-based applications that take advantage of COM and DCOM
technology. The basic approach has proven sound, and as previously
mentioned, a large component industry has sprung up to take advantage of
opportunities created by the Microsoft technology. On the other hand, DCOM
has just arrived on non-Windows platforms, and there is little experience with it.
DCOM for non-Windows platforms is mainly used to communicate COM based
programs with legacy applications in Mainframes and Unix workstations.

COM+ is much younger than COM, it was announced in Sept. 23, 1997 and
shipped with windows 2000 (a.k.a. Windows NT 5.0). COM+ can be considered
the next release of COM. We are unaware of any large-scale distributed
applications relying on COM+ support.

The computing paradigm for distributed applications is in flux, due to the relative
immaturity of the technology and recent advances in web-based computing. The
Web-centered computing industry has begun to align itself into two technology
camps-with one camp centered around Microsoft's COM/DCOM/COM+, Internet
Explorer, and ActiveX capabilities, and the other camp championing Netscape,
CORBA, and Java/J2EE solutions. Both sides argue vociferously about the
relative merits of their approach, but at this time there is no clear technology
winner. Fortunately, both camps are working on mechanisms to support interplay
between the technology bases. Thus, a COM/DCOM to CORBA mapping is
supported by CORBA vendors [Foody 96], and Microsoft has incorporated Java
into an Internet strategy. However, work on interconnection between the
competing approaches is not complete, and each camp would shed few tears if
the other side folded.

Costs and Limitations

Low cost development tools from Microsoft (such as Visual C++ or Visual Basic),
as well as tools from other vendors provide the ability to build and access COM
components for Windows platforms. Construction of clients and servers is
straightforward on these platforms. In addition, the initial purchase price for COM
and DCOM is low on Windows platforms. For other platforms the prices are
considerably more expensive. DCOM for mainframes, for example, costs around
two hundred thousand dollars by December 1999.

Beyond basic costs to procure the technology, any serious software
development using COM/DCOM/COM+ requires substantial programmer
expertise-the complexities of building distributed applications are not eliminated.

http://www.sei.cmu.edu/str/descriptions/com_body.html (9 of 13)7/28/2008 11:29:49 AM

Component Object Model (COM), DCOM, and Related Capabilities

It would be a serious mistake to assume that the advent of distributed object
technologies like COM/DCOM/COM+ reduces the need for expertise in areas
like distributed systems design, multi-threaded applications, and networking.

However, Microsoft has a strong support organization to assist individuals
developing COM/DCOM clients and objects: many sample components, books
and guides on the subject of COM/DCOM development are available.
Unfortunately, information on COM+ is limited at this time.

Dependencies

Dependencies include Remote Procedure Call and Distributed Computing
Environment.

Alternatives

COM/DCOM/COM+ represents one of a number of alternate technologies that
support distributed computing. Some technologies, such as remote procedure
call, offer "low level" distribution support. Other technologies, such as message
oriented middleware and transaction processing monitors, offer distribution
support paradigms outside the realm of objects. The Common Object Request
Broker Architecture (CORBA) and Java 2 Enterprise Edition (J2EE) can be
considered direct competitors to COM/DCOM. Information about technologies
supporting distributed computing is available in the following places:

● Distributed Computing Environment
● Remote Procedure Call
● Message-Oriented Middleware
● Transaction Processing Monitor Technology
● Common Object Request Broker Architecture
● Two Tier Software Architectures
● Java

Complementary Technologies

One commonly hears of COM and DCOM in conjunction with OLE, ActiveX,
MTS and COM+. Indeed, these and other technologies constitute Microsoft's
distributed and web-oriented strategy. This strategy is globally referred as
Distributed interNet Architecture(tm) (DNA) and it comprises a full set of
products and specifications to implement net-centric applications.

Technologies championed by other vendors can also be used in conjunction with
COM. For example, COM objects can be created and manipulated from Java
code. Tools are provided to create Java classes from COM type library
information-these classes can be included in Java code. Using Internet Explorer,
Java programs can also expose functionality as COM services. In general,
Microsoft's approach for Java support involves tying it very closely to its existing
Internet strategy (Internet Explorer, COM/DCOM, ActiveX); i.e., to provide a
mechanism for interfacing to the wide range of components that already adhere

http://www.sei.cmu.edu/str/descriptions/com_body.html (10 of 13)7/28/2008 11:29:49 AM

Component Object Model (COM), DCOM, and Related Capabilities

to Microsoft's strategy and specifications.

COM+ is a good candidate to implement the middle layer of multitier
architectures. The distribution support and quality of service provided by COM+
can help to overcome some of the complexities involved in these architectures.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Component Object Model (COM), DCOM, and
Related Capabilities

Application category Software Architecture Models (AP.2.1.1)
Client/Server (AP.2.1.2.1)
Client/Server Communications (AP.2.2.1)

Quality measures category Maintainability (QM.3.1)
Interoperability (QM.4.1)
Reusability (QM.4.4)

Computing reviews category Distributed Systems (C.2.4)
Object-Oriented Programming (D.1.5)

References and Information Sources

[Active 97] Active Group home page [online]. Available WWW
<URL: http://www.activex.org/> (1997).

[Brockschmidt 95] Brockschmidt, Kraig. Inside OLE, 2nd edition, Microsoft
Press, 1995

[Chappell 96] Chappell, David. DCE and Objects [online]. Available WWW
<URL: http://www.opengroup.org/dce/info/dce_objects.htm>
(1996).

http://www.sei.cmu.edu/str/descriptions/com_body.html (11 of 13)7/28/2008 11:29:49 AM

http://www.activex.org/
http://www.opengroup.org/dce/info/dce_objects.htm

Component Object Model (COM), DCOM, and Related Capabilities

[COM 95] Microsoft Corporation. The Component Object Model
Specification, Version 0.9, October 24, 1995 [online].
Available WWW
<URL: http://www.microsoft.com/com/resources/comdocs.
asp>(1995).

[DCOM 97] Microsoft Corporation. Distributed Component Object Model
Protocol-DCOM/1.0, draft, November 1996 [online].
Available WWW
<URL: http://www.globecom.net/ietf/draft/draft-brown-dcom-
v1-spec-03.html> (1996).

[Foody 96] Foody, M.A. "OLE and COM vs. CORBA." UNIX Review
14, 4. (April 1996): 43-45.

[Harmon 99] Harmon, Paul. Microsoft transaction Server. Component
development Strategies Vol IX No 3. Available WWW
<URL: http://www.cutter.com/cds/1999toc.htm#mar > 1999

[Kirtland 97] Kirtland, Mary. "The COM+ Programming Model Makes it
Easy to Write Components in Any Language". Microsoft
System Journal. Dec, 1997.

[Microsoft 96] Microsoft Corporation. Microsoft Authenticode Technology
[online]. Available WWW
<URL: http://www.microsoft.com/security/tech/misf8.htm>
(1996).

[MSCOM 97] Microsoft home page [online]. The site provides information
about COM, DCOM and OLE. Available WWW
<URL: http://www.microsoft.com/> (1997).

[OMG 97] Object Management Group home page [online]. The site
provides information comparing DCOM (ActiveX) to
CORBA. Available WWW
<URL: http://www.omg.org/> (1997).

[VeriSign 97] Verisign home page [online]. Available WWW
<URL: http://www.verisign.com> (1997).

Current Author/Maintainer

Santiago Comella-Dorda, SEI

http://www.sei.cmu.edu/str/descriptions/com_body.html (12 of 13)7/28/2008 11:29:49 AM

http://www.microsoft.com/com/resources/comdocs.asp
http://www.microsoft.com/com/resources/comdocs.asp
http://www.globecom.net/ietf/draft/draft-brown-dcom-v1-spec-03.html
http://www.globecom.net/ietf/draft/draft-brown-dcom-v1-spec-03.html
http://www.cutter.com/cds/1999toc.htm#mar
http://www.microsoft.com/security/tech/misf8.htm
http://www.microsoft.com/
http://www.omg.org/
http://www.verisign.com/

Component Object Model (COM), DCOM, and Related Capabilities

External Reviewers

Modifications

13 Mar 2001: Update with new developments of COM
23 June 1997: Total replacement text
10 Jan 1997: Original

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/com_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/com_body.html (13 of 13)7/28/2008 11:29:49 AM

http://www.sei.cmu.edu/about/disclaimer.html

COM 95

References and Information Sources

[Kirtland 97] Kirtland, Mary. "The COM+ Programming Model Makes it Easy to Write Components in
Any Language". Microsoft System Journal. Dec, 1997.

http://www.sei.cmu.edu/str/indexes/references/Kirtland_97.html7/28/2008 11:29:49 AM

Microsoft 96

References and Information Sources

[Microsoft
96]

Microsoft Corporation. Microsoft Authenticode Technology [online]. Available
WWW
<URL: http://www.microsoft.com/security/tech/misf8.htm> (1996).

http://www.sei.cmu.edu/str/indexes/references/Microsoft_96.html7/28/2008 11:29:50 AM

http://www.microsoft.com/security/tech/misf8.htm

VeriSign 97

References and Information Sources

[VeriSign
97]

Verisign home page [online]. Available WWW
<URL: http://www.verisign.com> (1997).

http://www.sei.cmu.edu/str/indexes/references/VeriSign_97.html7/28/2008 11:29:50 AM

http://www.verisign.com/

Foody 96

References and Information Sources

[Foody
96]

Foody, M.A. "OLE and COM vs. CORBA." UNIX Review 14, 4. (April 1996): 43-
45.

http://www.sei.cmu.edu/str/indexes/references/Foody_96.html7/28/2008 11:29:50 AM

Computer System Security--An Overview

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Computer System Security--An Overview

Status

Advanced

Purpose and Origin

C4I systems include networks of computers that provide real-time situation data
for military decision makers and a means of directing response to a situation.
These networks collect data from sensors and subordinate commands. That
data is fused with the existing situation status data and presented by the C4I
system to decision makers through display devices. C4I networks today may
incorporate two general types of networks: networks of Multi-level Secure (MLS)
Systems, and Intranets of single level systems. Figure 5 shows the relevant
major security components of a C4I computer system network.

Figure 5: Computer System Security in C4I Systems

This technology description is tutorial in nature. It provides a general overview of
key concepts and introduces key technologies. Detailed discussions of the

http://www.sei.cmu.edu/str/descriptions/security_body.html (1 of 5)7/28/2008 11:29:51 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/security_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Computer System Security--An Overview

individual technologies can be found in the referenced technology descriptions.

Technical Detail

Some computers in the network are hosts that collect and process data. A host
can be a mainframe, a server, a workstation, or a PC. It may perform the
function of an application processor, a communication processor, a database
processor, a display processor, or a combination. The security mode for the host
may be single-level or multi-level. A single-level host processes all data as
though it was one security level. A multi-level host can process data at different
security levels, identify and isolate data in the appropriate levels or categories,
and distribute data only to the appropriately cleared users.

C4I systems benefit from multi-level security implementations because C4I
systems fuse data from sources with a wide range of security levels and provide
status, warning data, or direction to war fighting systems that may be at lesser
security levels. An MLS operating system (see Multi-Level Secure One Way
Guard with Random Acknowledgment) provides the software that makes a host
MLS. A particular kind of MLS host is the Compartmented Mode Workstation
(CMW). A CMW is a MLS host that has been evaluated to satisfy the Defense
Intelligence Agency CMW requirements [Woodward 87] in addition to the
Trusted Computer System Evaluation Criteria [DoD 85]. A MLS host may use a
MLS DBMS (see Multi-Level Secure Database Management Schemes) to store
and retrieve data at multiple security levels. A MLS guard provides a secure
interface across a security boundary between systems operating at different
security levels or modes.

MLS guards may allow data across the interface automatically or may require
manual review of data and approval of transfer on an attached terminal. They
also may control data transfer across the interface in both directions or be limited
to allowing data to be transferred one way, usually from the low security level
side of a security boundary to the high security level side. One-way guards are
usually the easiest to implement and accredit for use. Data integrity is an issue
with one-way guards because an acknowledgment message can not be used.
Recent research in one-way guards has addressed allowing an acknowledgment
message (see Multi-Level Secure One Way Guard with Random
Acknowledgment).

Intranets use the same kind of networking software (e.g., TCP/IP, Telnet,
Netnews, DNS, browsers, home pages) that is used on the Internet, but
Intranets use them on a private dedicated network. They are in essence a
private Internet. They are used in a growing number of ways in many military
and corporate networks including mission performance, off-line processing of
raw data, administrative support, and mail networks. They may be incorporated
into C4I systems using firewalls or proxies (see Firewalls and Proxies) and MLS
guards. Firewalls or proxies may be used to provide a security interface to the
Internet. If the Intranets are to be connected to MLS systems, they must be
connected through MLS guards. In an environment with Intranet hosts, a major
concern is Virus Detection and Intrusion Detection. PCs on a network are
particularly susceptible to virus attacks from other hosts on the network or the

http://www.sei.cmu.edu/str/descriptions/security_body.html (2 of 5)7/28/2008 11:29:51 AM

Computer System Security--An Overview

Internet. PCs are also vulnerable to viruses carried on floppy disks. Since PCs
are now in most homes, transfer of files from home to work via floppy disk
provides the risk of introducing a virus into the Intranet. PCs are more vulnerable
to viruses than UNIX-based workstations or mainframes because the PC has no
memory protection hardware and the operating system (DOS and Windows)
allows a program to access any part of memory or disk.

Security across the networks in a C4I system is crucial. Traditionally this security
is provided by physically protecting the equipment and cables in the network for
localized networks. When that is not possible, the network connections are
encrypted using encryption hardware in the communications paths. End-to-end
encryption is an alternative that encrypts the data using software before it is put
on the network and decrypts it after it has been taken off of the network. Then
non-encrypted circuits can be used for communications.

Any encryption system involves the distribution of keys used by the encryption
algorithm for the encryption/decryption of messages and data. Encryption keys
must be replaced periodically to enhance security or when the key has been
compromised or lost. Traditionally these keys have been distributed through
couriers or encrypted circuits. Public key cryptography provides a means of
electronic encryption key distribution that can lower the security risk and
administrative workload associated with encryption.

Data integrity is another issue associated with the networks used in C4I
systems. Public Key Digital Signatures and providing for Nonrepudiation in
Network Communications are two means to enhance data integrity. Public key
digital signatures, which make use of public key encryption and message
authentication codes, are a means to authenticate that data came from the
person identified as the sender and that the data has not been modified. The
nonrepudiation process uses a digital signature and a trusted arbitrator process
to assure that a particular message has been sent and received and to establish
the time when this occurred.

Usage Considerations

MLS systems require specialized knowledge to build, accredit, and maintain.
The cost of MLS systems can be high. The system development overhead and
operational performance overhead associated with MLS systems are substantial.
They are difficult to implement in an "open" configuration because open
requirements sometimes conflict with MLS requirements. On the other hand,
using MLS techniques may be the only allowable way to construct some C4I
systems. Operational security vulnerabilities may be unacceptable without MLS
implementations. Procedural security approaches may be too slow for an
operational C4I system as a non-MLS approach. A single-level system approach
may be too restrictive. For example, a secret single-level system that contains
unclassified, confidential, and secret data will not release confidential data to a
user who is cleared for confidential and needs the data. That is because the
system cannot determine what data is confidential rather than secret. Further
usage discussions are addressed in individual technology descriptions.

The National Security Agency (NSA) Multilevel Information Systems Security

http://www.sei.cmu.edu/str/descriptions/security_body.html (3 of 5)7/28/2008 11:29:51 AM

Computer System Security--An Overview

Initiative (MISSI) is an evolutionary effort intended to provide better MLS
capability in a cost-effective manner [MISSI 96]. This effort was initiated after the
Gulf War when it was recognized that war fighting commanders needed MLS
systems in order to incorporate intelligence and other highly classified data into
their planning and operations in a timely manner. The MISSI effort is developing
a set of building block products that can be obtained commercially to construct
an MLS system. The initial products include the FORTEZZA crypto cards and
associated FORTEZZA ready workstation applications to control access to and
protect data on a workstation in a network environment. Other products include
high-assurance guards and firewalls to provide access control and encryption
services between the local security boundary and external networks. MISSI will
also include secure computing products that provide high-trust operating
systems and application programs for MLS hosts, and network encryption and
security management products. These products can be incorporated into
developing MLS systems as the products become available.

Maturity

See individual technologies.

Costs and Limitations

See individual technologies.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Computer System Security - an Overview

Application category Information Security (AP.2.4)

Quality measures category Security (QM.2.1.5)

Computing reviews category Operating Systems Security & Protection (D.4.6),
Security & Protection (K.6.5),
Computer-Communications Networks Security and
Protection (C.2.0)

References and Information Sources

http://www.sei.cmu.edu/str/descriptions/security_body.html (4 of 5)7/28/2008 11:29:51 AM

Computer System Security--An Overview

[Abrams 95] Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J. Information
Security An Integrated Collection of Essays. Los Alamitos, CA: IEEE
Computer Society Press, 1995.

[Woodward 87] Woodward, John. Security Requirements for High and Compartmented
Mode Workstations (MTR 9992, DDS 2600-5502-87). Washington,
DC: Defense Intelligence Agency, 1987.

[DoD 85] Department of Defense (DoD) Trusted Computer System Evaluation
Criteria (TCSEC) (DoD 5200.28-STD 1985). Fort Meade, MD:
Department of Defense, 1985. Also available WWW
<URL: http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.
html> (1985).

[MISSI 96] MISSI Web site [online]. Available WWW
<URL: http://beta.missilab.com> (1996).

[Russel 91] Russel, Deborah & Gangemi, G.T. Sr. Computer Security Basics.
Sebastopol, CA: O'Reilly & Associates, Inc., 1991.

[White 96] White, Gregory B.; Fisch, Eric A.; & Pooch, Udo W. Computer System
and Network Security. Boca Raton, FL: CRC Press, 1996.

Current Author/Maintainer

Tom Mills, Lockheed Martin

External Reviewers

Brian Gallagher, SEI

Modifications

8 July 97: added reference to MLS One-Way Guard with Random Ack.
20 June 97: updated URL for [MISSI 96]
10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/security_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/security_body.html (5 of 5)7/28/2008 11:29:51 AM

http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html
http://beta.missilab.com/
http://www.sei.cmu.edu/about/disclaimer.html

Woodward 87

References and Information Sources

[Woodward
87]

Woodward, John. Security Requirements for High and Compartmented Mode
Workstations (MTR 9992, DDS 2600-5502-87). Washington, DC: Defense
Intelligence Agency, 1987.

http://www.sei.cmu.edu/str/indexes/references/Woodward_87.html7/28/2008 11:29:51 AM

MISSI 96

References and Information Sources

[MISSI
96]

MISSI Web site [online]. Available
WWW
<URL: http://beta.missilab.com> (1996).

http://www.sei.cmu.edu/str/indexes/references/MISSI_96.html7/28/2008 11:29:51 AM

http://beta.missilab.com/

Related Topics

Related Topics

Information Security (AP.2.4)

● Computer System Security -- an Overview
● Electronic Encryption Key Distribution
● End-to-End Encryption
● Trusted Computing Base
● Virus Detection

http://www.sei.cmu.edu/str/taxonomies/ap.2.4.html7/28/2008 11:29:51 AM

FAR 96

References and Information Sources

[FAR
96]

Federal Acquisition Regulations. Washington, DC: General Services Administration,
1996.

http://www.sei.cmu.edu/str/indexes/references/FAR_96.html7/28/2008 11:29:52 AM

COTS and Open Systems - An Overview - Notes

Notes

1 "Property" in this definition explicitly excludes real property.

http://www.sei.cmu.edu/str/descriptions/notes/cots_1.html7/28/2008 11:29:52 AM

Meyers 97

References and Information Sources

[Meyers
97]

Meyers, Craig & Oberndorf, Tricia. Open Systems: The Promises and the Pitfalls.
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 1997.

http://www.sei.cmu.edu/str/indexes/references/Meyers_97.html7/28/2008 11:29:52 AM

COTS and Open Systems - An Overview - Notes

Notes

2 It should be noted that interface specifications are in general not sufficient to ensure full "plug-and-
play" operation. In practice, the real interface between two components of a system consists of all the
assumptions that each makes about the other. APIs, data formats, and protocols address a large number
of these assumptions, but by no means all of them. It remains for further investigations to determine the
full set of interface knowledge that must be standardized to ever get really close to an ideal "plug-and-
play" system creation process.

http://www.sei.cmu.edu/str/descriptions/notes/cots_2.html7/28/2008 11:29:52 AM

COTS and Open Systems - An Overview - Notes

Notes

3 In June 1994 Secretary of Defense William Perry directed that DoD acquisitions should make
maximum use of performance specifications and commercial standards. In November 1994
Undersecretary of Defense (Acquisition and Technology) Paul Kaminski directed "that `open systems'
specifications and standards be used for acquisition of weapon systems electronics to the greatest extent
practical."

http://www.sei.cmu.edu/str/descriptions/notes/cots_3.html7/28/2008 11:29:53 AM

Carney 97a

References and Information Sources

[Carney
97a]

Carney, D, & Oberndorf, P. "The Commandments of COTS: Still Searching for the
Promised Land." Crosstalk 10, 5 (May 1997): 25-30. Also available online at
<URL: http://www.sei.cmu.edu/cbs/SEI_refs.html> (Postscript) and
<URL: http://www.stsc.hill.af.mil/CrossTalk/1997/may/commandments.html>.

http://www.sei.cmu.edu/str/indexes/references/Carney_97a_bold.html7/28/2008 11:29:53 AM

http://www.sei.cmu.edu/cbs/SEI_refs.html
http://www.stsc.hill.af.mil/CrossTalk/1997/may/commandments.html

Carney 97b

References and Information Sources

[Carney
97b]

Carney, D. Assembling Large Systems from COTS Components: Opportunities,
Cautions, and Complexities [online]. Available WWW <URL: http://www.sei.cmu.edu/
cbs/papers/paper13a.html>.

http://www.sei.cmu.edu/str/indexes/references/Carney_97b_bold.html7/28/2008 11:29:53 AM

http://www.sei.cmu.edu/cbs/papers/paper13a.html
http://www.sei.cmu.edu/cbs/papers/paper13a.html

IEWCS 96

References and Information Sources

[IEWCS
96]

Open Systems Joint Task Force Case Study of U.S. Army Intelligence and Electronic
Warfare Common Sensor (IEWCS) [online]. Available WWW
<URL: http://www.acq.osd.mil/osjtf/caserpt.htm> (1996).

http://www.sei.cmu.edu/str/indexes/references/IEWCS_96.html7/28/2008 11:29:53 AM

http://www.acq.osd.mil/osjtf/caserpt.htm

OSJTF 96

References and Information Sources

[OSJTF
96]

Open Systems Joint Task Force Baseline Study [online]. Available
WWW
<URL: http://www.acq.osd.mil/osjtf/baseline.doc> (1996).

http://www.sei.cmu.edu/str/indexes/references/OSJTF_96.html7/28/2008 11:29:54 AM

http://www.acq.osd.mil/osjtf/baseline.doc

Related Topics

Related Topics

Interfaces Design (AP.1.3.3)

● COTS and Open Systems - An Overview
● Graphical User Interface Builders
● Interface Definition Language

http://www.sei.cmu.edu/str/taxonomies/ap.1.3.3.html7/28/2008 11:29:54 AM

Related Topics

Related Topics

Software Architecture (AP.2.1)

● COTS and Open Systems - An Overview
● Fault Tolerant Computing
● File Server Software Architecture
● Real-Time Computing
● Reference Models, Architectures, Implementations -- An Overview
● Simplex Architecture
● Trusted Computing Base

http://www.sei.cmu.edu/str/taxonomies/ap.2.1.html7/28/2008 11:29:54 AM

Related Topics

Related Topics

Openness (Commonality) (QM.4.1.2)

● COTS and Open Systems - An Overview
● Network Management -- An Overview

http://www.sei.cmu.edu/str/taxonomies/qm.4.1.2.html7/28/2008 11:29:54 AM

McCabe 94

References and Information Sources

[McCabe
94]

McCabe, Thomas J. & Watson, Arthur H. "Software Complexity." Crosstalk, Journal of
Defense Software Engineering 7, 12 (December 1994): 5-9.

http://www.sei.cmu.edu/str/indexes/references/McCabe_94.html7/28/2008 11:29:55 AM

McCabe 89

References and Information Sources

[McCabe
89]

McCabe, Thomas J. & Butler, Charles W. "Design Complexity Measurement and
Testing." Communications of the ACM 32, 12 (December 1989): 1415-1425.

http://www.sei.cmu.edu/str/indexes/references/McCabe_89.html7/28/2008 11:29:55 AM

Cyclomatic Complexity

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Cyclomatic Complexity

Status

Advanced

Note

We recommend reading Maintenance of Operational Systems--An Overview
before reading this description; it offers a view of the life cycle of software from
development through reengineering. We also recommend concurrent reading of
Maintainability Index Technique for Measuring Program Maintainability, which
illustrates a specific application of cyclomatic complexity to quantify the
maintainability of software. These descriptions provide a framework for
assessing the applicability of cyclomatic complexity and other technologies to a
specific environment.

Purpose and Origin

Cyclomatic complexity is the most widely used member of a class of static
software metrics. Cyclomatic complexity may be considered a broad measure of
soundness and confidence for a program. Introduced by Thomas McCabe in
1976, it measures the number of linearly-independent paths through a program
module. This measure provides a single ordinal number that can be compared to
the complexity of other programs. Cyclomatic complexity is often referred to
simply as program complexity, or as McCabe's complexity. It is often used in
concert with other software metrics. As one of the more widely-accepted
software metrics, it is intended to be independent of language and language
format [McCabe 94].

Cyclomatic complexity has also been extended to encompass the design and
structural complexity of a system [McCabe 89].

Technical Detail

The cyclomatic complexity of a software module is calculated from a connected
graph of the module (that shows the topology of control flow within the program):

Cyclomatic complexity (CC) = E - N + p

http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html (1 of 7)7/28/2008 11:29:56 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/cyclomatic_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Cyclomatic Complexity

where E = the number of edges of the graph

N = the number of nodes of the graph

p = the number of connected components

To actually count these elements requires establishing a counting convention
(tools to count cyclomatic complexity contain these conventions). The complexity
number is generally considered to provide a stronger measure of a program's
structural complexity than is provided by counting lines of code. Figure 6 is a
connected graph of a simple program with a cyclomatic complexity of seven.
Nodes are the numbered locations, which correspond to logic branch points;
edges are the lines between the nodes.

Figure 6: Connected Graph of a Simple Program

A large number of programs have been measured, and ranges of complexity
have been established that help the software engineer determine a program's
inherent risk and stability. The resulting calibrated measure can be used in
development, maintenance, and reengineering situations to develop estimates of
risk, cost, or program stability. Studies show a correlation between a program's
cyclomatic complexity and its error frequency. A low cyclomatic complexity
contributes to a program's understandability and indicates it is amenable to
modification at lower risk than a more complex program. A module's cyclomatic

http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html (2 of 7)7/28/2008 11:29:56 AM

Cyclomatic Complexity

complexity is also a strong indicator of its testability (see Test planning under
Usage Considerations).

A common application of cyclomatic complexity is to compare it against a set of
threshold values. One such threshold set is in Table 4:

Table 4: Cyclomatic Complexity

Cyclomatic Complexity Risk Evaluation

1-10 a simple program, without much risk

11-20 more complex, moderate risk

21-50 complex, high risk program

greater than 50 untestable program (very high risk)

Usage Considerations

Cyclomatic complexity can be applied in several areas, including

● Code development risk analysis. While code is under development, it can
be measured for complexity to assess inherent risk or risk buildup.

● Change risk analysis in maintenance. Code complexity tends to increase
as it is maintained over time. By measuring the complexity before and
after a proposed change, this buildup can be monitored and used to help
decide how to minimize the risk of the change.

● Test Planning. Mathematical analysis has shown that cyclomatic
complexity gives the exact number of tests needed to test every decision
point in a program for each outcome. Thus, the analysis can be used for
test planning. An excessively complex module will require a prohibitive
number of test steps; that number can be reduced to a practical size by
breaking the module into smaller, less-complex sub-modules.

● Reengineering. Cyclomatic complexity analysis provides knowledge of
the structure of the operational code of a system. The risk involved in
reengineering a piece of code is related to its complexity. Therefore, cost
and risk analysis can benefit from proper application of such an analysis.

Cyclomatic complexity can be calculated manually for small program suites, but
automated tools are preferable for most operational environments. For
automated graphing and complexity calculation, the technology is language-
sensitive; there must be a front-end source parser for each language, with

http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html (3 of 7)7/28/2008 11:29:56 AM

Cyclomatic Complexity

variants for dialectic differences.

Cyclomatic complexity is usually only moderately sensitive to program change.
Other measures (see Complementary Technologies) may be very sensitive. It is
common to use several metrics together, either as checks against each other or
as part of a calculation set (see Maintainability Index Technique for Measuring
Program Maintainability).

Maturity

Cyclomatic complexity measurement, an established but evolving technology,
was introduced in 1976. Since that time it has been applied to tens of millions of
lines of code in both Department of Defense (DoD) and commercial applications.
The resulting base of empirical knowledge has allowed software developers to
calibrate measurements of their own software and arrive at some understanding
of its complexity. Code graphing and complexity calculation tools are available
as part (or as options) of several commercial software environments.

Costs and Limitations

Cyclomatic complexity measurement tools are typically bundled inside
commercially-available CASE toolsets. It is usually one of several metrics
offered. Application of complexity measurements requires a small amount of
training. The fact that a code module has high cyclomatic complexity does not,
by itself, mean that it represents excess risk, or that it can or should be
redesigned to make it simpler; more must be known about the specific
application.

Alternatives

Cyclomatic complexity is one measure of structural complexity. Other metrics
bring out other facets of complexity, including both structural and computational
complexity, as shown in Table 5.

Table 5: Other Facets of Complexity

Complexity Measurement Primary Measure of

Halstead Complexity Measures Algorithmic complexity, measured by counting
operators and operands

Henry and Kafura metrics Coupling between modules (parameters, global
variables, calls)

Bowles metrics Module and system complexity; coupling via
parameters and global variables

http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html (4 of 7)7/28/2008 11:29:56 AM

Cyclomatic Complexity

Troy and Zweben metrics Modularity or coupling; complexity of structure
(maximum depth of structure chart); calls-to and
called-by

Ligier metrics Modularity of the structure chart

Marciniak offers a more complete description of complexity measures and the
complexity factors they measure [Marciniak 94].

Complementary Technologies

The following three metrics are specialized measures that are used in specific
situations:

1. Essential complexity. This measures how much unstructured logic exists
in a module (e.g., a loop with an exiting GOTO statement).

2. The program in Figure 6 has no such unstructured logic, so its essential
complexity value is one.

3. Design complexity. This measures interaction between decision logic and
subroutine or function calls.

4. The program in Figure 6 has a design complexity value of 4, which is well
within the range of desirability.

5. Data complexity. This measures interaction between data references and
decision logic.

Other metrics that are "related" to Cyclomatic complexity in general intent are
also available in some CASE toolsets.

The metrics listed in Alternatives are also complementary; each metric highlights
a different facet of the source code.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Cyclomatic Complexity

Application category Test (AP.1.4.3)
Reapply Software Lifecyle (AP.1.9.3)
Reverse Engineering (AP.1.9.4)
Reengineering (AP.1.9.5)

http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html (5 of 7)7/28/2008 11:29:56 AM

Cyclomatic Complexity

Quality measures category Maintainability (QM.3.1)
Testability (QM.1.4.1)
Complexity (QM.3.2.1)
Structuredness (QM.3.2.3)

Computing reviews category Software Engineering Metrics (D.2.8)
Complexity Classes (F.1.3)
Tradeoffs Among Complexity Measures (F.2.3)

References and Information Sources

[Marciniak
94]

Marciniak, John J., ed. Encyclopedia of Software Engineering, 131-
165. New York, NY: John Wiley & Sons, 1994.

[McCabe 89] McCabe, Thomas J. & Butler, Charles W. "Design Complexity
Measurement and Testing." Communications of the ACM 32, 12
(December 1989): 1415-1425.

[McCabe 94] McCabe, Thomas J. & Watson, Arthur H. "Software Complexity."
Crosstalk, Journal of Defense Software Engineering 7, 12 (December
1994): 5-9.

[Perry 88] Perry, William E. A Structured Approach to Systems Testing.
Wellesley, MA: QED Information Sciences, 1988.

[Watson 96] Watson, Arthur H. & McCabe, Thomas J. "Structured Testing: A
Testing Methodology Using the Cyclomatic Complexity
Metric." [online]. Available WWW,
<URL: http://hissa.ncsl.nist.gov/HHRFdata/Artifacts/ITLdoc/235/
mccabe.html> (1996).

Current Author/Maintainer

Edmond VanDoren, Kaman Sciences, Colorado Springs

Modifications

12 Jul 2000: Updated reference list

10 Jan 1997 (original)

http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html (6 of 7)7/28/2008 11:29:56 AM

http://hissa.ncsl.nist.gov/HHRFdata/Artifacts/ITLdoc/235/mccabe.html
http://hissa.ncsl.nist.gov/HHRFdata/Artifacts/ITLdoc/235/mccabe.html

Cyclomatic Complexity

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html (7 of 7)7/28/2008 11:29:56 AM

http://www.sei.cmu.edu/about/disclaimer.html

Testability - Definition

Glossary Term

Testability
the degree to which a system or component facilitates the establishment of test criteria and the
performance of tests to determine whether those criteria have been met [IEEE 90]. Note: Not
only is testability a measurement for software, it can also apply to the testing scheme.

http://www.sei.cmu.edu/str/indexes/glossary/testability.html7/28/2008 11:29:56 AM

Marciniak 94

References and Information Sources

[Marciniak
94]

Marciniak, John J., ed. Encyclopedia of Software Engineering, 131-165. New York,
NY: John Wiley & Sons, 1994.

http://www.sei.cmu.edu/str/indexes/references/Marciniak_94_bold.html7/28/2008 11:29:56 AM

Related Topics

Related Topics

Testability (QM.1.4.1)

● Cyclomatic Complexity
● Graphic Tools for Legacy Database Migration
● Halstead Complexity Measures
● Maintainability Index Technique for Measuring Program Maintainability

http://www.sei.cmu.edu/str/taxonomies/qm.1.4.1.html7/28/2008 11:29:57 AM

Accuracy - Definition

Glossary Term

Accuracy
a quantitative measure of the magnitude of error [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/accuracy.html7/28/2008 11:29:57 AM

ORACLE7 92

References and Information Sources

[ORACLE7
92]

"Two-Phase Commit," 22-1-22-21. ORACLE7 Server Concept Manual (6693-70-
1292). Redwood City, CA: Oracle, 1992.

http://www.sei.cmu.edu/str/indexes/references/ORACLE7_92_bold.html7/28/2008 11:29:57 AM

UCSB 94

References and Information Sources

[UCSB
94]

The Performance of Two-Phase Commit Protocols in the Presence of Site Failures
(TRCS94-09). Santa Barbara, CA: University of California, Computer Science
Department, April 1994.

http://www.sei.cmu.edu/str/indexes/references/UCSB_94_bold.html7/28/2008 11:29:57 AM

Database Two Phase Commit

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Database Two Phase Commit

Status

Advanced

Note

We recommend Three Tier Software Architectures as prerequisite reading for
this technology description.

Purpose and Origin

Since the 1980s, two phase commit technology has been used to automatically
control and monitor commit and/or rollback activities for transactions in a
distributed database system. Two phase commit technology is used when data
updates need to occur simultaneously at multiple databases within a distributed
system. Two phase commits are done to maintain data integrity and accuracy
within the distributed databases through synchronized locking of all pieces of a
transaction. Two phase commit is a proven solution when data integrity in a
distributed system is a requirement. Two phase commit technology is used for
hotel and airline reservations, stock market transactions, banking applications,
and credit card systems. For more details on two phase commit see the
ORACLE7 Server Concept Manual and The Performance of Two-Phase Commit
Protocols in the Presence of Site Failures [ORACLE7 92, UCSB 94].

Technical Detail

As shown in Figure 7, applying two phase commit protocols ensures that
execution of data transactions are synchronized, either all committed or all rolled
back (not committed) to each of the distributed databases.

http://www.sei.cmu.edu/str/descriptions/dtpc_body.html (1 of 5)7/28/2008 11:29:58 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/dtpc_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Database Two Phase Commit

Figure 7: Distributed Databases When Two Phase Commit Happens
Simultaneously Through the Network

When dealing with distributed databases, such as in the client/server
architecture, distributed transactions need to be coordinated throughout the
network to ensure data integrity for the users. Distributed databases using the
two phase commit technique update all participating databases simultaneously.

Unlike non-distributed databases (see Figure 8), where a single change is or is
not made locally, all participating databases must all commit or all rollback in
distributed databases, even if there is a system or network failure at any node.
This is how the two phase commit process maintains system data integrity.

Figure 8: Non-Distributed Databases Make Only Local Updates

Two phase commit has two distinct processes that are accomplished in less than
a fraction of a second:

1. The Prepare Phase, where the global coordinator (initiating database)
requests that all participants (distributed databases) will promise to
commit or rollback the transaction. (Note: Any database could serve as
the global coordinator, depending on the transaction.)

http://www.sei.cmu.edu/str/descriptions/dtpc_body.html (2 of 5)7/28/2008 11:29:58 AM

Database Two Phase Commit

2. The Commit Phase, where all participants respond to the coordinator that
they are prepared, then the coordinator asks all nodes to commit the
transaction. If all participants cannot prepare or there is a system
component failure, the coordinator asks all databases to roll back the
transaction.

Should there be a machine, network, or software failure during the two phase
commit process, the two phase commit protocols will automatically and
transparently complete the recovery with no work from the database
administrator. This is done through use of pending transaction tables in each
database where information about distributed transaction is maintained as they
proceed through the two phase commit. Information in the pending transaction
table is used by the recovery process to resolve any transaction of questionable
status. This information can also be used by the database administrator to
override automated recovery procedures by forcing a commit or a rollback to
available participating databases.

Usage Considerations

Two phase commit protocols are offered in all modern distributed database
products. However, the methods for implementing two phase commits may vary
in the degree of automation provided. Some vendors provide a two phase
commit implementation that is transparent to the application. Other vendors
require specific programming of the calls into an application, and additional
programming would be needed should rollback be a requirement; this situation
would most likely result in an increase to program cost and schedule.

Maturity

The two phase commit protocol has been used successfully since the 1980s for
hotel and airline reservations, stock market transactions, banking applications
and credit card systems [Citron 93].

Costs and Limitations

There have been two performance issues with two phase commit:

1. If one database server is unavailable, none of the servers gets the
updates. This is correctable if the software administrator forces the
commit to the available participants, but if this is a recurring problem the
administrator may not be able to keep up, thus causing system and
network performance will deteriorate.

2. There is significant demand in network resources as the number of
database servers to which data must be distributed increases. This is
correctable through network tuning and correctly building the data
distribution through database optimization techniques.

Currently, two phase commit procedures are vendor proprietary. There are no
standards on how they should be implemented. X/Open has developed a
standard that is being implemented in several transaction processing monitors

http://www.sei.cmu.edu/str/descriptions/dtpc_body.html (3 of 5)7/28/2008 11:29:58 AM

Database Two Phase Commit

(see Transaction Processing Monitor Technology), but it has not been adopted
by the database vendors [X/Open 96]. Two phase commit proprietary protocols
have been published by several vendors.

Alternatives

An alternative to updating distributed databases with a two phase commit
mechanism is to update multiple servers using a transaction queuing approach
where transactions are distributed sequentially. Distributing transactions
sequentially raises the problem of users working with different version of the
data. In military usage, this could result in planning sorties for targets that have
already been eliminated.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Database Two Phase Commit

Application category Client-Server (AP.2.1.2.1)
Data Management (AP.2.6.1)

Quality measures category Accuracy (QM.2.1.2.1)

Computing reviews category Distributed Systems (C.2.4)

References and Information Sources

[Citron 93] Citron, A., et al. "Two-Phase Commit Optimization and
Tradeoffs in the Commercial Environment," 520-529.
Proceedings of the Ninth International Conference on Data
Engineering. Vienna, Austria, April 19-23, 1993. Los
Alamitos, CA: IEEE Computer Society Press, 1993.

[ORACLE7
92]

"Two-Phase Commit," 22-1-22-21. ORACLE7 Server Concept
Manual (6693-70-1292). Redwood City, CA: Oracle, 1992.

[Schussel 96] Schussel, G. Replication, The Next Generation of Distributed
Database Technology [online]. Available WWW
<URL: http://www.dciexpo.com/geos/replica.htm> (1996).

[UCSB 94] The Performance of Two-Phase Commit Protocols in the
Presence of Site Failures (TRCS94-09). Santa Barbara, CA:
University of California, Computer Science Department, April
1994.

http://www.sei.cmu.edu/str/descriptions/dtpc_body.html (4 of 5)7/28/2008 11:29:58 AM

http://www.dciexpo.com/geos/replica.htm

Database Two Phase Commit

[X/Open 96] X/Open Web Site [online]. Available WWW
<URL: http://www.rdg.opengroup.org/> (1996).

Current Author/Maintainer

Darleen Sadoski, GTE

External Reviewers

David Altieri, GTE

Modifications

20 June 97: updated URLs for [Schussel 96] and [X/Open 96]; changed label for
[UCSB 94]
10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/dtpc_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/dtpc_body.html (5 of 5)7/28/2008 11:29:58 AM

http://www.rdg.opengroup.org/
http://www.sei.cmu.edu/about/disclaimer.html

Citron 93

References and Information Sources

[Citron
93]

Citron, A., et al. "Two-Phase Commit Optimization and Tradeoffs in the Commercial
Environment," 520-529. Proceedings of the Ninth International Conference on Data
Engineering. Vienna, Austria, April 19-23, 1993. Los Alamitos, CA: IEEE Computer
Society Press, 1993.

http://www.sei.cmu.edu/str/indexes/references/Citron_93.html7/28/2008 11:29:58 AM

X/Open 96

References and Information Sources

[X/Open
96]

X/Open Web Site [online]. Available WWW
<URL: http://www.rdg.opengroup.org/>
(1996).

http://www.sei.cmu.edu/str/indexes/references/XOpen_96.html7/28/2008 11:29:59 AM

http://www.rdg.opengroup.org/

Related Topics

Related Topics

Data Management (AP.2.6.1)

● Database Two Phase Commit

http://www.sei.cmu.edu/str/taxonomies/ap.2.6.1.html7/28/2008 11:29:59 AM

Related Topics

Related Topics

Accuracy (QM.2.1.2.1)

● Database Two Phase Commit

http://www.sei.cmu.edu/str/taxonomies/qm.2.1.2.1.html7/28/2008 11:29:59 AM

DII COE 96a

References and Information Sources

[DII COE
96a]

Defense Information Infrastructure (DII) Common Operating Environment (COE)
Integration and Runtime Specification (I&RTS) [online]. Available WWW
<URL: http://spider.osfl.disa.mil/dii> (1996).

http://www.sei.cmu.edu/str/indexes/references/DIICOE_96a_bold.html7/28/2008 11:29:59 AM

http://spider.osfl.disa.mil/dii

DII COE 96b

References and Information Sources

[DII COE
96b]

DII COE Style Guide, Version 2.0 [online]. Available
WWW
<URL: http://spider.osfl.disa.mil/dii> (1996).

http://www.sei.cmu.edu/str/indexes/references/DIICOE_96b_bold.html7/28/2008 11:30:00 AM

http://spider.osfl.disa.mil/dii

Defense Information Infrastructure Common Operating Environment (DII COE)

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Defense Information Infrastructure Common Operating Environment (DII
COE)

Status

Advanced

Note

We recommend Reference Models, Architectures, Implementations--An Overview as prerequisite
reading for this technology description.

Purpose and Origin

The Defense Information Infrastructure (DII) Common Operating Environment (COE) was
developed in late 1993. DII COE was designed to eliminate duplication of development (in areas
such as mapping, track management, and communication interfaces) and eliminate design
incompatibility among Department of Defense (DoD) systems. Conceptually, the COE is designed
to reduce program cost and risk through reusing proven solutions and sharing common
functionality, rather than developing systems from "scratch" every time. The purpose of DII COE is
to field systems with increasing interoperability, reusability, portability, and operational capability,
while reducing development time, technical obsolescence, training requirements, and life-cycle cost.

DII COE reuses proven software components contributed by services and programs to provide
common Command, Control, Communication, Computer and Intelligence (C4I) functions. For more
details on DII COE see the Defense Information Infrastructure (DII) Common Operating
Environment (COE) Integration and Runtime Specification and the DII COE Style Guide [DII COE
96a, DII COE 96b].

Technical Detail

DII COE technically is

● an architecture (including a set of guidelines and standards)
● a runtime environment
● software (including reusable components)
● a definition for acceptable application programming interfaces

The four major areas are described in further detail below:

1. Architecture. The DII COE architecture is fully compliant with the Department of Defense's
Technical Architecture for Information Management (TAFIM Reference Model). The DII COE

http://www.sei.cmu.edu/str/descriptions/diicoe_body.html (1 of 7)7/28/2008 11:30:00 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/diicoe_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Defense Information Infrastructure Common Operating Environment (DII COE)

architecture, presented in Figure 9, is a "plug and play," client/server architecture
(implemented and running) that defines COE interfaces and how system components will fit
together and interact.

2. Runtime environment. A runtime operating environment that includes a standard user
system interface, operating system, and windowing environment. The DII COE architecture
facilitates a developer in establishing the environment such that there is no conflict with other
developers' products.

Figure 9: Defense Information Infrastructure Common Operating Environment [DII COE 96]

1. Software. A defined set of reusable functions that are already built (available commercially or
as government products). Software (with the exception of the operating system and basic
windowing software) is packaged in self-contained, manageable units called segments.
Segments are the DII COE building block for constructing COE systems. Segments (mission
applications and components) may consist of one or more Computer Software Configuration
Items (CSCIs). Segments that are part of the reusable (by many mission applications) COE
are referred to as COE component segments. Segments are named according to their
meaning to operators, rather than internal software structures. Structuring the software into
segments allows functionality to be easily added or removed from the target system to meet
specific mission and site needs. DII COE databases are divided among segments (as are
mission applications) according to the data they contain and the mission applications they
support.

2. The kernel COE (light gray shading in Figure 9) is the minimal set of software that is required
on every workstation. It includes operating system, windowing services, and external
environment interfaces. There are normally five other services also included in the COE
kernel: system administration, security administration, executive manager, and two

http://www.sei.cmu.edu/str/descriptions/diicoe_body.html (2 of 7)7/28/2008 11:30:00 AM

Defense Information Infrastructure Common Operating Environment (DII COE)

templates, one for creating privileged operator accounts, and one for creating non-privileged
operator accounts. A subset of the kernel COE (defined as Bootstrap COE) is used during
initial installation of COE. DII COE is hardware-independent and will run on any open system
platform with a standards-based operating system, such as POSIX-compliant UNIX and
Windows NT.

3. APIs. Two types of Application Programming Interfaces (APIs) are defined for accessing
COE segments:

❍ public APIs (COE interfaces that will be supported for the COE life cycle)
❍ private APIs (interfaces that are supported for a short period of time to allow legacy

systems to migrate to full COE compliance)
4. Newly-developed software (segments) must use public APIs to be COE compliant. The

incremental implementation strategy for DII COE is to protect legacy system functionality
while migrating to fully-compliant COE design by evolving from private APIs to public APIs.

Usage Considerations

There is only one COE available for use by other systems. This COE is currently being used by
GCCS (Global Command and Control System) and GCSS (Global Combat Support System). Any
system built to the COE infrastructure must access the services using the COE APIs. This improves
interoperability between systems because the integration approach, the tool sets, and the segments
(software components, not just algorithms) are used by each system [DII COE 96a].

Conceptually, compliance to COE standards ensures that software that is developed or modified for
use within COE meets the intended requirements and goals and will evolve with the COE system.
Another perspective is that compliance measures the degree to which "plug and play" is possible
[Perry 96]. Owners of legacy systems should be familiar with COE compliance requirements to
ensure that scoping and planning for future legacy enhancement includes COE requirements and
goals.

There are a number of tradeoffs an organization must address when determining evolution of a
legacy system to a system that meets COE compliance.

● What are the goals of the legacy system, and will migrating to COE compliance support
achievement of the long range goals?

● What level of COE compliance will best and most cost effectively achieve the legacy
system's long range goals?

● What is the current state of the legacy system- how compliant is it today?
● Given the current state of the legacy system, what resources are available to begin and

follow through on the migration of the code to COE compliance?
● Does the organization want/need to control the legacy system code, and if not, when in the

migration to COE is turning it over to DISA desirable?

Based on this analysis, the appropriate level and strategy for compliance can be determined. The
four DII COE compliance categories are described in Table 6:

Table 6: DII COE Compliance Categories

Category Name Description

http://www.sei.cmu.edu/str/descriptions/diicoe_body.html (3 of 7)7/28/2008 11:30:00 AM

Defense Information Infrastructure Common Operating Environment (DII COE)

1 Runtime
Environment

Measures compliance of the proposed segment's fit within
the COE executing environment, the amount it reuses
COE segments, whether it will run on a COE platform,
and whether it will interfere with other segments. This can
be done by prototyping within the COE.

2 Style Guide Measures compliance of the proposed segment's user
interface to the Style Guide [DII COE 96b]. This is to
ensure that proposed segment will appear consistent with
the rest of the COE-based system to minimize training and
maintenance cost. Style Guide compliance can be done via
a checklist based on the Style Guides requirements.

3 Architectural Compatibility Measures compliance of the proposed segment's fit within
the COE architecture, and the segment's potential life
cycle as COE evolves. This can be done by evaluating the
segment's use of TAFIM and COE standards and
guidelines, and it's internal software structures.

4 Software
Quality

Assesses a proposed segment's program risk and software
maturity through the use of traditional software metrics.
This can be done using measurements such as lines of
code and McCabe complexity metrics (see Cyclomatic
Complexity).

Category 1 (Runtime) compliance progresses through eight (8) levels of integration from a state of
coexistence (agreement on a set of standards and ensure non-interference) with other COE
segments, to federated (non-interference when on the same workstation), to fully integrated (share
the same software and data). For a segment to be COE compliant, it must be qualified with a
category name and compliance level. The following summarizes Category 1's eight levels of
compliance; Appendix B of [DII COE 96a] provides a compliance checklist for each of the eight
levels. Checklists are the current means of assessing progress toward compliance.

● Standards Compliance Level One - A proposed segment shares only a common set of
standards with the rest of the COE environment, data sharing is undisciplined, and software
reuse is minimal other than use of Commercial-Off-The Shelf (COTS) software products.
Level 1 allows simultaneous execution of two systems.

● Network Compliance Level Two - Two segments will coexist on the same Local Area
Network (LAN), but on different CPUs. There is limited data sharing and there may be
common user interface "look and feel" if common user interface standards are applied.

● Workstation Compliance Level Three - Two applications can reside on the same LAN, share
data, and coexist on the same workstation (environmental conflict have been resolved). The
kernel COE, or its functional equivalent, resides on the workstation. Some COE components
may be reused, but segmenting may not be done. Segments may not interoperate, and do
not use the COE services.

● Bootstrap Compliance Level Four - Segment formatting is used in all applications. Segments
share the bootstrap COE. Some segment conflicts can be automatically checked by the COE
system. COE services are not being used. To switch between segments, users may still
require separate login accounts. To submit a prototype to DISA for consideration of use,

http://www.sei.cmu.edu/str/descriptions/diicoe_body.html (4 of 7)7/28/2008 11:30:00 AM

Defense Information Infrastructure Common Operating Environment (DII COE)

Bootstrap Compliance is required, although these segments will not be fielded or put in the
DISA maintained online library.

● Minimal COE Compliance Level Five - All segments share the same kernel COE (equivalent
functionality is not acceptable at Level Five). Functionality is available through the COE
Executive Manager. Segments may be successfully installed and removed through COE
installation tools. Segment descriptor files describe boot, background, and local processes.
Segments are registered and available through the online library. Applications appear
integrated to the user, but there may be duplication of functionality. Interoperability is not
guaranteed. DISA may allow Minimal COE Compliance segments to be installed and used
as prototypes at a few sites for evaluation. They can be placed in the library. Currently, Level
5 appears to be the level many legacy systems are targeting.

● Intermediate COE Compliance Level Six - Segments use existing account groups, and reuse
one or more COE segments. Minor differences may exist between the Style Guide [DII COE
96b] and the segment's graphical user interface implementation.

● Interoperability Compliance Level Seven - To ensure interoperability, proposed segments
must reuse COE segments, including communication interfaces, message parsers, database
tables, track data elements, and logistic services. Public APIs provide access with very few,
if any, private APIs. There is no duplicate functionality in the COE segments. DISA requires
Interoperability Compliance, for fieldable products and a migration strategy to full COE
Compliance (Level 8). A migration strategy is not needed if the proposed segment will be
phased out in the near term.

● Full COE Compliance Level Eight - All proposed new segments use COE services to the
maximum extent possible. New segments are available through the Executive Manager and
are completely integrated into the system. All segments fully comply with the Style Guide.
[DII COE 96b]. All segments use only public APIs. There is no duplication of functionality any
where in the system (as COE or as a mission application).

Two important resources for COE developers and operational sites are the online COE Software
Repository System (CSRS) that is used to disseminate and manage software, and the COE
Information Server (CINFO) that is used for documentation, meeting notices and general COE
information. [DII COE 96a]

Maturity

COE initial proof of concept was created and installed in 1994 with Global Command and Control
System (GCCS) Version 1.0. GCCS version 1.1 was used to monitor events during the 1994 Haiti
crisis. In 1995, GCCS version 2.0 began fielding to a number of operational sites. There are two
systems currently using DII COE: GCCS (developed in 1994 for a near term replacement for World-
Wide Military Command and Control System) and GCSS (already fielded at a number of operational
CINCs). It is expected that DII COE will be enhanced to include more functionality in such areas as
Electronic Commerce/Electronic Data Interchange (EC/EDI), transportation, base support,
personnel, health affairs, and finance. [DII COE 96a]

Costs and Limitations

DII COE is relatively new; actual cost, benefit, and risk information is still being collected.

Dependencies

DII COE is dependent of the evolution of TAFIM to ensure compatibility. (see TAFIM Reference
Model). An additional dependency could be the Joint Technical Architecture (JTA). The JTA is now
being mandated as a set of standards and guidelines for C4I systems, specifically in the area of

http://www.sei.cmu.edu/str/descriptions/diicoe_body.html (5 of 7)7/28/2008 11:30:00 AM

Defense Information Infrastructure Common Operating Environment (DII COE)

interoperability, to supersede TAFIM Volume 7, which did not appear to go far enough to ensure
interoperability [JTA 96].

Alternatives

Under conditions where the TAFIM reference model and DII COE compliance is not required, an
alternative model would be the Reference Model for Frameworks of Software Engineering
Environments (known as the ECMA reference model [ECMA 93]) that is promoted in Europe, and
used commercially and world-wide. Commercially-available Hewlett-Packard products use this
model [HP 96]. Another alternative would be the Common Object Request Broker Architecture
(CORBA) if the design called for object-oriented infrastructure (see Common Object Request Broker
Architecture).

Complementary Technologies

Open systems (see COTS and Open Systems--An Overview) would be a complementary
technology to DII COE because work done in open system supports the COE goal of achieving
interoperable systems.

Index Categories

This technology is classified under the following categories. Select a category for a list of related
topics.

Name of technology Defense Information Infrastructure Common Operating Environment

Application category Software Architecture Models (AP.2.1.1)

Quality measures category Interoperability (QM.4.1)
Reusability (QM.4.4)
Portability (QM.4.2)

Computing reviews category not available

References and Information Sources

[DII COE
96a]

Defense Information Infrastructure (DII) Common Operating Environment (COE)
Integration and Runtime Specification (I&RTS) [online]. Available WWW
<URL: http://spider.osfl.disa.mil/dii> (1996).

[DII COE
96b]

DII COE Style Guide, Version 2.0 [online]. Available WWW
<URL: http://spider.osfl.disa.mil/dii> (1996).

http://www.sei.cmu.edu/str/descriptions/diicoe_body.html (6 of 7)7/28/2008 11:30:00 AM

http://spider.osfl.disa.mil/dii
http://spider.osfl.disa.mil/dii

Defense Information Infrastructure Common Operating Environment (DII COE)

[ECMA 93] Reference Model for Frameworks of Software Engineering Environments, 3rd
Edition (NIST Special Publication 500-211/Technical Report ECMA TR/55).
Prepared jointly by NIST and the European Computer Manufacturers Association
(ECMA). Washington, DC: U.S. Government Printing Office, 1993.

[HP 96] Integrated Solutions Catalog for the SoftBench Product Family. Palo Alto, CA:
Hewlett-Packard, 1996.

[JTA 96] U.S. Department of Defense. Joint Technical Architecture (JTA) [online]. Available
WWW
<URL: http://www-jta.itsi.disa.mil/>(1996).

[Perry 96] Perry, Frank. Defense Information Infrastructure Common Operating Environment
(briefing). April 17, 1996. Arlington, VA: Defense Information Systems Agency.

Current Author/Maintainer

Darleen Sadoski, GTE

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the U.S.
Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/diicoe_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/diicoe_body.html (7 of 7)7/28/2008 11:30:00 AM

http://www-jta.itsi.disa.mil/
http://www.sei.cmu.edu/about/disclaimer.html

Perry 96

References and Information Sources

[Perry
96]

Perry, Frank. Defense Information Infrastructure Common Operating Environment
(briefing). April 17, 1996. Arlington, VA: Defense Information Systems Agency.

http://www.sei.cmu.edu/str/indexes/references/Perry_96.html7/28/2008 11:30:01 AM

JTA 96

References and Information Sources

[JTA
96]

U.S. Department of Defense. Joint Technical Architecture (JTA) [online]. Available
WWW
<URL: http://www-jta.itsi.disa.mil/>(1996).

http://www.sei.cmu.edu/str/indexes/references/JTA_96.html7/28/2008 11:30:01 AM

http://www-jta.itsi.disa.mil/

ECMA 93

References and Information Sources

[ECMA
93]

Reference Model for Frameworks of Software Engineering Environments, 3rd Edition
(NIST Special Publication 500-211/Technical Report ECMA TR/55). Prepared jointly by
NIST and the European Computer Manufacturers Association (ECMA). Washington, DC:
U.S. Government Printing Office, 1993.

http://www.sei.cmu.edu/str/indexes/references/ECMA_93.html7/28/2008 11:30:01 AM

HP 96

References and Information Sources

[HP
96]

Integrated Solutions Catalog for the SoftBench Product Family. Palo Alto, CA: Hewlett-
Packard, 1996.

http://www.sei.cmu.edu/str/indexes/references/HP_96.html7/28/2008 11:30:02 AM

Multi-Level Secure One Way Guard with Random Acknowledgment - Notes

Notes

1 The DAA is the security official with the authority to say a system is secure and is permitted to be
used.

http://www.sei.cmu.edu/str/descriptions/notes/mlsone_1.html7/28/2008 11:30:02 AM

Related Topics

Related Topics

System Security (AP.2.4.3)

● Covert Channel Analysis in MLS Systems
● Firewalls and Proxies
● Intrusion Detection
● Message Digest
● Multi-Level Secure One Way Guard with Random Acknowledgment
● Network Auditing Techniques
● Network Security Guards
● Nonrepudiation in Network Communications
● Public Key Cryptography
● Public Key Digital Signatures
● Rule-Based Intrusion Detection
● Statistical-Based Intrusion Detection

http://www.sei.cmu.edu/str/taxonomies/ap.2.4.3.html7/28/2008 11:30:02 AM

Related Topics

Related Topics

Vulnerability (QM.2.1.4.1)

● Firewalls and Proxies
● Multi-Level Secure One Way Guard with Random Acknowledgment

http://www.sei.cmu.edu/str/taxonomies/qm.2.1.4.1.html7/28/2008 11:30:04 AM

Network Management -- An Overview

Notes

1 A voluntary, non-treaty organization founded in 1946 which is responsible for creating international
standards in many areas, including computers and communications. Its members are the national
standards organizations of the 89 member countries, including ANSI for the U.S.

http://www.sei.cmu.edu/str/descriptions/notes/network_1.html7/28/2008 11:30:04 AM

X.700 96

References and Information Sources

[X.700
96]

X.700 and Other Network Management Services [online]. Available
WWW
<URL: http://ganges.cs.tcd.ie/4ba2/x700/index.html> (1996).

http://www.sei.cmu.edu/str/indexes/references/X.700_96_bold.html7/28/2008 11:30:05 AM

http://ganges.cs.tcd.ie/4ba2/x700/index.html

Network Management -- An Overview

Notes

2 A managed device is any type of node residing on a network, such as a computer, printer or routers
that contain a management agent.

http://www.sei.cmu.edu/str/descriptions/notes/network_2.html7/28/2008 11:30:05 AM

Network Management--An Overview

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Network Management--An Overview

Status

Advanced

Purpose and Origin

In the early 1980s computer networks began to grow and be interconnected. As the
size of these networks grew, they became harder to manage and maintain, thus the
need for network management was realized. One of the oldest forms of network
management is the use of the remote login to monitor or configure a network device;
however, today more sophisticated network management tools are available. Network
management is a requirement for anyone who wants to control and monitor their
networks.

Technical Detail

Functional Areas of Network Management. Network management is the ability to
control and monitor a computer network from a central location. The International
Organization for Standardization (ISO)1 defined a conceptual model for describing the
key functional areas of network management which are described below [X.700 96]:

Note: In general, network management systems available from vendors today do not
support all the key functional areas, and in a supported functional area, the coverage
may be incomplete even though support is claimed.

● Fault Management: Provides facilities that allow network managers to discover
faults in managed devices,2 the network, and network operation, to determine
their cause and to take remedial action. To enable this, fault management
provides mechanisms to:

❍ Report the occurrence of faults
❍ Log reports
❍ Perform diagnostic tests
❍ Correct faults (possibly automatically)

● Configuration Management: Monitors network configuration information so that
the effects of specific hardware and software can be managed and tracked. It
may provide the ability to initialize, reconfigure, operate and shut down
managed devices.

● Accounting: Measures network utilization of individual users or groups to:
❍ Provide billing information

http://www.sei.cmu.edu/str/descriptions/network_body.html (1 of 6)7/28/2008 11:30:05 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/network_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Network Management--An Overview

❍ Regulate users or groups
❍ Help keep network performance at an acceptable level

● Performance Management: Measures various aspects of network performance
including the gathering and analysis of statistical data about the system so that
it may be maintained at an acceptable level. Performance management
provides the ability to:

❍ Obtain the utilization and error rates of network devices
❍ Provide a consistent level of performance by ensuring that devices have

a sufficient capacity.
● Security Management: Controls access to network resources so that

information can not be obtained without authorization by:
❍ Limiting access to network resources
❍ Providing notification of security breaches and attempts

Network Management Architecture. In general, network management systems have
the same basic architecture, as shown in Figure 27.

Figure 27: Typical Network Management Architecture [Cisco 96]

The architecture consists of the following elements:

● Network Management Station(s): The network management station3 runs the
network management application4 that gathers information about managed
devices from the management agent5 which resides within a managed device.
The network management application typically must process large amounts of
data, react to events, and prepare relevant information for display. It usually has

http://www.sei.cmu.edu/str/descriptions/network_body.html (2 of 6)7/28/2008 11:30:05 AM

Network Management--An Overview

a control console with a GUI interface which allows the operator to view a
graphical representation of the network, control managed devices on the
network and program the network management application. Some network
management applications can be programmed to react to information collected
from management agents and/or set thresholds with the following actions:

❍ Perform tests and automatic corrective actions (reconfiguration,
shutdown of a managed device)

❍ Logging network events
❍ Present status information and alerts to operator

● Managed Devices: A managed device can be any type of node residing on a
network, such as a computer, printer or router. Managed devices contain a
management agent.

● Management agents: Provides information about the managed device to the
network management application(s) and may also accept control information.

● Network management protocol: Protocol used by the network management
application(s) and the management agent to exchange management
information.

● Management Information: The information that is exchanged between the
network management application(s) and the management agents that allows
the monitoring and control of a managed device.

Network management software (network management applications and agents) is
usually based upon a particular network management protocol and the network
management capabilities provided with the software are usually based upon the
functionality supported by the network management protocol. Most systems use open
protocols; however, some network management software is based upon vendor
specific proprietary protocols. The selection of network management software is driven
by the following factors:

● Network environment (scope and nature of the network)
● Network management requirements
● Cost
● Operating systems involved

The two most common network management protocols are the

● Simple Network Management Protocol
● Common Management Information Protocol

SNMP is by far the most widely used network management protocol and use is
widespread in LAN environments. CMIP is used extensively in telecommunication
environments, where networks tend to be large and complex.

Usage Considerations

A considerable amount of time is usually required to effectively deploy and learn to use
network management software. This is because network managers must be extremely
familiar with the network management protocol and the data structures associated with
the network management information. Network management protocols and the data
structures associated with the network management information are typically complex.

http://www.sei.cmu.edu/str/descriptions/network_body.html (3 of 6)7/28/2008 11:30:05 AM

Network Management--An Overview

Many network management implementations do not provide support for network
devices which use vendor specific protocols.

A network management system for a small isolated network may not be cost effective
or needed. This of course depends on functionality, reliability and performance
requirements of the network and attached systems.

Maturity

Network management software often lacks the functionality needed to effectively
manage a network. Some of this can be attributed to the deficiencies in the network
management protocols.

Numerous network management packages are available from a wide variety of
vendors. Some packages are simple and provide network management facilities for a
single network, others can be complex and handle multiple types of networks. New
products and enhancements to existing network management packages are
announced frequently.

Costs and Limitations

Network management systems can be quite expensive, and are often complex.
Personnel with specialized training are often required to effectively configure, maintain
and operate the network management system.

Index Categories

This technology is classified under the following categories. Select a category for a list
of related topics.

Name of technology Network Management

Application category Protocols (AP.2.2.3)
Network Management (AP.2.2.2)

Quality measures category Openness (QM.4.1.2)
Interoperability (QM.4.1)
Maintainability (QM.3.1)
Scalability (QM.4.3)
Security (QM.2.1.5)

Computing reviews category Network Operations (C.2.3)
Distributed Systems (C.2.4)

http://www.sei.cmu.edu/str/descriptions/network_body.html (4 of 6)7/28/2008 11:30:05 AM

Network Management--An Overview

References and Information Sources

[Cisco 96] Internetworking Technology Overview / Network Management Basics
[online]. Available WWW
<URL: http://cio.cisco.com/univercd/data/doc/cintrnet/ito/55018.htm>
(1996).

[Stallings
93]

Stallings, William. SNMP, SNMPv2, and CMIP: The Practical Guide to
Network Management Standards. Reading, MA: Addison-Wesley, 1993.

[Vallillee
96]

Vallillee, Tyler. SNMP & CMIP: An Introduction To Network
Management [online]. Available WWW
<URL: http://www.inforamp.net/~kjvallil/t/snmp.html> (1996).

[X.700 96] X.700 and Other Network Management Services [online]. Available
WWW
<URL: http://ganges.cs.tcd.ie/4ba2/x700/index.html> (1996).

Current Author/Maintainer

Dan Plakosh, SEI

Modifications

9 February 98: Minor modifications

19 June 97 (original)

Footnotes

1 A voluntary, non-treaty organization founded in 1946 which is responsible for
creating international standards in many areas, including computers and
communications. Its members are the national standards organizations of the 89
member countries, including ANSI for the U.S.

2 A managed device is any type of node residing on a network, such as a computer,
printer or routers that contain a management agent.

3 The network management station is the system that hosts the network management
application.

4 The network management application is the application that provides the ability to
monitor and control the network.

5 The network management agent is the software that resides in a managed device
that allows the device to be monitored and/or controlled by a network management
application.

http://www.sei.cmu.edu/str/descriptions/network_body.html (5 of 6)7/28/2008 11:30:05 AM

http://cio.cisco.com/univercd/data/doc/cintrnet/ito/55018.htm
http://www.inforamp.net/~kjvallil/t/snmp.html
http://ganges.cs.tcd.ie/4ba2/x700/index.html

Network Management--An Overview

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/network_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/network_body.html (6 of 6)7/28/2008 11:30:05 AM

http://www.sei.cmu.edu/about/disclaimer.html

Cisco 96

References and Information Sources

[Cisco
96]

Internetworking Technology Overview / Network Management Basics [online]. Available
WWW
<URL: http://cio.cisco.com/univercd/data/doc/cintrnet/ito/55018.htm> (1996).

http://www.sei.cmu.edu/str/indexes/references/Cisco_96.html7/28/2008 11:30:06 AM

http://cio.cisco.com/univercd/data/doc/cintrnet/ito/55018.htm

Network Management -- An Overview

Notes

3 The network management station is the system that hosts the network management application.

http://www.sei.cmu.edu/str/descriptions/notes/network_3.html7/28/2008 11:30:06 AM

Network Management -- An Overview

Notes

4 The network management application is the application that provides the ability to monitor and control
the network.

http://www.sei.cmu.edu/str/descriptions/notes/network_4.html7/28/2008 11:30:06 AM

Network Management -- An Overview

Notes

5 The network management agent is the software that resides in a managed device that allows the device
to be monitored and/or controlled by a network management application.

http://www.sei.cmu.edu/str/descriptions/notes/network_5.html7/28/2008 11:30:06 AM

Related Topics

Related Topics

Integrity (QM.2.1.4.1.1)

● Nonrepudiation in Network Communications

http://www.sei.cmu.edu/str/taxonomies/qm.2.1.4.1.1.html7/28/2008 11:30:07 AM

Related Topics

Related Topics

Trustworthiness (QM.2.1.4)

● Java
● Nonrepudiation in Network Communications
● Public Key Digital Signatures

http://www.sei.cmu.edu/str/taxonomies/qm.2.1.4.html7/28/2008 11:30:07 AM

Productivity - Definition

Glossary Term

Productivity
the quality or state of being productive [Webster 87].

http://www.sei.cmu.edu/str/indexes/glossary/productivity.html7/28/2008 11:30:07 AM

Baudoin 96

References and Information Sources

[Baudoin
96]

Baudoin, Claude & Hollowell, Glenn. Realizing the Object-Oriented Lifecycle. Upper
Saddle River, NJ: Prentice Hall, 1996.

http://www.sei.cmu.edu/str/indexes/references/Baudoin_96_bold.html7/28/2008 11:30:07 AM

Yourdon 79

References and Information Sources

[Yourdon
79]

Yourdon, E. & Constantine, L. Structured Design. Englewood Cliffs, NJ: Prentice Hall,
1979.

http://www.sei.cmu.edu/str/indexes/references/Yourdon_79.html7/28/2008 11:30:08 AM

Malan 95

References and Information Sources

[Malan
95]

Malan, R.; Coleman, D.; & Letsinger, R. "Lessons Learned from the Experiences of
Leading-Edge Object Technology Projects in Hewlett-Packard," 33-46. Proceedings of
Tenth Annual Conference on Object-Oriented Programming Systems Languages and
Applications. Austin, TX, October 15-19, 1995. Palo Alto, CA: Hewlett-Packard, 1995.

http://www.sei.cmu.edu/str/indexes/references/Malan_95_bold.html7/28/2008 11:30:08 AM

Kamath 93

References and Information Sources

[Kamath
93]

Kamath, Y. H.; Smilan, R. E.; & Smith, J. G. "Reaping Benefits With Object-Oriented
Technology." AT&T Technical Journal 72, 5 (September/October 1993): 14-24.

http://www.sei.cmu.edu/str/indexes/references/Kamath_93.html7/28/2008 11:30:08 AM

Related Topics

Related Topics

Define and Develop Requirements (Elicitation Techniques, Specification Techniques,
Modeling, Prototyping) (AP.1.2.2.1)

● Algebraic Specification Techniques
● Entity-Relationship Modeling
● Essential Systems Analysis
● Formal Methods
● Functional Decomposition
● Model Checking
● Object-Oriented Analysis
● Specification Construction Techniques
● Structured Analysis and Design

http://www.sei.cmu.edu/str/taxonomies/ap.1.2.2.1.html7/28/2008 11:30:08 AM

Related Topics

Related Topics

Analyze Functions (AP.1.2.1.1)

● Essential Systems Analysis
● Functional Decomposition
● Object-Oriented Analysis
● Structured Analysis and Design

http://www.sei.cmu.edu/str/taxonomies/ap.1.2.1.1.html7/28/2008 11:30:08 AM

Martin 93

References and Information Sources

[Martin
93]

Martin, James. Principles of Object-Oriented Analysis and Design. Englewood Cliffs, NJ:
Prentice Hall, 1993.

http://www.sei.cmu.edu/str/indexes/references/Martin_93.html7/28/2008 11:30:09 AM

Vorwerk 94

References and Information Sources

[Vorwerk
94]

Vorwerk, Raymond. "Towards a True OBBMS." Object Magazine 3, 5 (January 1994):
38-39.

http://www.sei.cmu.edu/str/indexes/references/Vorwerk_94.html7/28/2008 11:30:09 AM

Tkach 94

References and Information Sources

[Tkach
94]

Tkach, Daniel & Puttick, Richard. Object Technology in Application Development.
Redwood City, CA: Benjamin/Cummings Publishing Company, 1994.

http://www.sei.cmu.edu/str/indexes/references/Tkach_94.html7/28/2008 11:30:09 AM

Desanti 94

References and Information Sources

[Desanti
94]

Desanti, Mike & Gomsi, Jeff. "A Comparison of Object and Relational Database
Technologies." Object Magazine 3, 5 (January 1994): 51-57.

http://www.sei.cmu.edu/str/indexes/references/Desanti_94_bold.html7/28/2008 11:30:09 AM

Object 96

References and Information Sources

[Object
96]

"Focus on ODBMS Debunking the Myths." Object Magazine 5, 9 (February 1996): 21-
23.

http://www.sei.cmu.edu/str/indexes/references/Object_96_bold.html7/28/2008 11:30:13 AM

Related Topics

Related Topics

Database Design (Conceptual, Logical, Physical) (AP.1.3.2)

● Graphic Tools for Legacy Database Migration
● Object-Oriented Database
● Relational DBMS
● SQL

http://www.sei.cmu.edu/str/taxonomies/ap.1.3.2.html7/28/2008 11:30:13 AM

Related Topics

Related Topics

Database Administration (AP.1.9.1)

● Data Mining
● Data Warehousing
● Object-Oriented Database
● Relational DBMS

http://www.sei.cmu.edu/str/taxonomies/ap.1.9.1.html7/28/2008 11:30:13 AM

Related Topics

Related Topics

Databases (AP.2.6)

● Object-Oriented Database
● Relational DBMS

http://www.sei.cmu.edu/str/taxonomies/ap.2.6.html7/28/2008 11:30:13 AM

Baudoin 96

References and Information Sources

[Baudoin
96]

Baudoin, Claude & Hollowell, Glenn. Realizing the Object-Oriented Lifecycle. Upper
Saddle River, NJ: Prentice Hall, 1996.

http://www.sei.cmu.edu/str/indexes/references/Baudoin_96.html7/28/2008 11:30:13 AM

Maring 96

References and Information Sources

[Maring
96]

Maring, B. "Object-Oriented Development of Large Applications." IEEE Software 13, 3
(May 1996): 33-40.

http://www.sei.cmu.edu/str/indexes/references/Maring_96_bold.html7/28/2008 11:30:14 AM

Tokar 96

References and Information Sources

[Tokar
96]

Tokar, Joyce L. "Ada 95: The Language for the 90's and Beyond." Object Magazine 6, 4
(June 1996): 53-56.

http://www.sei.cmu.edu/str/indexes/references/Tokar_96_bold.html7/28/2008 11:30:14 AM

Malan 95

References and Information Sources

[Malan
95]

Malan, R.; Coleman, D.; & Letsinger, R. "Lessons Learned from the Experiences of
Leading-Edge Object Technology Projects in Hewlett-Packard," 33-46. Proceedings of
Tenth Annual Conference on Object-Oriented Programming Systems Languages and
Applications. Austin, TX, October 15-19, 1995. Palo Alto, CA: Hewlett-Packard, 1995.

http://www.sei.cmu.edu/str/indexes/references/Malan_95.html7/28/2008 11:30:14 AM

Wade 94

References and Information Sources

[Wade
94]

Wade, Andrew E. "Distributed Client-Server Databases." Object Magazine 4, 1 (April
1994): 47-52.

http://www.sei.cmu.edu/str/indexes/references/Wade_94.html7/28/2008 11:30:14 AM

Cobb 95

References and Information Sources

[Cobb
95]

Cobb, Edward E. "TP Monitors and ORBs: A Superior Client/Server Alternative." Object
Magazine 4, 9 (February 1995): 57-61.

http://www.sei.cmu.edu/str/indexes/references/Cobb_95.html7/28/2008 11:30:15 AM

Object Request Broker

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Object Request Broker

Status

Complete

Note

We recommend Middleware, as prerequisite reading for this technology
description.

Purpose and Origin

An object request broker (ORB) is a middleware technology that manages
communication and data exchange between objects. ORBs promote
interoperability of distributed object systems because they enable users to build
systems by piecing together objects- from different vendors- that communicate
with each other via the ORB [Wade 94]. The implementation details of the ORB
are generally not important to developers building distributed systems. The
developers are only concerned with the object interface details. This form of
information hiding enhances system maintainability since the object
communication details are hidden from the developers and isolated in the ORB
[Cobb 95].

Technical Detail

ORB technology promotes the goal of object communication across machine,
software, and vendor boundaries. The relevant functions of an ORB technology
are

● interface definition
● location and possible activation of remote objects
● communication between clients and object

An object request broker acts as a kind of telephone exchange. It provides a
directory of services and helps establish connections between clients and these
services [CORBA 96, Steinke 95]. Figure 21 illustrates some of the key ideas.

http://www.sei.cmu.edu/str/descriptions/orb_body.html (1 of 6)7/28/2008 11:30:15 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/orb_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Object Request Broker

Figure 21: Object Request Broker

The ORB must support many functions in order to operate consistently and
effectively, but many of these functions are hidden from the user of the ORB. It is
the responsibility of the ORB to provide the illusion of locality, in other words, to
make it appear as if the object is local to the client, while in reality it may reside
in a different process or machine [Reddy 95]. Thus the ORB provides a
framework for cross-system communication between objects. This is the first
technical step toward interoperability of object systems.

The next technical step toward object system interoperability is the
communication of objects across platforms. An ORB allows objects to hide their
implementation details from clients. This can include programming language,
operating system, host hardware, and object location. Each of these can be
thought of as a "transparency,"1 and different ORB technologies may choose to
support different transparencies, thus extending the benefits of object orientation
across platforms and communication channels.

There are many ways of implementing the basic ORB concept; for example,
ORB functions can be compiled into clients, can be separate processes, or can
be part of an operating system kernel. These basic design decisions might be
fixed in a single product; or there might be a range of choices left to the ORB
implementer.

There are two major ORB technologies:

● The Object Management Group's (OMG) Common Object Request
Broker Architecture (CORBA) specification

● Microsoft's Component Object Model (see Component Object Model
(COM), DCOM, and Related Capabilities)

An additional, newly-emerging ORB model is Remote Method Invocation (RMI);
this is specified as part of the Java language/virtual machine. RMI allows Java
objects to be executed remotely. This provides ORB-like capabilities as a native
extension of Java [RMI 97].

A high-level comparison of ORB technologies is available in Table 8. Details are
available in the referenced technology descriptions.

http://www.sei.cmu.edu/str/descriptions/orb_body.html (2 of 6)7/28/2008 11:30:15 AM

Object Request Broker

Usage Considerations

Successful adoption of ORB technology requires a careful analysis of the current
and future software architectural needs of the target application and analysis of
how a particular ORB will satisfy those needs [Abowd 96]. Among the many
things to consider are platform availability, support for various programming
languages, as well as implementation choices and product performance
parameters. After performing this analysis, developers can make informed
decisions in choosing the ORB best suited for their application's needs.

Table 8: Comparison of ORB Technologies

ORB
Platform
Availability

Applicable
to

Mechanism Implementations

COM/
DCOM

originally PC
platforms, but
becoming
available on
other platforms

"PC-centric"
distributed
systems
architecture

APIs to
proprietary
system2

one3

CORBA

platform-
independent and
interoperability
among platforms

general
distributed
system
architecture

specification of
distributed
object technology

many4

Java/
RMI

wherever Java
virtual machine
(VM) executes

general
distributed
system
architecture
and Web-
based
Intranets

implementation
of distributed
object technology

various5

Maturity

As shown in Table 8, there are a number of commercial ORB products available.
ORB products that are not compliant with either CORBA or OLE also exist;
however, these tend to be vendor-unique solutions that may affect system
interoperability, portability, and maintainability.

Major developments in commercial ORB products are occurring, with life cycles
seemingly lasting only four to six months. In addition, new ORB technology
(Java/RMI) is emerging, and there are signs of potential "mergers" involving two
of the major technologies. The continued trend toward Intranet- and Internet-
based applications is another stimulant in the situation. Whether these

http://www.sei.cmu.edu/str/descriptions/orb_body.html (3 of 6)7/28/2008 11:30:15 AM

Object Request Broker

commercial directions are fully technically viable and will be accepted by the
market is unknown.

Given the current situation and technical uncertainty, potential users of ORB
technologies need to determine

● what new features ORB technologies add beyond technologies currently
in use in their organizations

● the potential benefits from using these new features
● the key risks involved in adopting the technology as a whole
● how much risk is acceptable to them

One possible path would be to undertake a disciplined and "situated" technology
evaluation. Such an evaluation, as described by Brown and Wallnau, focuses on
evaluating so-called "innovative" technologies and can provide technical
information for adoption that is relative to the current/existing approaches in use
by an organization [Brown 96, Wallnau 96]. Such a technology evaluation could
include pilot projects focusing on model problems pertinent to the individual
organization.

Costs and Limitations

The license costs of the ORB products from the vendors listed above are
dependent on the required operating systems and the types of platform. ORB
products are available for all major computing platforms and operating systems.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Object Request Broker

Application category Client/Server (AP.2.1.2.1),
Client/Server Communication
(AP.2.2.1)

Quality measures category Interoperability (QM.4.1),
Maintainability (QM.3.1)

Computing reviews category Distributed systems (C.2.4),
Object-Oriented programming (D.1.5)

References and Information Sources

[Abowd 96] Abowd, Gregory, et al. "Architectural Analysis of ORBs." Object
Magazine 6, 1 (March 1996): 44-51.

http://www.sei.cmu.edu/str/descriptions/orb_body.html (4 of 6)7/28/2008 11:30:15 AM

Object Request Broker

[Brown 96] Brown, A. & Wallnau, K. "A Framework for Evaluating Software
Technology." IEEE Software 13, 5 (September 1996): 39-49.

[Cobb 95] Cobb, Edward E. "TP Monitors and ORBs: A Superior Client/
Server Alternative." Object Magazine 4, 9 (February 1995): 57-61.

[CORBA 96] The Common Object Request Broker: Architecture and
Specification, Version 2.0. Framingham, MA: Object Management
Group, 1996. Also available [online] WWW
<URL: http://www.omg.org> (1996).

[Reddy 95] Reddy, Madhu. "ORBs and ODBMSs: Two Complementary Ways
to Distribute Objects." Object Magazine 5, 3 (June 1995): 24-30.

[RMI 97] Remote Method Invocation [online]. Available WWW
<URL: http://java.sun.com/products/jdk/1.1/docs/guide/rmi>
(1997).

[Steinke 95] Steinke, Steve. "Middleware Meets the Network." LAN: The
Network Solutions Magazine 10, 13 (December 1995): 56.

[Tkach 94] Tkach, Daniel & Puttick, Richard. Object Technology in
Application Development. Redwood City, CA: Benjamin/
Cummings Publishing Company, 1994.

[Wade 94] Wade, Andrew E. "Distributed Client-Server Databases." Object
Magazine 4, 1 (April 1994): 47-52.

[Wallnau
96]

Wallnau, Kurt & Wallace, Evan. "A Situated Evaluation of the
Object Management Group's (OMG) Object Management
Architecture (OMA)," 168-178. Proceedings of the OOPSLA'96.
San Jose, CA, October 6-10, 1996. New York, NY: ACM, 1996.
Presentation available [online] FTP.
<URL: ftp://ftp.sei.cmu.edu/pub/corba/OOPSLA/present> (1996).

Current Author/Maintainer

Kurt Wallnau, SEI
John Foreman, SEI

External Reviewers

Ed Morris, SEI
Richard Soley, VP, Chief Technical Officer, Object Management Group

Modifications

25 June 97: modified/updated OLE/COM reference to COM/DCOM; added notes
to Table 8
9 April 97: minor edits and reorganization; no meaningful content changes
10 Jan 97 (original): Mike Bray, Lockheed-Martin Ground Systems

Footnotes

http://www.sei.cmu.edu/str/descriptions/orb_body.html (5 of 6)7/28/2008 11:30:15 AM

http://www.omg.org/
http://java.sun.com/products/jdk/1.1/docs/guide/rmi
ftp://ftp.sei.cmu.edu/pub/corba/OOPSLA/present

Object Request Broker

1 transparency: making something invisible to the client

2 COM/DCOM specifications have been turned over to the Open Group, but the
outcome of this standardization activity remains unclear.

3 Microsoft maintains the only implementation of PC platforms, and is working
closely with selected vendors to migrate technology to alternate platforms.

4 Examples include ORBIX by IONA Technology, NEO by SunSoft, VisiBroker
by VisiGenic, PowerBroker by Expersoft, SmallTalkBroker by DNS
Technologies, Object Director by Fujitsu, DSOM by IBM, DAIS by ICL, SORBET
by Siemens Nixdorf, and NonStop DOM by Tandem.

5 Implementations of the Java VM have been ported to various platforms.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/orb_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/orb_body.html (6 of 6)7/28/2008 11:30:15 AM

http://www.sei.cmu.edu/about/disclaimer.html

Reddy 95

References and Information Sources

[Reddy
95]

Reddy, Madhu. "ORBs and ODBMSs: Two Complementary Ways to Distribute Objects."
Object Magazine 5, 3 (June 1995): 24-30.

http://www.sei.cmu.edu/str/indexes/references/Reddy_95.html7/28/2008 11:30:16 AM

Object Request Broker - Notes

Notes

1 transparency: making something invisible to the client

http://www.sei.cmu.edu/str/descriptions/notes/orb_1.html7/28/2008 11:30:16 AM

RMI 97

References and Information Sources

[RMI
97]

Remote Method Invocation [online]. Available WWW
<URL: http://java.sun.com/products/jdk/1.1/docs/guide/rmi>
(1997).

http://www.sei.cmu.edu/str/indexes/references/RMI_97.html7/28/2008 11:30:16 AM

http://java.sun.com/products/jdk/1.1/docs/guide/rmi

Abowd 96

References and Information Sources

[Abowd
96]

Abowd, Gregory, et al. "Architectural Analysis of ORBs." Object Magazine 6, 1 (March
1996): 44-51.

http://www.sei.cmu.edu/str/indexes/references/Abowd_96_bold.html7/28/2008 11:30:16 AM

Object Request Broker - Notes

Notes

2 COM/DCOM specifications have been turned over to the Open Group, but the outcome of this
standardization activity remains unclear.

http://www.sei.cmu.edu/str/descriptions/notes/orb_2.html7/28/2008 11:30:16 AM

Object Request Broker - Notes

Notes

3 Microsoft maintains the only implementation of PC platforms, and is working closely with selected
vendors to migrate technology to alternate platforms.

http://www.sei.cmu.edu/str/descriptions/notes/orb_3.html7/28/2008 11:30:17 AM

Object Request Broker - Notes

Notes

4 Examples include ORBIX by IONA Technology, NEO by SunSoft, VisiBroker by VisiGenic,
PowerBroker by Expersoft, SmallTalkBroker by DNS Technologies, Object Director by Fujitsu, DSOM
by IBM, DAIS by ICL, SORBET by Siemens Nixdorf, and NonStop DOM by Tandem.

http://www.sei.cmu.edu/str/descriptions/notes/orb_4.html7/28/2008 11:30:17 AM

Object Request Broker - Notes

Notes

5 Implementations of the Java VM have been ported to various platforms.

http://www.sei.cmu.edu/str/descriptions/notes/orb_5.html7/28/2008 11:30:17 AM

Brown 96

References and Information Sources

[Brown
96]

Brown, A. & Wallnau, K. "A Framework for Evaluating Software Technology." IEEE
Software 13, 5 (September 1996): 39-49.

http://www.sei.cmu.edu/str/indexes/references/Brown_96_bold.html7/28/2008 11:30:17 AM

Wallnau 96

References and Information Sources

[Wallnau
96]

Wallnau, Kurt & Wallace, Evan. "A Situated Evaluation of the Object Management
Group's (OMG) Object Management Architecture (OMA)," 168-178. Proceedings of the
OOPSLA'96. San Jose, CA, October 6-10, 1996. New York, NY: ACM, 1996.
Presentation available [online] FTP.
<URL: ftp://ftp.sei.cmu.edu/pub/corba/OOPSLA/present> (1996).

http://www.sei.cmu.edu/str/indexes/references/Wallnau_96.html7/28/2008 11:30:18 AM

ftp://ftp.sei.cmu.edu/pub/corba/OOPSLA/present

Organization Domain Modeling - Notes

Notes

1 formerly Unisys Defense Systems, Reston, VA

http://www.sei.cmu.edu/str/descriptions/notes/odm_1.html7/28/2008 11:30:18 AM

Organization Domain Modeling - Notes

Notes

2 Defense Advanced Research Projects Agency (DARPA) Software Technology for Adaptable, Reliable
Systems (STARS)

http://www.sei.cmu.edu/str/descriptions/notes/odm_2.html7/28/2008 11:30:18 AM

Simos 96

References and Information Sources

[Simos
96]

Simos, M., et al. Software Technology for Adaptable Reliable Systems (STARS)
Organization Domain Modeling (ODM) Guidebook Version 2.0 (STARS-VC-
A025/001/00). Manassas, VA: Lockheed Martin Tactical Defense Systems, 1996. Also
available [online] WWW
<URL: http://www.asset.com/WSRD/abstracts/ABSTRACT_1176.html> (1996).

http://www.sei.cmu.edu/str/indexes/references/Simos_96_bold.html7/28/2008 11:30:18 AM

http://www.asset.com/WSRD/abstracts/ABSTRACT_1176.html

STARS 93

References and Information Sources

[STARS
93]

Conceptual Framework for Reuse Processes Volume I, Definition, Version 3.0 (STARS-
VC-A018/001/00). Reston, VA: Software Technology for Adaptable Reliable Systems,
1993.

http://www.sei.cmu.edu/str/indexes/references/STARS_93.html7/28/2008 11:30:18 AM

STARS 96c

References and Information Sources

[STARS
96c]

Open RLF (STARS-PA31-AE08/001/00). Manassas, VA: Lockheed Martin Tactical
Defense Systems, 1996.

http://www.sei.cmu.edu/str/indexes/references/STARS_96c.html7/28/2008 11:30:19 AM

STARS 96a

References and Information Sources

[STARS
96a]

Canvas Knowledge Acquisition Guide Book Version 1.0 (STARS-PA29-AC01/001/00)
Reston, VA: Software Technology for Adaptable, Reliable Systems, 1996.

http://www.sei.cmu.edu/str/indexes/references/STARS_96a_bold.html7/28/2008 11:30:19 AM

Klinger 96

References and Information Sources

[Klinger
96]

Klinger, Carol & Solderitsch, James. DAGAR: A Process for Domain Architecture
Definition and Asset Implementation [online]. Available WWW
<URL: http://source.asset.com/stars/darpa/Papers/ArchPapers.html> (1996).

http://www.sei.cmu.edu/str/indexes/references/Klinger_96.html7/28/2008 11:30:19 AM

http://source.asset.com/stars/darpa/Papers/ArchPapers.html

STARS 96b

References and Information Sources

[STARS
96b]

Domain Architecture-Based Generation for Ada Reuse (DAGAR) Guidebook Version
1.0. Manassas, VA: Lockheed Martin Tactical Defense Systems, 1996.

http://www.sei.cmu.edu/str/indexes/references/STARS_96b.html7/28/2008 11:30:19 AM

Cornwell 96

References and Information Sources

[Cornwell
96]

Cornwell, Patricia Collins. "HP Domain Analysis: Producing Useful Models for
Reusable Software." HP Journal (August 1996): 46-55.

http://www.sei.cmu.edu/str/indexes/references/Cornwell_96.html7/28/2008 11:30:20 AM

Lettes 96

References and Information Sources

[Lettes
96]

Lettes, Judith A. & Wilson, John. Army STARS Demonstration Project Experience Report
(STARS-VC-A011/003/02). Manassas, VA: Loral Defense Systems-East, 1996.

http://www.sei.cmu.edu/str/indexes/references/Lettes_96_bold.html7/28/2008 11:30:20 AM

Related Topics

Related Topics

Domain Engineering (AP.1.2.4)

● Comparative/Taxonomic Modeling
● Domain Engineering and Domain Analysis
● Feature-Based Design Rationale Capture Method for Requirements Tracing
● Feature-Oriented Domain Analysis
● Organization Domain Modeling
● Visual Programming Techniques

http://www.sei.cmu.edu/str/taxonomies/ap.1.2.4.html7/28/2008 11:30:20 AM

Personal Software Process for Module-Level Development - Notes

Notes

1 Personal Software Process and PSP are service marks of Carnegie Mellon University.

http://www.sei.cmu.edu/str/descriptions/notes/psp_1.html7/28/2008 11:30:20 AM

Humphrey 95

References and Information Sources

[Humphrey
95]

Humphrey, Watts. A Discipline for Software Engineering. Reading, MA: Addison-
Wesley Publishing Company, 1995.

http://www.sei.cmu.edu/str/indexes/references/Humphrey_95_bold.html7/28/2008 11:30:21 AM

Personal Software Process for Module-Level Development - Notes

Notes

2 Capability Maturity Model and CMM are service marks of Carnegie Mellon University.

http://www.sei.cmu.edu/str/descriptions/notes/psp_2.html7/28/2008 11:30:21 AM

Paulk 95

References and Information Sources

[Paulk
95]

Carnegie Mellon University, Software Engineering Institute (Principal Contributors and
Editors: Mark C. Paulk, Charles V. Weber, Bill Curtis, and Mary Beth Chrissis), The
Capability Maturity Model: Guidelines for Improving the Software Process, ISBN 0-201-
54664-7, Addison-Wesley Publishing Company, Reading, MA, 1995.

http://www.sei.cmu.edu/str/indexes/references/Paulk_95.html7/28/2008 11:30:21 AM

Personal Software Process for Module-Level Development - Notes

Notes

3 Team Software Process and TSP are service marks of Carnegie Mellon University.

http://www.sei.cmu.edu/str/descriptions/notes/psp_3.html7/28/2008 11:30:21 AM

Humphrey 96b

References and Information Sources

[Humphrey
96b]

Humphrey, Watts. "The PSP and Personal Project Estimating." American
Programmer 9, 6 (June 1996): 2-15.

http://www.sei.cmu.edu/str/indexes/references/Humphrey_96b.html7/28/2008 11:30:21 AM

Humphrey 96a

References and Information Sources

[Humphrey
96a]

Humphrey, Watts. "Using a Defined and Measured Personal Software Process."
IEEE Software 13, 3 (May 1996): 77-88.

http://www.sei.cmu.edu/str/indexes/references/Humphrey_96a_bold.html7/28/2008 11:30:22 AM

McAndrews 00

References and Information Sources

[McAndrews
00]

McAndrews, Donald R. The Team Software ProcessSM (TSPSM): An Overview and
Preliminary Results of Using Disciplined Practices (CMU/SEI-2000-TR-015).
Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon University, 2000.

http://www.sei.cmu.edu/str/indexes/references/McAndrews_00.html7/28/2008 11:30:22 AM

http://www.sei.cmu.edu/publications/documents/00.reports/00tr015.html

Related Topics

Related Topics

Code (AP.1.4.2)

● Graphical User Interface Builders
● Halstead Complexity Measures
● Peer Reviews
● Personal Software Process for Module-Level Development
● Rate Monotonic Analysis
● Nonrepudiation in Network Communications
● Software Walkthroughs

http://www.sei.cmu.edu/str/taxonomies/ap.1.4.2.html7/28/2008 11:30:22 AM

Related Topics

Related Topics

Unit Testing (Code analyzers, Data analyzers, Black-box/Functional Testing, White-box/
Structural Testing) (AP.1.4.3.4)

● Halstead Complexity Measures
● Maintainability Index Technique for Measuring Program Maintainability
● Peer Reviews
● Personal Software Process for Module-Level Development
● Nonrepudiation in Network Communications
● Software Walkthroughs

http://www.sei.cmu.edu/str/taxonomies/ap.1.4.3.4.html7/28/2008 11:30:22 AM

Related Topics

Related Topics

Maintenance Control (QM.5.1.2.3)

● Personal Software Process for Module-Level Development

http://www.sei.cmu.edu/str/taxonomies/qm.5.1.2.3.html7/28/2008 11:30:23 AM

Related Topics

Related Topics

Productivity (QM.5.2)

● Function Point Analysis
● Personal Software Process for Module-Level Development

http://www.sei.cmu.edu/str/taxonomies/qm.5.2.html7/28/2008 11:30:23 AM

Schneier 96

References and Information Sources

[Schneier
96]

Schneier, Bruce. Applied Cryptography. New York, NY: John Wiley & Sons,
1996.

http://www.sei.cmu.edu/str/indexes/references/Schneier_96_bold.html7/28/2008 11:30:26 AM

White 96

References and Information Sources

[White
96]

White, Gregory B.; Fisch, Eric A.; & Pooch, Udo W. Computer System and Network
Security. Boca Raton, FL: CRC Press, 1996.

http://www.sei.cmu.edu/str/indexes/references/White_96.html7/28/2008 11:30:26 AM

Public Key Digital Signatures - Notes

Notes

1 Of course they are not absolutely unique. We say unique here because it is extremely unlikely
statistically for two files to have the same MAC and, more importantly, it is extremely difficult for an
attacker/malicious user to create/craft two files having the same MAC.

http://www.sei.cmu.edu/str/descriptions/notes/pkds_1.html7/28/2008 11:30:26 AM

Public Key Digital Signatures

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Public Key Digital Signatures

Status

Advanced

Note

We recommend Computer System Security- an Overview as prerequisite reading for this
technology description.

Purpose and Origin

Public key digital signature techniques provide data integrity and source authentication capabilities
to enhance data trustworthiness in computer networks. This technology uses a combination of a
message authentication code (MAC) to guarantee the integrity of data and unique features of paired
public and private keys associated with public key cryptography to uniquely authenticate the sender
[Schneier 96, Abrams 95]. This technology was first defined in the early 1980s with the
development of public key cryptography but has received renewed interest as an authentication
mechanism on the Internet.

Technical Detail

Trustworthiness of data received by a computer from another computer is a function of the security
capabilities of both computers and the communications between them. One of the fundamental
objectives of computer security is data integrity [White 96]. Two aspects of data integrity are
improved by public key digital signature techniques. These are sender authentication and data
integrity verification. Positive authentication of the message source is provided by the unique
relationship of the two encryption keys used in public key cryptography. Positive verification of
message integrity is provided by the use of a message authentication code (sometimes called a
manipulation detection code or a cryptographic checksum) that is produced by a message digest
(sometimes called a data hashing) function. The use of a message authentication code and public
key cryptography are combined in the public key digital signature techniques technology.

Sender authentication. Public key cryptography uses two paired keys. These are the public key
and the private key (sometimes called the secret key), which are related to each other
mathematically. The public key is distributed to anyone that needs to encrypt a message destined
for the holder of the private key. The private key is not known to anyone but the holder of the private
key. Because of the mathematical relationship of the keys, data encrypted with the public key can
only be decrypted with the private key. Another feature of the paired key relationship is that if a
message can be successfully decrypted with the public key then it must have been encrypted with
the private key. Therefore, any message decrypted by a holder of the public key must have been
sent by the holder of the private key. This is used to authenticate the source of a message. Public

http://www.sei.cmu.edu/str/descriptions/pkds_body.html (1 of 5)7/28/2008 11:30:27 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/pkds_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Public Key Digital Signatures

key cryptography can use one of several algorithms but the most common one is the Revest,
Shamir, and Adleman (RSA) algorithm. It is used to produce the paired keys and to encrypt or
decrypt data using the appropriate key.

Data integrity verification. Message digest functions produce a single large number called the
message authentication code (MAC) that is unique1 to the total combination and position of
characters in the message being digested. The message digest function distributed with RSA is
called the MD5 message digest function. It produces a unique 128 bit number for each different
message digested. If even one character is changed in the message, a dramatically-different 128 bit
number is generated.

The overall process for using Public Key Digital Signatures to verify data integrity is shown in Figure
22.

Figure 22: Public Key Digital Signatures

The Digital Signature of a message is produced in two steps:

1. The sender of the message uses the message digest function to produce a message
authentication code (MAC).

2. This MAC is then encrypted using the private key and the public key encryption algorithm.
This encrypted MAC is attached to the message as the digital signature.

The receiver of the message uses the public key to decrypt the digital signature. If it is decrypted
successfully, the receiver of the message knows it came from the holder of the private key. The
receiver then uses the message digest function to calculate the MAC associated with the received
message contents. If this number compares to the one decrypted from the Digital Signature, the
message was received unaltered and data integrity is assured. Together, this technique provides
data source authentication and verification of message content integrity.

There are many message digest functions and public key encryption algorithms that may be used in
developing the public key digital signature technique. A discussion of these alternative algorithms
and their merits is in Schneier [Schneier 96].

Usage Considerations

This technology is most likely to be used in networks of computers where all the communication
paths can not be physically protected and where the integrity of data and sender authenticity

http://www.sei.cmu.edu/str/descriptions/pkds_body.html (2 of 5)7/28/2008 11:30:27 AM

Public Key Digital Signatures

aspects of trustability are essential. Military C4I networks and banking networks that are on a
widespread local area network or a wide area network are prime examples of this use.

Implementation of the public key digital signature techniques establishes additional requirements on
a network. The same message digest functions and public key cryptography algorithm used to
process the digital signature must be used by both the sender and receiver. Public/private key pairs
must be generated and maintained. Public keys must be distributed (or accessible in a public forum)
and private keys protected.

Maturity

The components of this technology, public key encryption and message digest functions, have been
in use since the early 1980s. The combined technology is mature and is available in
implementations that range from small networks of PCs to protection of data being transferred over
the Internet.

The algorithms supporting public key digital signatures have historically consumed large amounts of
processing power. However, given recent advances in processors used in PCs and workstations;
this is no longer a concern in most circumstances of use.

Costs and Limitations

Using this technology requires network management personnel with knowledge of public key
cryptography and the use of software that implements public key cryptography and digital signature
algorithms. It also requires security personnel and software that can generate, distribute, and
control encryption/decryption keys and respond to the loss or compromise of keys.

Dependencies

Public key cryptography and message digest functions.

Alternatives

Data integrity and authentication can be provided by a combination of dedicated circuits, integrity
protocols, and procedural control of sources and destinations. These approaches are not foolproof
and can be expensive. Data integrity and authentication can also be provided using private key
encryption and a third party arbitrator. This approach has the disadvantage that a third party must
be trusted and the data must be encrypted and decrypted twice with two separate private keys.

Index Categories

This technology is classified under the following categories. Select a category for a list of related
topics.

Name of technology Public Key Digital Signatures

Application category System Security (AP.2.4.3)

http://www.sei.cmu.edu/str/descriptions/pkds_body.html (3 of 5)7/28/2008 11:30:27 AM

Public Key Digital Signatures

Quality measures category Trustworthiness (QM.2.1.4)

Computing reviews category Computer-Communication Networks Security and Protection (C.2.0)
Security and Protection (K.6.5)

References and Information Sources

[Abrams 95] Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J. Information Security An
Integrated Collection of Essays. Los Alamitos, CA: IEEE Computer Society Press,
1995.

[Garfinkel
95]

Garfinkel, Simpson. PGP: Pretty Good Privacy. Sebastopol, CA: O'Reilly &
Associates, 1995.

[Russel 91] Russel, Deborah & Gangemi, G.T. Sr. Computer Security Basics. Sebastopol, CA:
O'Reilly & Associates, Inc., 1991.

[Schneier
96]

Schneier, Bruce. Applied Cryptography. New York, NY: John Wiley & Sons, 1996.

[White 96] White, Gregory B.; Fisch, Eric A.; & Pooch, Udo W. Computer System and Network
Security. Boca Raton, FL: CRC Press, 1996.

Current Author/Maintainer

Tom Mills, Lockheed Martin

External Reviewers

Jim Ellis, SEI
Scott A. Hissam, SEI

Modifications

4 Nov 03 (typo correction) 26 Jun 00 (references to "secret key" changed to "private key")

10 Jan 97 (original)

Footnotes

1 Of course they are not absolutely unique. We say unique here because it is extremely unlikely
statistically for two files to have the same MAC and, more importantly, it is extremely difficult for an
attacker/malicious user to create/craft two files having the same MAC.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the U.S.
Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University

http://www.sei.cmu.edu/str/descriptions/pkds_body.html (4 of 5)7/28/2008 11:30:27 AM

Public Key Digital Signatures

Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/pkds_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/pkds_body.html (5 of 5)7/28/2008 11:30:27 AM

http://www.sei.cmu.edu/about/disclaimer.html

Dependability - Definition

Glossary Term

Dependability
that property of a computer system such that reliance can justifiably be placed on the service it
delivers [Barbacci 95].

http://www.sei.cmu.edu/str/indexes/glossary/dependability.html7/28/2008 11:30:27 AM

Serlin 72

References and Information Sources

[Serlin
72]

Serlin, O. "Scheduling of Time Critical Processes," 925-932. Proceedings of the Spring
Joint Computer Conference. Atlantic City, NJ, May 16-18, 1972. Montvale, NJ: American
Federation of Information Processing Societies, 1972.

http://www.sei.cmu.edu/str/indexes/references/Serlin_72.html7/28/2008 11:30:28 AM

Liu 73

References and Information Sources

[Liu
73]

Liu, C. L. & Layland, J. W. "Scheduling Algorithms for Multi-Programming in a Hard Real-
Time Environment." Journal of the Association for Computing Machinery 20, 1 (January
1973): 40-61.

http://www.sei.cmu.edu/str/indexes/references/Liu_73.html7/28/2008 11:30:28 AM

Sha 91a

References and Information Sources

[Sha
91a]

Sha, Klein & Goodenough, J. "Rate Monotonic Analysis for Real-Time Systems," 129-155.
Foundations of Real-Time Computing: Scheduling and Resource Management. Boston, MA:
Kluwer Academic Publishers, 1991.

http://www.sei.cmu.edu/str/indexes/references/Sha_91a.html7/28/2008 11:30:28 AM

Klein 93

References and Information Sources

[Klein
93]

Klein, M.H., et al. A Practitioners' Handbook for Real-Time Analysis: Guide to Rate
Monotonic Analysis for Real-Time Systems. Boston, MA: Kluwer Academic Publishers,
1993.

http://www.sei.cmu.edu/str/indexes/references/Klein_93_bold.html7/28/2008 11:30:28 AM

Rajkumar 91

References and Information Sources

[Rajkumar
91]

Rajkumar, Ragunathan. Synchronization in Real-Time Systems: A Priority Inheritance
Approach. Boston, MA: Kluwer Academic Publishers, 1991.

http://www.sei.cmu.edu/str/indexes/references/Rajkumar_91_bold.html7/28/2008 11:30:28 AM

Lucas 92

References and Information Sources

[Lucas
92]

Lucas, L. & Page, B. "Tutorial on Rate Monotonic Analysis." Ninth Annual Washington
Ada Symposium. McLean, VA, July 13-16, 1992. New York, NY: Association for
Computing Machinery, 1992.

http://www.sei.cmu.edu/str/indexes/references/Lucas_92.html7/28/2008 11:30:29 AM

Locke 91

References and Information Sources

[Locke
91]

Locke, C.D.; Vogel, D.R.; & Mesler, T.J. "Building a Predictable Avionics Platform in
Ada: a Case Study," 181-189. Proceedings of the Twelfth Real-Time Systems Symposium.
San Antonio, TX, December 4-6, 1991. Los Alamitos, CA: IEEE Computer Society Press,
1991.

http://www.sei.cmu.edu/str/indexes/references/Locke_91.html7/28/2008 11:30:29 AM

Ignace 94

References and Information Sources

[Ignace
94]

Ignace, S. J.; Sedlmeyer, R. L.; & Thuente, D. J. "Integrating Rate Monotonic Analysis into
Real-Time Software Development," 257-274. IFIP Transactions, Diffusion, Transfer and
Implementation of Information Technology (A-45). Pittsburgh, PA, October 11-13, 1993.
The Netherlands: International Federation of Information Processing, 1994.

http://www.sei.cmu.edu/str/indexes/references/Ignace_94.html7/28/2008 11:30:29 AM

Sha 91b

References and Information Sources

[Sha
91b]

Sha, L.; Rajkumar, R.; & Lehoczky, J. P. "Real-Time Computing with IEEE Futurebus+."
IEEE Micro 11, 3 (June 1991): 30-38.

http://www.sei.cmu.edu/str/indexes/references/Sha_91b.html7/28/2008 11:30:29 AM

Fowler 93

References and Information Sources

[Fowler
93]

Fowler, P. & Levine, L. Technology Transition Push: A Case Study of Rate Monotonic
Analysis Part 1 (CMU/SEI-93-TR-29). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1993.

http://www.sei.cmu.edu/str/indexes/references/Fowler_93.html7/28/2008 11:30:30 AM

Related Topics

Related Topics

System Analysis and Optimization (AP.1.3.6)

● Model Checking
● Rate Monotonic Analysis
● Software Reliability Modeling and Analysis

http://www.sei.cmu.edu/str/taxonomies/ap.1.3.6.html7/28/2008 11:30:30 AM

Reference Models, Architectures, Implementations--An Overview

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Reference Models, Architectures, Implementations--An Overview

Status

Advanced

Purpose and Origin

Much confusion exists regarding the definition, applicability, and scope of the terms reference model,
architecture, and implementation. Understanding these terms facilitates understanding legacy system
designs and how to migrate them to more open systems. The purpose of this technology description is
to provide definitions, and more importantly, to describe how the terms are related.

Technical Detail

Reference model. A reference model is a description of all of the possible software components,
component services (functions), and the relationships between them (how these components are put
together and how they will interact). Examples of commonly-known reference models include the
following:

● the Technical Architecture for Information Management (TAFIM) reference model (see TAFIM
Reference Model)

● the Reference Model for Frameworks of Software Engineering Environments [ECMA 93]
● Project Support Environment Reference Model (PSERM)
● the Tri-Service Working Group Open Systems Reference Model

Architecture. An architecture is a description of a subset of the reference model's component services
that have been selected to meet a specific system's requirements. In other words, not all of the
reference model's component services need to be included in a specific architecture. There can be
many architectures derived from the same reference model. The associated standards and guidelines
for each service included in the architecture form the open systems architecture and become the criteria
for implementing the system.

Implementation. The implementation is a product that results from selecting (e.g., commercial-off-the-
shelf), reusing, building and integrating software components and component services according to the
specified architecture. The selected, reused, and/or built components and component services must
comply 100% with the associated standards and guidelines for the implementation to be considered
compliant.

Usage Considerations

Figure 23 attempts to show the interrelationships of these concepts using the TAFIM as an example.
TAFIM provides the reference model and a number of specific architectures can be derived from the
TAFIM reference model based on specific program requirements. From there a number of

http://www.sei.cmu.edu/str/descriptions/refmodels_body.html (1 of 3)7/28/2008 11:30:30 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/refmodels_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Reference Models, Architectures, Implementations--An Overview

implementations may be developed based on the products selected to meet the architecture's services,
so long as these products meet the required standards and guidelines. For instance, in one
implementation, the product ORACLE might be selected and used to meet some of the data
management services. In another implementation, the product Sybase might be selected and used.

Figure 23: Reference Model, Architecture, and Implementation

Index Categories

This technology is classified under the following categories. Select a category for a list of related topics.

Name of technology Reference Models, Architectures, Implementations - An Overview

Application category Software Architecture Models (AP.2.1.1)
Software Architecture (AP.2.1)

Quality measures category Maintainability (QM.3.1)
Interoperability (QM.4.1)
Portability (QM.4.2)

Computing reviews category Distributed Systems (C.2.4)
Software Engineering Design (D.2.10)

References and Information Sources

http://www.sei.cmu.edu/str/descriptions/refmodels_body.html (2 of 3)7/28/2008 11:30:30 AM

Reference Models, Architectures, Implementations--An Overview

[ECMA
93]

Reference Model for Frameworks of Software Engineering Environments, 3rd Edition
(NIST Special Publication 500-211/Technical Report ECMA TR/55). Prepared jointly by
NIST and the European Computer Manufacturers Association (ECMA). Washington, DC:
U.S. Government Printing Office, 1993.

[Meyers
96]

Meyers, Craig & Oberndorf, Tricia. Open Systems: The Promises and the Pitfalls.
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 1996.

Current Author/Maintainer

Darleen Sadoski, GTE

External Reviewers

Tricia Oberndorf, SEI

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the U.S.
Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/refmodels_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/refmodels_body.html (3 of 3)7/28/2008 11:30:30 AM

http://www.sei.cmu.edu/about/disclaimer.html

Birrell 84

References and Information Sources

[Birrell
84]

Birrell, A.D. & Nelson, B.J. "Implementing Remote Procedure Calls." ACM Transactions
on Computer Systems 2, 1 (February 1984): 39-59.

http://www.sei.cmu.edu/str/indexes/references/Birrell_84.html7/28/2008 11:30:31 AM

Remote Procedure Call

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Remote Procedure Call

Status

Advanced

Note

We recommend Middleware as prerequisite reading for this technology
description.

Purpose and Origin

Remote Procedure Call (RPC) is a client/server infrastructure that increases the
interoperability, portability, and flexibility of an application by allowing the
application to be distributed over multiple heterogeneous platforms. It reduces
the complexity of developing applications that span multiple operating systems
and network protocols by insulating the application developer from the details of
the various operating system and network interfaces--function calls are the
programmer's interface when using RPC [Rao 1995].

The concept of RPC has been discussed in literature as far back as 1976, with
full-scale implementations appearing in the late 1970s and early 1980s [Birrell
84].

Technical Detail

In order to access the remote server portion of an application, special function
calls, RPCs, are embedded within the client portion of the client/server
application program. Because they are embedded, RPCs do not stand alone as
a discreet middleware layer. When the client program is compiled, the compiler
creates a local stub for the client portion and another stub for the server portion
of the application. These stubs are invoked when the application requires a
remote function and typically support synchronous calls between clients and
servers. These relationships are shown in Figure 32 [Steinke 95].

By using RPC, the complexity involved in the development of distributed
processing is reduced by keeping the semantics of a remote call the same
whether or not the client and server are collocated on the same system.
However, RPC increases the involvement of an application developer with the

http://www.sei.cmu.edu/str/descriptions/rpc_body.html (1 of 5)7/28/2008 11:30:31 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/rpc_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Remote Procedure Call

complexity of the master-slave nature of the client/server mechanism.

RPC increases the flexibility of an architecture by allowing a client component of
an application to employ a function call to access a server on a remote system.
RPC allows the remote component to be accessed without knowledge of the
network address or any other lower-level information. Most RPCs use a
synchronous, request-reply (sometimes referred to as "call/wait") protocol which
involves blocking of the client until the server fulfills its request. Asynchronous
("call/nowait") implementations are available but are currently the exception.

Figure 32: Remote Procedure Calls

RPC is typically implemented in one of two ways:

1. within a broader, more encompassing propriety product
2. by a programmer using a proprietary tool to create client/server RPC

stubs

Usage Considerations

RPC is appropriate for client/server applications in which the client can issue a
request and wait for the server's response before continuing its own processing.
Because most RPC implementations do not support peer-to-peer, or
asynchronous, client/server interaction, RPC is not well-suited for applications
involving distributed objects or object-oriented programming (see Object-
Oriented Programming Languages).

Asynchronous and synchronous mechanisms each have strengths and
weaknesses that should be considered when designing any specific application.
In contrast to asynchronous mechanisms employed by Message-Oriented
Middleware, the use of a synchronous request-reply mechanism in RPC requires
that the client and server are always available and functioning (i.e., the client or
server is not blocked). In order to allow a client/server application to recover from
a blocked condition, an implementation of a RPC is required to provide
mechanisms such as error messages, request timers, retransmissions, or
redirection to an alternate server. The complexity of the application using a RPC

http://www.sei.cmu.edu/str/descriptions/rpc_body.html (2 of 5)7/28/2008 11:30:31 AM

Remote Procedure Call

is dependent on the sophistication of the specific RPC implementation (i.e., the
more sophisticated the recovery mechanisms supported by RPC, the less
complex the application utilizing the RPC is required to be). RPCs that
implement asynchronous mechanisms are very few and are difficult (complex) to
implement [Rao 1995].

When utilizing RPC over a distributed network, the performance (or load) of the
network should be considered. One of the strengths of RPC is that the
synchronous, blocking mechanism of RPC guards against overloading a
network, unlike the asynchronous mechanism of Message-Oriented Middleware
(MOM). However, when recovery mechanisms, such as retransmissions, are
employed by an RPC application, the resulting load on a network may increase,
making the application inappropriate for a congested network. Also, because
RPC uses static routing tables established at compile-time, the ability to perform
load balancing across a network is difficult and should be considered when
designing an RPC-based application.

Maturity

Tools are available for a programmer to use in developing RPC applications over
a wide variety of platforms, including Windows (3.1, NT, 95), Macintosh, 26
variants of UNIX, OS/2, NetWare, and VMS [Steinke 1995]. RPC infrastructures
are implemented within the Distributed Computing Environment (DCE) , and
within Open Network Computing (ONC), developed by Sunsoft, Inc. These two
RPC implementations dominate the current Middleware market [Rao 1995].

Costs and Limitations

RPC implementations are nominally incompatible with other RPC
implementations, although some are compatible. Using a single implementation
of a RPC in a system will most likely result in a dependence on the RPC vendor
for maintenance support and future enhancements. This could have a highly
negative impact on a system's flexibility, maintainability, portability, and
interoperability.

Because there is no single standard for implementing an RPC, different features
may be offered by individual RPC implementations. Features that may affect the
design and cost of a RPC-based application include the following:

● support of synchronous and/or asynchronous processing
● support of different networking protocols
● support for different file systems
● whether the RPC mechanism can be obtained individually, or only

bundled with a server operating system

Because of the complexity of the synchronous mechanism of RPC and the
proprietary and unique nature of RPC implementations, training is essential even
for the experienced programmer.

http://www.sei.cmu.edu/str/descriptions/rpc_body.html (3 of 5)7/28/2008 11:30:31 AM

Remote Procedure Call

Alternatives

Other middleware technologies that allow the distribution of processing across
multiple processors and platforms are

● Object Request Brokers (ORB)
● Distributed Computing Environment (DCE)
● Message-Oriented Middleware (MOM)
● COM/DCOM (see Component Object Model (COM), DCOM, and Related

Capabilities)
● Transaction Processing Monitor Technology
● Three Tier Software Architectures

Complementary Technologies

RPC can be effectively combined with Message-Oriented Middleware (MOM)-
MOM can be used for asynchronous processing.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Remote Procedure Call

Application category Client/Server (AP.2.1.2.1)
Client/Server Communication (AP.2.2.1)

Quality measures category Maintainability (QM.3.1)
Interoperability (QM.4.1)
Portability (QM.4.2)
Complexity (QM.3.2.1)

Computing reviews category Distributed Systems (C.2.4)

References and Information Sources

[Birrell 84] Birrell, A.D. & Nelson, B.J. "Implementing Remote Procedure
Calls." ACM Transactions on Computer Systems 2, 1 (February
1984): 39-59.

[Rao 95] Rao, B.R. "Making the Most of Middleware." Data
Communications International 24, 12 (September 1995): 89-96.

http://www.sei.cmu.edu/str/descriptions/rpc_body.html (4 of 5)7/28/2008 11:30:31 AM

Remote Procedure Call

[Steinke 95] Steinke, Steve. "Middleware Meets the Network." LAN: The
Network Solutions Magazine 10, 13 (December 1995): 56.

[Thekkath
93]

Thekkath, C.A. & Levy, H.M. "Limits to Low-Latency
Communication on High-Speed Networks." ACM Transactions on
Computer Systems 11, 2 (May 1993): 179-203.

Current Author/Maintainer

Cory Vondrak, TRW, Redondo Beach, CA

Modifications

25 June 97: modified/updated OLE/COM reference to COM/DCOM
10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/rpc_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/rpc_body.html (5 of 5)7/28/2008 11:30:31 AM

http://www.sei.cmu.edu/about/disclaimer.html

Completeness - Definition

Glossary Term

Completeness
the degree to which all the parts of a software system or component are present and each of its
parts is fully specified and developed [Boehm 78].

http://www.sei.cmu.edu/str/indexes/glossary/completeness.html7/28/2008 11:30:32 AM

Traceability - Definition

Glossary Term

Traceability
the degree to which a relationship can be established between two or more products of the
development process, especially products having a predecessor-successor or master-subordinate
relationship to one another [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/traceability.html7/28/2008 11:30:32 AM

SPS 94

References and Information Sources

[SPS
94]

Analysis of Automated Requirements Management Capabilities. Melbourne, FL: Software
Productivity Solutions, 1994.

http://www.sei.cmu.edu/str/indexes/references/SPS_94_bold.html7/28/2008 11:30:32 AM

Gotel 95

References and Information Sources

[Gotel
95]

Gotel, Orlena. Contribution Structures for Requirements Traceability. London, England:
Imperial College, Department of Computing, 1995.

http://www.sei.cmu.edu/str/indexes/references/Gotel_95_bold.html7/28/2008 11:30:32 AM

Requirements Tracing--An Overview

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Requirements Tracing--An Overview

Status

Advanced

Purpose and Origin

The development and use of requirements tracing techniques originated in the
early 1970s to influence the completeness, consistency, and traceability of the
requirements of a system. They provide an answer to the following questions:

● What mission need is addressed by a requirement?
● Where is a requirement implemented?
● Is this requirement necessary?
● How do I interpret this requirement?
● What design decisions affect the implementation of a requirement?
● Are all requirements allocated?
● Why is the design implemented this way and what were the other

alternatives?
● Is this design element necessary?
● Is the implementation compliant with the requirements?
● What acceptance test will be used to verify a requirement?
● Are we done?
● What is the impact of changing a requirement [SPS 94]?

The purpose of this technology description is to introduce the key concepts of
requirements tracing. Detailed discussions of the individual technologies can be
found in the referenced technology descriptions.

Technical Detail

Requirements traceability is defined as the ability to describe and follow the life
of a requirement, in both a forward and backward direction (i.e., from its origins,
through its development and specification, to its subsequent deployment and
use, and through periods of ongoing refinement and iteration in any of these
phases) [Gotel 95]. It can be achieved by using one or more of the following
techniques:

● Cross referencing. This involves embedding phrases like "see section x"
throughout the project documentation (e.g., tagging, numbering, or

http://www.sei.cmu.edu/str/descriptions/reqtracing_body.html (1 of 5)7/28/2008 11:30:33 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/reqtracing_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Requirements Tracing--An Overview

indexing of requirements, and specialized tables or matrices that track the
cross references).

● Specialized templates and integration or transformation documents.
These are used to store links between documents created in different
phases of development.

● Restructuring. The documentation is restructured in terms of an
underlying network or graph to keep track of requirements changes (e.g.,
assumption-based truth maintenance networks, chaining mechanisms,
constraint networks, and propagation) [Gotel 95].

Usage Considerations

For any given project, a key milestone (or step) is to determine and agree upon
requirements traceability details. Initially, three important questions need to be
answered before embarking on any particular requirements traceability approach:

1. What needs to be traceable?
2. What linkages need to be made?
3. How, when, and who should establish and maintain the resulting

database?

Once the questions are answered, then selection of an approach can be made.
One approach could be the structured use of general-purpose tools (e.g.,
hypertext editors, word processors, and spreadsheets) configured to support
cross-referencing between documents. For large software development projects,
an alternative approach could be the use of a dedicated workbench centered
around a database management system providing tools for documenting,
parsing, editing, decomposing, grouping, linking, organizing, partitioning, and
managing requirements. Table 9 describes the strengths and weaknesses of
each of the approaches.

Table 9: Comparing Requirements Tracing Approaches

Approaches Strengths Weaknesses

General
purpose tools

· readily available

· flexible

· good for small projects

· need to be configured to
support Requirements
Traceability (RT)

· potential high RT maintenance
cost

· limited control over RT
information

· potential limited integration
with other software
development tools

http://www.sei.cmu.edu/str/descriptions/reqtracing_body.html (2 of 5)7/28/2008 11:30:33 AM

Requirements Tracing--An Overview

Workbenches · fine-grained forward,
backward, horizontal, and
vertical RT

· RT results may facilitate
later development activities (i.
e., testing)

· suitable for large projects

· depend upon stakeholder buy-
in

· manual intervention may be
required

· RT in later development
phases may be difficult

Regardless of the approach taken, requirements tracing requires a combination
of models (i.e., representation forms), methods (i.e., step by step processes),
and/or languages (i.e., semiformal and formal) that incorporate the above
techniques. Some examples of requirements tracing methods are discussed in
the following technology descriptions:

● Feature-Based Design Rationale Capture Method for Requirements
Tracing

● Argument-Based Design Rationale Capture Methods for Requirements
Tracing

Maturity

Every major office tool manufacturer has spreadsheet and/or database
capabilities that can be configured to support requirements tracing. There are at
least ten commercial products that fall in the workbench category and support
some level of requirements traceability [STSC 98]. At a minimum, they provide

● bidirectional requirement linking to system elements
● capture of allocation rationale, accountability, and test/validation
● identification of inconsistencies
● capabilities to view/trace links
● verification of requirements
● history of requirements changes.

Environments to support requirements traceability past the requirements
engineering phase of the system/software life cycle are being researched. Areas
include the development of a common language, method, model, and database
repository structure, as well as mechanisms to provide data exchange between
different tools in the environment. Prototypes exist and at least one commercial
product provides support for data exchange through its object-oriented database
facilities.

Costs and Limitations

In general, the implementation of requirements tracing techniques within an
organization should facilitate reuse and maintainability of the system. However,

http://www.sei.cmu.edu/str/descriptions/reqtracing_body.html (3 of 5)7/28/2008 11:30:33 AM

Requirements Tracing--An Overview

additional resources (time and manpower) to initially implement traceability
processes (i.e., definition of traceability information, selection of automated tools,
training, etc.) will be required. One case study found that the cost was more than
twice the normal documentation cost associated with the development of a
system of similar size and complexity. However, this was determined to be a one-
time cost and the overall costs to maintain the software system are expected to
be reduced. Almost immediate return was observed in the reduced amount of
time to perform hardware upgrades [Ramesh 95].

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Requirements Tracing

Application category Requirements Tracing (AP.1.2.3)

Quality measures category Completeness (QM.1.3.1)
Consistency (QM.1.3.2)
Traceability (QM.1.3.3)
Effectiveness (QM.1.1)
Reusability (QM.4.4)
Understandability (QM.3.2)
Maintainability (QM.3.1)

Computing reviews category Software Engineering Tools and Techniques
(D.2.2)
Software Engineering Requirements/
Specifications (D.2.1)

References and Information Sources

[Bailin 90] Bailin, S., et al. "KAPTUR: Knowledge Acquisition for
Preservation of Tradeoffs and Underlying Rationale," 95-104.
Proceedings of the 5th Annual Knowledge-Based Software
Assistant Conference. Liverpool, NY, September 24-28, 1990.
Rome, NY: Rome Air Development Center, 1990.

[Gotel 95] Gotel, Orlena. Contribution Structures for Requirements
Traceability. London, England: Imperial College, Department of
Computing, 1995.

http://www.sei.cmu.edu/str/descriptions/reqtracing_body.html (4 of 5)7/28/2008 11:30:33 AM

Requirements Tracing--An Overview

[Ramesh
92]

Ramesh, Balasubramaniam & Dhar, Vasant. "Supporting Systems
Development by Capturing Deliberations During Requirements
Engineering." IEEE Transactions on Software Engineering 18, 6
(June 1992): 498-510.

[Ramesh
95]

Ramesh, Bala; Stubbs, Lt Curtis; & Edwards, Michael. "Lessons
Learned from Implementing Requirements Traceability."
Crosstalk, Journal of Defense Software Engineering 8, 4 (April
1995): 11-15.

[Shum 94] Shum, Buckingham Simon & Hammond, Nick. "Argumentation-
Based Design Rationale: What Use at What Cost?" International
Journal of Human-Computer Studies 40, 4 (April 1994): 603-652.

[SPS 94] Analysis of Automated Requirements Management Capabilities.
Melbourne, FL: Software Productivity Solutions, 1994.

[STSC 98] Software Technology Support Center. Requirements Management
Tools [online]. Available WWW
<URL:http://www.stsc.hill.af.mil/RED/LIST.HTML> (1998).

Current Author/Maintainer

Liz Kean, Air Force Rome Laboratory

External Reviewers

Brian Gallagher, SEI

Modifications

4 Feb 98: added reference for [STSC 98]
10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/reqtracing_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/reqtracing_body.html (5 of 5)7/28/2008 11:30:33 AM

http://www.stsc.hill.af.mil/RED/LIST.HTML
http://www.sei.cmu.edu/about/disclaimer.html

STSC 98

References and Information Sources

[STSC
98]

Software Technology Support Center. Requirements Management Tools [online]. Available
WWW
<URL:http://www.stsc.hill.af.mil/RED/LIST.HTML> (1998).

http://www.sei.cmu.edu/str/indexes/references/STSC_98.html7/28/2008 11:30:33 AM

http://www.stsc.hill.af.mil/RED/LIST.HTML

Ramesh 95

References and Information Sources

[Ramesh
95]

Ramesh, Bala; Stubbs, Lt Curtis; & Edwards, Michael. "Lessons Learned from
Implementing Requirements Traceability." Crosstalk, Journal of Defense Software
Engineering 8, 4 (April 1995): 11-15.

http://www.sei.cmu.edu/str/indexes/references/Ramesh_95.html7/28/2008 11:30:34 AM

Public Key Cryptography

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Public Key Cryptography

Status

Draft

Purpose and Origin

Cryptography is an algorithmic process of converting a plain text (or clear text)
message to a cipher text (or cipher) message based on an algorithm that both
the sender and receiver know, so that the cipher text message can be returned
to its original, plain text form. In its cipher form, a message cannot be read by
anyone but the intended receiver. The act of converting a plain text message to
its cipher text form is called enciphering. Reversing that act (i.e., cipher text form
to plain text message) is deciphering. Enciphering and deciphering are more
commonly referred to as encryption and decryption, respectively.

There are a number of algorithms for performing encryption and decryption, but
comparatively few such algorithms have stood the test of time. The most
successful algorithms use a key. A key is simply a parameter to the algorithm
that allows the encryption and decryption process to occur. There are many
modern key-based cryptographic techniques [Schneier 96]. These are divided
into two classes: symmetric and asymmetric (also called public/private) key
cryptography. In symmetric key cryptography, the same key is used for both
encryption and decryption. In asymmetric key cryptography, one key is used for
encryption and another, mathematically related key, is used for decryption.

Symmetric Key Cryptography

The most widely used symmetric key cryptographic method is the Data
Encryption Standard (DES) [NIST 93]. Although originally published in 1977 by
the National Bureau of Standards (reprinted in [Beker+ 82]), DES has not yet
been replaced by any other symmetric-key approach. DES uses a fixed length,
56-bit key and an efficient algorithm to quickly encrypt and decrypt messages.
DES can be easily implemented in hardware, making the encryption and
decryption process even faster. In general, increasing the key size makes the
system more secure. A variation of DES, called Triple-DES or DES-EDE
(encrypt-decrypt-encrypt), uses three applications of DES and two independent
DES keys to produce an effective key length of 168 bits [ANSI 85].

The International Data Encryption Algorithm (IDEA) was invented by James
Massey and Xuejia Lai of ETH Zurich, Switzerland in 1991 and is patented and

http://www.sei.cmu.edu/str/descriptions/publickey_body.html (1 of 8)7/28/2008 11:30:34 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/publickey_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Public Key Cryptography

registered by the Swiss Ascom Tech AG, Solothurn [Lai 92]. IDEA uses a fixed
length, 128-bit key (larger than DES but smaller than Triple-DES). It is also
faster than Triple-DES. In the early 1990s, Don Rivest of RSA Data Security,
Inc., invented the algorithms RC2 and RC4. These use variable length keys and
are claimed to be even faster than IDEA. However, implementations may be
exported from the U.S. only if they use key lengths of 40 bits or fewer.

Although symmetric key cryptography works, it has a fundamental weak spot-
key management. Since the same key is used for encryption and decryption, it
must be kept secure. If an adversary knows the key, then the message can be
decrypted. At the same time, the key must be available to the sender and the
receiver and these two parties may be physically separated. Symmetric key
cryptography transforms the problem of transmitting messages securely into that
of transmitting keys securely. This is a step forward, because keys are much
smaller than messages, and the keys can be generated beforehand.
Nevertheless, ensuring that the sender and receiver are using the same key and
that potential adversaries do not know this key remains a major stumbling block.
This is referred to as the key management problem.

Public/Private Key Cryptography

Asymmetric key cryptography overcomes the key management problem by
using different encryption and decryption key pairs. Having knowledge of one
key, say the encryption key, is not sufficient enough to determine the other key -
the decryption key. Therefore, the encryption key can be made public, provided
the decryption key is held only by the party wishing to receive encrypted
messages (hence the name public/private key cryptography). Anyone can use
the public key to encrypt a message, but only the recipient can decrypt it.

James Ellis, Malcolm Williamson, and Clifford Cocks first investigated public/
private key cryptography at the British Government Communications
Headquarters (GCHQ) in the early 1970s [Ellis 87]. The first public discussion of
public/private key cryptography was by Whitfield Diffie and Martin Hellman in
1976 [Diffie+ 76].

A widely used public/private key algorithm is RSA, named after the initials of its
inventors, Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman [RSA 91].
RSA depends on the difficulty of factoring the product of two very large prime
numbers. Although used for encrypting whole messages, RSA is much less
efficient than symmetric key algorithms such as DES. ElGamal is another public/
private key algorithm [El Gamal 85]. It uses a different arithmetic algorithm than
RSA, called the discrete logarithm problem. An extensive discussion of public/
private key cryptography, including much of the mathematical detail, can be
found in the book, Public Key Cryptography [Salomaa 96].

Technical Detail

The mathematical relationship between the public/private key pair permits a
general rule: any message encrypted with one key of the pair can be
successfully decrypted only with that key's counterpart. To encrypt with the
public key means you can decrypt only with the private key. The converse is also

http://www.sei.cmu.edu/str/descriptions/publickey_body.html (2 of 8)7/28/2008 11:30:34 AM

Public Key Cryptography

true - to encrypt with the private key means you can decrypt only with the public
key.

The decision as to which key is kept private and which is made public is not
arbitrary. In the case of RSA, the public key uses exponents that are relatively
small (in comparison to the private key) making the process of encryption and
digital signature verification (discussed later) faster.

Figure 1 illustrates the proper and intended used of public/private key
cryptography for sending confidential messages. In the illustration, a user, Bob,
has a public/private key pair. The public portion of that key pair is placed in the
public domain (for example in a Web server). The private portion is guarded in a
private domain, for example, on a digital key card or in a password-protected file.

Figure 1: Proper Use of Public Key Cryptography

For Alice to send a secret message to Bob, the following process needs to be
followed:

1. Alice passes the secret message and Bob's public key to the appropriate
encryption algorithm to construct the encrypted message.

2. Alice transmits the encrypted message (perhaps via e-mail) to Bob.
3. Bob decrypts the transmitted, encrypted message with his private key and

the appropriate decryption algorithm.

Bob can be assured that Alice's encrypted secret message was not seen by
anyone else since only his private key is capable of decrypting the message.

Since we know that a private key can also be used to encrypt messages, Bob
could technically respond in secret to Alice's original message by using the same
public/private key pair as illustrated in Figure 2.

http://www.sei.cmu.edu/str/descriptions/publickey_body.html (3 of 8)7/28/2008 11:30:34 AM

Public Key Cryptography

Figure 2: Improper Use of Public Key Cryptography

In this scenario:

1. Bob passes the secret reply and his private key to the encryption
algorithm to construct the encrypted reply.

2. Bob transmits the encrypted reply to Alice.
3. Alice decrypts the transmitted, encrypted reply with Bob's public key and

the decryption algorithm to read this reply.

Unfortunately, Bob's message will not be confidential because anyone with
access to the encrypted reply and Bob's public key (which is in the public
domain) can decrypt the reply and see the text of the message. However, if Alice
had her own public/private key pair, then Bob and Alice could communicate
confidentially. In this case, Bob would send messages encrypted with Alice's
public key (which only Alice could decrypt by using her private key), and Alice
would send messages to Bob encrypted with Bob's public key (which only he
could decrypt using his private key).

Usage Considerations

Public key cryptography is especially useful in situations where there is a need
for confidentiality, integrity, and non-repudiation. That is, in situations where the
messages being passed are intended to only be shared by the sending and
receiving parties. Further, public key cryptography is used in situations where
the recipient of a message must have confidence that the message received
was received as intended by the sender and has not been altered or forged in
any manner.

Confidentiality assures that unintended third parties can not view information
sent between two communicating parties. Encryption is the most widely used
mechanism for providing confidentiality over an insecure medium.

Integrity is knowing that the message you receive was exactly what was sent
and it was unaltered or damaged during transmission. Digital signatures are

http://www.sei.cmu.edu/str/descriptions/publickey_body.html (4 of 8)7/28/2008 11:30:34 AM

Public Key Cryptography

used to seal a message as a means to warn if the integrity of a message has
been compromised. Today, Web content that executes on local workstations is
commonly downloaded. Knowing that the content has not been surreptitiously
modified is critical if you are to trust the content. If the content is from a trusted
source and it is unmodified, your confidence in that content is higher - because
the content has integrity. If the content is from an unknown source or you cannot
tell if it has been modified, the content cannot be trusted. Mechanisms such as
digital signatures and certificates help maintain the integrity of exchanged
products and services.

Non-repudiation is the inability to disavow an act. In other words, evidence exists
that prevents a person from denying an act. For example, you log in to a
computer system by presenting a user name and password. Most software
applications consider this sufficient evidence to permit access, but could it be
proved that it was really you that was logged in? You could argue that someone
else obtained your password, possibly using snooping techniques. Now,
suppose that a computer system requires a fingerprint or retinal image to gain
access. Contesting the fact now becomes more difficult.

Finally, as opposed to symmetric key cryptography, public key cryptography is a
useful means of getting around issues dealing with key distribution and
management.

Maturity

Public key cryptography has been in use for more than 30 years. Secure
Sockets Layer (SSL) defined by Netscape is a popular application of public key
cryptography found in Web-enabled applications requiring secure
communications and authentication. Pretty Good Privacy (or PGP) is another
popular application of public key cryptography used to send confidential
electronic mail and digitally signing electronic documents.

Further, a number of commercial companies have become third party providers
of public key cryptography software including, but not limited to, RSA Security,
Inc, Sun Microsystems, Microsoft, Entrust, Inc., and VeriSign, Inc.

Costs and Limitations

Cost to implement public key cryptography in a system vary according to size
and scope. Characteristics that can determine costs include the number of pair-
wise keys that need to be created for the purposes of confidentiality and
integrity. For example, securing all corporate email will require that employers to
issue public keys to all of its employees and enforce the use of those key when
communicating corporate ideas and correspondence. Systems are available to
support such wide use but come at a cost. A counter-example of this would be a
corporate "portal" or web site available to the public from which the public may
be asked to place orders. In such a case, the corporation may only be required
to acquire public key cryptography for the one or more server(s) that will be used
to interact with the public, this is typically a annual cost from security providers
such as VeriSign, Inc.

http://www.sei.cmu.edu/str/descriptions/publickey_body.html (5 of 8)7/28/2008 11:30:34 AM

Public Key Cryptography

Using this technology may require network management personnel with
knowledge of public key cryptography and the use of software that implements
public key cryptography and digital signature algorithms especially if an outside
provider for public key infrastructures is NOT used. It also requires security
personnel and software that can generate, distribute, and control encryption/
decryption keys and respond to the loss or compromise of keys.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Public Key Cryptography

Application category Information Security (AP.2.4)

Quality measures category Security (QM.2.1.5)

Computing reviews category Operating Systems Security & Protection (D.4.6),
Security & Protection (K.6.5),
Computer-Communications Networks Security
and Protection (C.2.0)

References and Information Sources

[Abrams 95] Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J.
Information Security An Integrated Collection of Essays. Los
Alamitos, CA: IEEE Computer Society Press, 1995.

[Schneier 96] Bruce Schneier, Applied Cryptography: Protocols, Algorithms,
and Source Code in C, 2nd editon by , John Wiley & Sons, ISBN
0471128457, 1996.

[NIST 93] Data Encryption Standard (DES) (FIPS PUB 46-2). Gaithersburg,
Md.: National Institute of Standards and Technology, January,
1993. Available WWW: <URL: http://www.nist.gov/itl/div897/
pubs/fip46-2.htm>.

[Beker+ 82] Beker, H. & Piper, F. Cipher Systems. London: Northwood
Books, 1982.

http://www.sei.cmu.edu/str/descriptions/publickey_body.html (6 of 8)7/28/2008 11:30:34 AM

http://www.nist.gov/itl/div897/pubs/fip46-2.htm
http://www.nist.gov/itl/div897/pubs/fip46-2.htm

Public Key Cryptography

[ANSI 85] ANSI X9.17-1985, American National Standard, Financial
Institution Key Management (Wholesale), American Bankers
Association, Section 7.2. New York: American National
Standards Institute, 1985.

[Lai 92] Lai, X. ETH Series on Information Processing (J.L. Massey, ed.).
Vol. 1, On the Design and Security of Block Ciphers. Konstanz,
Switzerland: Hartung-Gorre Verlag, 1992.

[Ellis 87] Ellis, J.H. ìThe Story of Non-Secret Encryption.î Cheltenham,
UK: Communications Electronics Security Group, 1987.
Available WWW: <URL: http://www.cesg.gov.uk/about/nsecret/
ellis.htm>

[Diffie+] Diffie, W. & Hellman, M.E. ìNew Directions in Cryptography.î
IEEE Transactions on Information Theory, IT-22, Vol. 6, pp. 644-
654, 1976.

[RSA 91] PKCS #1: RSA Encryption Standard, Version 1.4. San Mateo,
Ca.: RSA Data Security, Inc., 1991.

[El Gamal 85] El Gamal, T. ìA Public Key Cryptosystem and Signature Scheme
Based on Discrete Logarithms.î IEEE Transactions on
Information Theory, IT-31, pp. 469-473, 1985.

[Salomaa 96] Salomaa, A. Public-Key Cryptography, 2nd edition. Berlin:
Springer-Verlag, 1996.

Current Author/Maintainer

Scott A. Hissam, SEI

External Reviewers

Modifications

9 Dec 01 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

http://www.sei.cmu.edu/str/descriptions/publickey_body.html (7 of 8)7/28/2008 11:30:34 AM

http://www.cesg.gov.uk/about/nsecret/ellis.htm
http://www.cesg.gov.uk/about/nsecret/ellis.htm

Public Key Cryptography

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/publickey_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/publickey_body.html (8 of 8)7/28/2008 11:30:34 AM

http://www.sei.cmu.edu/about/disclaimer.html

Distributed/Collaborative Enterprise Architectures - Notes

Notes

1 An enterprise is defined as a system comprised of multiple business systems or multiple subsystems.

http://www.sei.cmu.edu/str/descriptions/notes/distcoll_1.html7/28/2008 11:30:35 AM

Shelton 93

References and Information Sources

[Shelton
93]

Shelton, Robert E. "The Distributed Enterprise (Shared, Reusable Business Models the
Next Step in Distributed Object Computing)." Distributed Computing Monitor 8, 10
(October 1993): 1.

http://www.sei.cmu.edu/str/indexes/references/Shelton_93_bold.html7/28/2008 11:30:35 AM

Adler 95

References and Information Sources

[Adler
95]

Adler, R. M. "Distributed Coordination Models for Client/Sever Computing." Computer 28,
4 (April 1995): 14-22.

http://www.sei.cmu.edu/str/indexes/references/Adler_95_bold.html7/28/2008 11:30:35 AM

OSF 96a

References and Information Sources

[OSF
96a]

Open Software Foundation. The OSF Distributed Computing Environment [online].
Available WWW
<URL: http://www.osf.org/dce/> (1996).

http://www.sei.cmu.edu/str/indexes/references/OSF_96a_bold.html7/28/2008 11:30:35 AM

http://www.osf.org/dce/

Schill 93

References and Information Sources

[Schill
93]

Schill, Alexander. "DCE-The OSF Distributed Computing Environment Client/Server
Model and Beyond," 283. International DCE Workshop. Karlsruhe, Germany, October 7-8,
1993. Berlin, Germany: Springer-Verlag, 1993.

http://www.sei.cmu.edu/str/indexes/references/Schill_93.html7/28/2008 11:30:36 AM

Distributed Computing Environment

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Distributed Computing Environment

Status

Advanced

Note

We recommend Middleware as prerequisite reading for this technology description.

Purpose and Origin

Developed and maintained by the Open Systems Foundation (OSF), the Distributed Computing
Environment (DCE) is an integrated distributed environment which incorporates technology
from industry. The DCE is a set of integrated system services that provide an interoperable and
flexible distributed environment with the primary goal of solving interoperability problems in
heterogeneous, networked environments.

OSF provides a reference implementation (source code) on which all DCE products are based
[OSF 96a].The DCE is portable and flexible- the reference implementation is independent of
both networks and operating systems and provides an architecture in which new technologies
can be included, thus allowing for future enhancements. The intent of the DCE is that the
reference implementation will include mature, proven technology that can be used in parts-
individual services- or as a complete integrated infrastructure.

The DCE infrastructure supports the construction and integration of client/server applications
while attempting to hide the inherent complexity of the distributed processing from the user
[Schill 93]. The OSF DCE is intended to form a comprehensive software platform on which
distributed applications can be built, executed, and maintained.

Technical Detail

The DCE architecture is shown in Figure 10 [Schill 93].

http://www.sei.cmu.edu/str/descriptions/dce_body.html (1 of 6)7/28/2008 11:30:36 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/dce_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Distributed Computing Environment

Figure 10: Distributed Computing Environment Architecture

DCE services are organized into two categories:

1. Fundamental distributed services provide tools for software developers to create the
end-user services needed for distributed computing. They include

❍ Remote Procedure Call, which provides portability, network independence, and
secure distributed applications.

❍ Directory services, which provide full X.500 support and a single naming model
to allow programmers and maintainers to identify and access distributed
resources more easily.

❍ Time service, which provides a mechanism to monitor and track clocks in a
distributed environment and accurate time stamps to reduce the load on system
administrator.

❍ Security service, which provides the network with authentication, authorization,
and user account management services to maintain the integrity, privacy, and
authenticity of the distributed system.

❍ Thread service, which provides a simple, portable, programming model for
building concurrent applications.

2. Data-sharing services provide end users with capabilities built upon the fundamental
distributed services. These services require no programming on the part of the end user
and facilitate better use of information. They include

❍ Distributed file system, which interoperates with the network file system to
provide a high-performance, scalable, and secure file access system.

❍ Diskless support, which allows low-cost workstations to use disks on servers,
possibly reducing the need/cost for local disks, and provides performance
enhancements to reduce network overhead.

http://www.sei.cmu.edu/str/descriptions/dce_body.html (2 of 6)7/28/2008 11:30:36 AM

Distributed Computing Environment

The DCE supports International Open Systems Interconnect (OSI) standards, which are critical
to global interconnectivity. It also implements ISO standards such as CCITT X.500, Remote
Operations Service Element (ROSE), Association Control Service Element (ACSE), and the
ISO session and presentation services. The DCE also supports Internet standards such as the
TCP/IP transport and network protocols, as well as the Domain Name System and Network
Time Protocol provided by the Internet.

Usage Considerations

The DCE can be used by system vendors, software developers, and end users. It can be used
on any network hardware and transport software, including TCP/IP, OSI, and X.25. The DCE is
written in standard C and uses standard operating system service interfaces like POSIX and X/
Open guidelines. This makes the DCE portable to a wide variety of platforms. DCE allows for
the extension of a network to large numbers of nodes, providing an environment capable of
supporting networks of numerous low-end computers (i.e., PCs and Macintosh machines),
which is important if downsizing and distributing of processing is desired. Because DCE is
provided in source form, it can be tailored for specific applications if desired [OSF 96a].

DCE works internally with the client/server model and is well-suited for development of
applications that are structured according to this model. Most DCE services are especially
optimized for a structuring of distributed computing systems into a "cell" (a set of nodes/
platforms) that is managed together by one authority.

For DCE, intra-cell communication is optimized and relatively secure and transparent. Inter-cell
communication, however, requires more specialized processing and more complexity than its
intra-cell counterpart, and requires a greater degree of programming expertise.

When using the thread services provided by DCE, the application programmer must be aware
of thread synchronization and shared data across threads. While different threads are mutually
asynchronous up to a static number defined at initialization, an individual thread is
synchronous. The complexity of thread programming should be considered if these services
are to be used.

DCE is being used or is planned for use on a wide variety of applications, including the
following:

● The Common Operating Environment. DCE has been approved by DISA (Defense
Information Systems Agency) as the distributed computing technology for the Common
Operating Environment (COE) (see Defense Information Infrastructure Common
Operating Environment).

● The Advanced Photon Source (APS) system. This is a synchrotron radiation facility
under construction at Argonne National Laboratory.

● The Alaska Synthetic Aperture Radar Facility (ASF). This is the ground station for a set
of earth-observing radar spacecraft, and is one of the first NASA projects to use DCE in
an operational system.

● The Deep Space Network's Communications Complexes Monitor and Control
Subsystem. This project is deploying DCE for subsystem internal communications, with
the expectation that DCE will eventually form the infrastructure of the entire information
system.

● The Multimission Ground Data System Prototype. This project evaluated the
applicability of DCE technology to ground data systems for support of JPL flight projects

http://www.sei.cmu.edu/str/descriptions/dce_body.html (3 of 6)7/28/2008 11:30:36 AM

Distributed Computing Environment

(Voyager, Cassini, Mars Global Surveyor, Mars Pathfinder).
● Earth Observing Systems Data Information System. This NASA system is one of the

largest information systems ever implemented. The system is comprised of legacy
systems and data, computers of many varieties, networks, and satellites in space.

● Command and control prototypes. MITRE has prototyped command and control (C2)
applications using DCE technology. These applications provide critical data such as unit
strength, supplies, and equipment, and allow staff officers to view maps of areas of
operation [OSF 96b].

Maturity

In early 1992, the OSF released the source code for DCE 1.0. Approximately 12 vendors had
ported this version to their systems and had DCE 1.0 products available by June 1993. Many of
these original products were "developer's kits" that were not robust, did not contain the entire
set of DCE features (all lacked distributed file services), and were suited mostly for UNIX
platforms [Chappell 93].

The DCE continues to evolve, but many large organizations have committed to basing their
next generation systems on the DCE- over 14 major vendors provided DCE implementations
by late 1994, when DCE 1.1 was released.

DCE 1.2.1, released in March 1996, provided the following new features:

● Interface definition language (IDL) support for C++ to include features such as
inheritance and object references in support of object-oriented applications. This feature
supports adoption of any object model or class hierarchy, thus providing developers with
additional flexibility.

● Features to provide for coexistence with other application environments.
● Improvements over DCE 1.1 including enhancements to achieve greater reliability and

better performance [OSF 96a].

Two other approaches to supporting objects are being considered besides the approach
described for DCE 1.2:

1. Installing a CORBA-based product over DCE to provide additional support for distributed
object technologies and a wide range of standardized service interfaces.

2. Integrating Network COM/DCOM (see Component Object Model (COM), DCOM, and
Related Capabilities) into the DCE infrastructure.

Costs and Limitations

DCE was not built to be completely object-oriented. The standard interfaces used by the DCE,
as well as all the source code itself, are defined only in the C programming language. For
object-oriented applications (i.e., applications being developed using an object-oriented
language (see Object-Oriented Programming Languages) such as C++ or Ada 95, it may be
more complex, less productive (thus more expensive), and less maintainable to use a non-
object-oriented set of services like the DCE [Chappell 96].

Object-oriented extensions of the DCE have been developed by industry, but an agreed to
vendor-neutral standard was still being worked in 1996.

http://www.sei.cmu.edu/str/descriptions/dce_body.html (4 of 6)7/28/2008 11:30:36 AM

Distributed Computing Environment

Dependencies

Dependencies include Remote Procedure Call (RPC).

Alternatives

Alternatives include CORBA (see Common Object Request Broker Architecture), COM/DCOM
(see Component Object Model (COM), DCOM, and Related Capabilities), and message-
oriented middleware (see Message-Oriented Middleware).

Complementary Technologies

DCE, in-part, has been used in building CORBA-compliant (see Common Object Request
Broker Architecture) products as early as 1995. OSF is considering support for objects using
COM/DCOM (see Component Object Model (COM), DCOM, and Related Capabilities).

Index Categories

This technology is classified under the following categories. Select a category for a list of
related topics.

Name of technology Distributed Computing Environment

Application category Distributed Computing (AP.2.1.2)

Quality measures category Interoperability (QM.4.1)
Portability (QM.4.2)
Scalability (QM.4.3)
Security (QM.2.1.5)
Maintainability (QM.3.1)
Complexity (QM.3.2.1)
Throughput (QM.2.2.3)

Computing reviews category Distributed Systems (C.2.4)

References and Information Sources

[Brando 96] Brando, T. "Comparing CORBA & DCE." Object Magazine 6, 1 (March 1996):
52-7.

[Chappell 93] Chappell, David. "OSF's DCE and DME: Here Today?" Business
Communications Review 23, 7 (July 1993): 44-8.

http://www.sei.cmu.edu/str/descriptions/dce_body.html (5 of 6)7/28/2008 11:30:36 AM

Distributed Computing Environment

[Chappell
96]

Chappell, David. DCE and Objects [online]. Available WWW
<URL: http://www.opengroup.org/dce/info/dce_objects.htm> (1996).

[OSF 96a] Open Software Foundation. The OSF Distributed Computing Environment
[online]. Available WWW
<URL: http://www.osf.org/dce/> (1996).

[OSF 96b] Open Software Foundation. The OSF Distributed Computing Environment: End-
User Profiles [online]. Available WWW URL:
< http://www.osf.org/comm/lit/dce-eup/> (1996).

[Product 96] DCE Product Survey Report [online]. Available WWW
<URL: http://nsdir.cards.com/Libraries/HTML/PDLC/DCE_prod_surv_rpt.
html> (1996).

[Schill 93] Schill, Alexander. "DCE-The OSF Distributed Computing Environment Client/
Server Model and Beyond," 283. International DCE Workshop. Karlsruhe,
Germany, October 7-8, 1993. Berlin, Germany: Springer-Verlag, 1993.

Current Author/Maintainer

Cory Vondrak, TRW, Redondo Beach, CA

Modifications

25 June 97: modified/updated OLE/COM reference to COM/DCOM
10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the
U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/dce_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/dce_body.html (6 of 6)7/28/2008 11:30:36 AM

http://www.opengroup.org/dce/info/dce_objects.htm
http://www.osf.org/dce/
http://www.osf.org/comm/lit/dce-eup/
http://nsdir.cards.com/Libraries/HTML/PDLC/DCE_prod_surv_rpt.html
http://nsdir.cards.com/Libraries/HTML/PDLC/DCE_prod_surv_rpt.html
http://www.sei.cmu.edu/about/disclaimer.html

Security - Definition

Glossary Term

Security
the ability of a system to manage, protect, and distribute sensitive information.

http://www.sei.cmu.edu/str/indexes/glossary/security.html7/28/2008 11:30:37 AM

OSF 96b

References and Information Sources

[OSF
96b]

Open Software Foundation. The OSF Distributed Computing Environment: End-User
Profiles [online]. Available WWW URL:
< http://www.osf.org/comm/lit/dce-eup/> (1996).

http://www.sei.cmu.edu/str/indexes/references/OSF_96b.html7/28/2008 11:30:37 AM

http://www.osf.org/comm/lit/dce-eup/

Chappell 93

References and Information Sources

[Chappell
93]

Chappell, David. "OSF's DCE and DME: Here Today?" Business Communications
Review 23, 7 (July 1993): 44-8.

http://www.sei.cmu.edu/str/indexes/references/Chappell_93.html7/28/2008 11:30:37 AM

Chappell 96

References and Information Sources

[Chappell
96]

Chappell, David. DCE and Objects [online]. Available WWW
<URL: http://www.osf.org/dce/3rd-party/ChapRpt1.html>
(1996).

http://www.sei.cmu.edu/str/indexes/references/Chappell_96_bold.html7/28/2008 11:30:37 AM

http://www.osf.org/dce/3rd-party/ChapRpt1.html

Related Topics

Related Topics

Distributed Computing (AP.2.1.2)

● Distributed Computing Environment
● Java
● TAFIM Reference Model

http://www.sei.cmu.edu/str/taxonomies/ap.2.1.2.html7/28/2008 11:30:38 AM

Foreman 96

References and Information Sources

[Foreman
96]

Foreman, John. Product Line Based Software Development- Significant Results, Future
Challenges. Software Technology Conference, Salt Lake City, UT, April 23, 1996.

http://www.sei.cmu.edu/str/indexes/references/Foreman_96.html7/28/2008 11:30:38 AM

Katz 94

References and Information Sources

[Katz
94]

Katz, S., et al. Glossary of Software Reuse Terms. Gaithersburg, MD: National Institute of
Standards and Technology, 1994.

http://www.sei.cmu.edu/str/indexes/references/Katz_94.html7/28/2008 11:30:38 AM

Domain Engineering and Domain Analysis

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Domain Engineering and Domain Analysis

Status

Advanced

Purpose and Origin

The term domain is used to denote or group a set of systems or functional areas,
within systems, that exhibit similar functionality. Domain engineering is the
foundation for emerging "product line" software development approaches
[Foreman 96], and affects the maintainability, understandability, usability, and
reusability characteristics of a system or family of similar systems.

The purpose of this technology description is to introduce the key concepts of
domain engineering and provide overview information about domain analysis.
Detailed discussions of individual domain analysis methods can be found in the
referenced technology descriptions.

Technical Detail

Domain engineering and domain analysis are often used interchangeably and/or
inconsistently. Although domain analysis as a term may pre-date domain
engineering, domain engineering is the more inclusive term, and is the process of

● defining the scope (i.e., domain definition)
● analyzing the domain (i.e., domain analysis)
● specifying the structure (i.e., domain architecture development)
● building the components (e.g., requirements, designs, software code,

documentation)

for a class of subsystems that will support reuse [Katz 94].

Figure 11 [Foreman 96] shows the process and products of the overall domain
engineering activity, and shows the relationships and interfaces of domain
engineering to the conventional (individual) system development (application
engineering) process. This has come to be known as the two life cycle model.

http://www.sei.cmu.edu/str/descriptions/deda_body.html (1 of 8)7/28/2008 11:30:39 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/deda_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Domain Engineering and Domain Analysis

Domain engineering is related to system engineering, which is an integrated set
of engineering disciplines that supports the design, development, and operation
of large-scale systems [Eisner 94]. Domain engineering is distinguished from

system engineering in that it involves designing assets1 for a set or class of
multiple applications as opposed to designing the best solution for a single
application. In addition, system engineering provides the "whole solution,"
whereas domain engineering defines (i.e., limits) the scope of functionality
addressed across multiple systems [Simos 96].

Figure 11: Domain Engineering and Application Engineering (Two Life
Cycles)

Domain engineering supports systems engineering for individual systems by
enabling coherent solutions across a family of systems: simplifying their
construction, and improving the ability to analyze and predict the behavior of
"systems of systems" composed of aggregations of those systems [Randall 96].

Domain analysis. Domain analysis (first introduced in the 1980s) is an activity
within domain engineering and is the process by which information used in
developing systems in a domain is identified, captured, and organized with the
purpose of making it reusable when creating new systems [Prieto-Diaz 90].
Domain analysis focuses on supporting systematic and large-scale reuse (as
opposed to opportunistic reuse, which suffers from the difficulty of adapting
assets to fit new contexts) by capturing both the commonalities and the
variabilities2 of systems within a domain to improve the efficiency of development
and maintenance of those systems. The results of the analysis, collectively
referred to as a domain model, are captured for reuse in future development of
similar systems and in maintenance planning of legacy systems (i.e., migration
strategy) as shown in Figure 12 [Foreman 96].

http://www.sei.cmu.edu/str/descriptions/deda_body.html (2 of 8)7/28/2008 11:30:39 AM

Domain Engineering and Domain Analysis

Figure 12: Domain Engineering and Legacy System Evolution

One of the major historical obstacles to reusing a software asset has been the
uncertainty surrounding the asset. Questions to be answered included

● How does the software asset behave in its original context?
● How will it behave in a new context?
● How will adaptation affect its behavior [Simos 96]?

Design for reuse techniques (e.g., documentation standards, adaptation
techniques) were developed to answer these questions; however, they did not
provide the total solution, as a software asset's best scope needed to be
determined (i.e., In which set of systems would the software asset be most likely
reused?). Domain engineering and analysis methods were developed to answer
more global questions, such as:

● Who are the targeted customers for the asset base (the designed
collection of assets targeted to a specific domain)?

● Who are the other stakeholders in the domain?
● What is the domain boundary?
● What defines a feature of the domain?
● When is domain modeling complete?
● How do features vary across different usage contexts?
● How can the asset base be constructed to adapt to different usage

contexts?

Goals of domain analysis include the following:

http://www.sei.cmu.edu/str/descriptions/deda_body.html (3 of 8)7/28/2008 11:30:39 AM

Domain Engineering and Domain Analysis

● Gather and correlate all the information related to a software asset. This
will aid domain engineers in assessing the reusability of the asset. For
example, if key aspects of the development documentation (e.g., chain of
design decisions used in the development process) are available to a
potential reuser, a more cost-effective reuse decision can be made.

● Model commonality and variability across a set of systems. This
comparative analysis can reveal hidden contextual information in software
assets and lead to insights about underlying rationale that would not have
been discovered by studying a single system in isolation. It would answer
questions like the following:

❍ Why did developers make different design tradeoffs in one system
than another?

❍ What aspects of the development context influenced these
decisions?

❍ How can this design history be transformed into more prescriptive
guidance to new developers creating systems within this domain?

● Derive common architectures and specialized languages that can
leverage the software development process in a specific domain.

There is no standard definition of domain analysis; several domain analysis
methods exist. Common themes among the methods include mechanisms to

● define the basic concepts (boundary, scope, and vocabulary) of the
domain that can be used to generate a domain architecture

● describe the data (e.g., variables, constants) that support the functions
and state of the system or family of systems

● identify relationships and constraints among the concepts, data, and
functions within the domain

● identify, evaluate, and select assets for (re-)use
● develop adaptable architectures

Wartik provides criteria for comparing domain analysis methods [Wartik 92].
Major differences between the methods fall into three categories:

● Primary product of the analysis. In the methods, the results of the analysis
and modeling activities may be represented differently. Examples include:
different types of reuse library infrastructures (e.g., structured frameworks
for cataloging the analysis results), application engineering processes, etc.

● Focus of the analysis. The methods differ in the extent they provide
support for

❍ context analysis: the process by which the scope of the domain is
defined and analyzed to identify variability

❍ stakeholder analysis: the process of modeling the set of
stakeholders of the domain, which is the initial step in domain
planning

❍ rationale capture: the process for identifying and recording the

http://www.sei.cmu.edu/str/descriptions/deda_body.html (4 of 8)7/28/2008 11:30:39 AM

Domain Engineering and Domain Analysis

reasoning behind the design of an artifact
❍ scenario definition: mechanisms to capture the dynamic aspects of

the system
❍ derivation histories: mechanisms for replaying the history of design

decisions
❍ variability modeling: the process for identifying the ways in which

two concepts or entities differ
❍ legacy analysis: the process for studying and analyzing an existing

set of systems
❍ prescriptive modeling: the process by which binding decisions and

commitments about the scope, architecture, and implementation of
the asset base are made

● Representation techniques. An objective of every domain analysis method
is to represent knowledge in a way that is easily understood and machine-
processable. Methods differ in the type of representation techniques they
use and in the ease with which new representation techniques can be
incorporated within the method.

Examples of domain analysis methods include

● Feature-Oriented Domain Analysis (FODA), a domain analysis method
based upon identifying the features of a class of systems, defines three
basic activities: context analysis, domain modeling, and architecture
modeling [Kang 90].

● Organization Domain Modeling (ODM), a domain engineering method that
integrates organizational and strategic aspects of domain planning,
domain modeling, architecture engineering and asset base engineering
[Simos 96].

Randall, Arango, Prieto-Diaz, and the Software Productivity Consortium offer
other domain engineering and analysis methods [Randall 96, Arango 94, Prieto-
Diaz 91, SPC 93].

Usage Considerations

Domain analysis is best suited for domains that are mature and stable, and
where context and rationale for legacy systems can be rediscovered through
analysis of legacy artifacts and through consultation with domain experts. In
general, when applying a domain analysis method, it is important to achieve
independence from architectural and design decisions of legacy systems.
Lessons learned from the design and implementation of the legacy system are
essential; however, the over-reliance on precedented features and legacy
implementations may bias new developments.

Maturity

See individual technologies.

http://www.sei.cmu.edu/str/descriptions/deda_body.html (5 of 8)7/28/2008 11:30:39 AM

Domain Engineering and Domain Analysis

Costs and Limitations

See individual technologies.

Complementary Technologies

Use of visual programming techniques can provide better understanding of key
software assets like execution patterns, specification and design animations,
testing plans, and systems simulation. Other complementary technologies
include comparative/taxonomic modeling and techniques for the development of
adaptable architectures/implementations (e.g., generation, decision-based
composition).

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Domain Engineering and Domain Analysis

Application category Domain Engineering (AP.1.2.4)

Quality measures category Reusability (QM.4.4)
Maintainability (QM.3.1)
Understandability (QM.3.2)

Computing reviews category Software Engineering Tools and Techniques (D.2.2)

References and Information Sources

[Arango 94] Arango, G. "Domain Analysis Methods," 17-49. Software Reusability.
Chichester, England: Ellis Horwood, 1994.

[Eisner 94] Eisner, H. "Systems Engineering Sciences," 1312-1322. Encyclopedia
of Software Engineering. New York, NY: John Wiley and Sons, 1994.

[Foreman 96] Foreman, John. Product Line Based Software Development-
Significant Results, Future Challenges. Software Technology
Conference, Salt Lake City, UT, April 23, 1996.

http://www.sei.cmu.edu/str/descriptions/deda_body.html (6 of 8)7/28/2008 11:30:39 AM

Domain Engineering and Domain Analysis

[Hayes 94] Hayes-Roth, F. Architecture-Based Acquisition and Development of
Software: Guidelines and Recommendations from the ARPA Domain-
Specific Software Architecture (DSSA) Program. Palo Alto, CA:
Teknowledge Federal Systems, 1994.

[IESE 98] Fraunhofer Institute for Experimental Software Engineering. Domain
Engineering Bibliography [online]. Originally available WWW
<URL:http://www.iese.fhg.de/ISE/DEbib/domain.html> (1998).

[Kang 90] Kang, K., et al. Feature-Oriented Domain Analysis (FODA)
Feasibility Study (CMU/SEI-90-TR-21, ADA 235785). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University, 1990.

[Katz 94] Katz, S., et al. Glossary of Software Reuse Terms. Gaithersburg, MD:
National Institute of Standards and Technology, 1994.

[Prieto-Diaz
90]

Prieto-Diaz, R. "Domain Analysis: An Introduction." Software
Engineering Notes 15, 2 (April 1990): 47-54.

[Prieto-Diaz 91] Prieto-Diaz, R. Domain Analysis and Software Systems Modeling. Los
Alamitos, CA: IEEE Computer Society Press, 1991.

[Randall 96] Randall, Rick. Space and Warning C2Product Line Domain
Engineering Guidebook, Version 1.0 [online]. Originally available
WWW
<URL: http://source.asset.com/stars/loral/domain/guide/delaunch.htm>

[Simos 96] Simos, M., et al. Software Technology for Adaptable Reliable Systems
(STARS) Organization Domain Modeling (ODM) Guidebook Version
2.0 (STARS-VC-A025/001/00). Manassas, VA: Lockheed Martin
Tactical Defense Systems, 1996.

[SPC 93] Reuse-Driven Software Processes Guidebook Version 2.00.03 (SPC-
92019-CMC). Herndon, VA: Software Productivity Consortium, 1993.

[Svoboda 96] Svoboda, Frank. The Three "R's" of Mature System Development:
Reuse, Reengineering, and Architecture [online]. Available WWW
<URL: http://source.asset.com/stars/darpa/Papers/ArchPapers.html>
(1996).

[Wartik 92] Wartik, S. & Prieto-Diaz, R. "Criteria for Comparing Reuse-Oriented
Domain Analysis Approaches." International Journal of Software
Engineering and Knowledge Engineering 2, 3 (September 1992): 403-
431.

Current Author/Maintainer

http://www.sei.cmu.edu/str/descriptions/deda_body.html (7 of 8)7/28/2008 11:30:39 AM

http://source.asset.com/stars/loral/domain/guide/delaunch.htm
http://source.asset.com/stars/darpa/Papers/ArchPapers.html

Domain Engineering and Domain Analysis

Liz Kean, Air Force Rome Laboratory

External Reviewers

Jim Baldo, MITRE, Washington, DC
Dick Creps, Lockheed Martin, Manassas, VA
Teri Payton, Lockheed Martin, Manassas, VA
Spencer Peterson, SEI
Rick Randall, Kaman Sciences, Colorado Springs, CO
Mark Simos, Organon Motives, Belmont, MA

Modifications

4 Feb 98: added reference for [IESE 98]
7 Oct 97: minor edits
10 Jan 97: (original)

Footnotes

1 Examples include requirements, design, history of design decisions, source
code, and test information.

2 Commonality and variability refer to such items as functionality, data items,
performance attributes, capacity, and interface protocols.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/deda_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/deda_body.html (8 of 8)7/28/2008 11:30:39 AM

http://www.sei.cmu.edu/about/disclaimer.html

Eisner 94

References and Information Sources

[Eisner
94]

Eisner, H. "Systems Engineering Sciences," 1312-1322. Encyclopedia of Software
Engineering. New York, NY: John Wiley and Sons, 1994.

http://www.sei.cmu.edu/str/indexes/references/Eisner_94.html7/28/2008 11:30:39 AM

Domain Engineering and Domain Analysis - Notes

Notes

1 Examples include requirements, design, history of design decisions, source code, and test information.

http://www.sei.cmu.edu/str/descriptions/notes/deda_1.html7/28/2008 11:30:39 AM

Simos 96

References and Information Sources

[Simos
96]

Simos, M., et al. Software Technology for Adaptable Reliable Systems (STARS)
Organization Domain Modeling (ODM) Guidebook Version 2.0 (STARS-VC-
A025/001/00). Manassas, VA: Lockheed Martin Tactical Defense Systems, 1996. Also
available [online] WWW
<URL: http://www.asset.com/WSRD/abstracts/ABSTRACT_1176.html> (1996).

http://www.sei.cmu.edu/str/indexes/references/Simos_96.html7/28/2008 11:30:40 AM

http://www.asset.com/WSRD/abstracts/ABSTRACT_1176.html

Randall 96

References and Information Sources

[Randall
96]

Randall, Rick. Space and Warning C2Product Line Domain Engineering Guidebook,
Version 1.0 [online]. Available WWW
<URL: http://source.asset.com/stars/loral/domain/guide/delaunch.htm>

http://www.sei.cmu.edu/str/indexes/references/Randall_96.html7/28/2008 11:30:40 AM

http://source.asset.com/stars/loral/domain/guide/delaunch.htm

Prieto-Diaz 90

References and Information Sources

[Prieto-Diaz
90]

Prieto-Diaz, R. "Domain Analysis: An Introduction." Software Engineering Notes 15,
2 (April 1990): 47-54.

http://www.sei.cmu.edu/str/indexes/references/Prieto-Diaz_90_bold.html7/28/2008 11:30:40 AM

Domain Engineering and Domain Analysis - Notes

Notes

2 Commonality and variability refer to such items as functionality, data items, performance attributes,
capacity, and interface protocols.

http://www.sei.cmu.edu/str/descriptions/notes/deda_2.html7/28/2008 11:30:43 AM

Wartik 92

References and Information Sources

[Wartik
92]

Wartik, S. & Prieto-Diaz, R. "Criteria for Comparing Reuse-Oriented Domain Analysis
Approaches." International Journal of Software Engineering and Knowledge Engineering
2, 3 (September 1992): 403-431.

http://www.sei.cmu.edu/str/indexes/references/Wartik_92_bold.html7/28/2008 11:30:43 AM

Kang 90

References and Information Sources

[Kang
90]

Kang, K., et al. Feature-Oriented Domain Analysis (FODA) Feasibility Study (CMU/SEI-90-
TR-21, ADA 235785). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 1990.

http://www.sei.cmu.edu/str/indexes/references/Kang_90.html7/28/2008 11:30:44 AM

Arango 94

References and Information Sources

[Arango
94]

Arango, G. "Domain Analysis Methods," 17-49. Software Reusability. Chichester,
England: Ellis Horwood, 1994.

http://www.sei.cmu.edu/str/indexes/references/Arango_94_bold.html7/28/2008 11:30:44 AM

Prieto-Diaz 91

References and Information Sources

[Prieto-Diaz
91]

Prieto-Diaz, R. Domain Analysis and Software Systems Modeling. Los Alamitos, CA:
IEEE Computer Society Press, 1991.

http://www.sei.cmu.edu/str/indexes/references/Prieto-Diaz_91.html7/28/2008 11:30:44 AM

SPC 93

References and Information Sources

[SPC
93]

Reuse-Driven Software Processes Guidebook Version 2.00.03 (SPC-92019-CMC). Herndon,
VA: Software Productivity Consortium, 1993.

http://www.sei.cmu.edu/str/indexes/references/SPC_93.html7/28/2008 11:30:44 AM

Bailin 90

References and Information Sources

[Bailin
90]

Bailin, S., et al. "KAPTUR: Knowledge Acquisition for Preservation of Tradeoffs and
Underlying Rationale," 95-104. Proceedings of the 5th Annual Knowledge-Based Software
Assistant Conference. Liverpool, NY, September 24-28, 1990. Rome, NY: Rome Air
Development Center, 1990.

http://www.sei.cmu.edu/str/indexes/references/Bailin_90_bold.html7/28/2008 11:30:45 AM

Kang 90

References and Information Sources

[Kang
90]

Kang, K., et al. Feature-Oriented Domain Analysis (FODA) Feasibility Study (CMU/SEI-
90-TR-21, ADA 235785). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 1990.

http://www.sei.cmu.edu/str/indexes/references/Kang_90_bold.html7/28/2008 11:30:45 AM

Cohen 92

References and Information Sources

[Cohen
92]

Cohen, Sholom G., et al. Application of Feature-Oriented Domain Analysis to the Army
Movement Control Domain (CMU/SEI-91-TR-28, ADA 256590). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 1992.

http://www.sei.cmu.edu/str/indexes/references/Cohen_92_bold.html7/28/2008 11:30:45 AM

Krut 93

References and Information Sources

[Krut
93]

Krut, Robert W. Jr. Integrating 001 Tool Support into the Feature-Oriented Domain Analysis
Methodology (CMU/SEI-93-TR-11, ESC-TR-93-188) Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1993.

http://www.sei.cmu.edu/str/indexes/references/Krut_93.html7/28/2008 11:30:45 AM

Petro 95

References and Information Sources

[Petro
95]

Petro, James J.; Peterson, Alfred S.; & Ruby, William F. In-Transit Visibility Modernization
Domain Modeling Report Comprehensive Approach to Reusable Defense Software (STARS-
VC-H002a/001/00). Fairmont, WV: Comprehensive Approach to Reusable Defense
Software, 1995.

http://www.sei.cmu.edu/str/indexes/references/Petro_95.html7/28/2008 11:30:45 AM

Devasirvatham 94

References and Information Sources

[Devasirvatham
94]

Devasirvatham, Josiah, et al. In-Transit Visibility Modernization Domain Scoping
Report Comprehensive Approach to Reusable Defense Software (STARS-VC-
H0002/001/00). Fairmont, WV: Comprehensive Approach to Reusable Defense
Software, 1994.

http://www.sei.cmu.edu/str/indexes/references/Devasirvatham_94.html7/28/2008 11:30:46 AM

Schnell 96

References and Information Sources

[Schnell
96]

Schnell, K.; Zalman, N.; & Bhatt, Atul. Transitioning Domain Analysis: An Industry
Experience (CMU/SEI-96-TR-009). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1996.

http://www.sei.cmu.edu/str/indexes/references/Schnell_96.html7/28/2008 11:30:46 AM

Firewalls and Proxies - Notes

Notes

1 Refer to "Intrusion Detection FAQ: What is a bastion host?," available at http://www.sans.org/newlook/
resources/IDFAQ/bastion.htm.

http://www.sei.cmu.edu/str/descriptions/notes/firewall_01.html7/28/2008 11:30:46 AM

http://www.sans.org/newlook/resources/IDFAQ/bastion.htm
http://www.sans.org/newlook/resources/IDFAQ/bastion.htm

Firewalls and Proxies - Notes

Notes

2 Refer to "Screened Host Firewall," available at http://csrc.nist.gov/publications/nistpubs/800-10/
node57.html.

http://www.sei.cmu.edu/str/descriptions/notes/firewall_02.html7/28/2008 11:30:46 AM

http://csrc.nist.gov/publications/nistpubs/800-10/node57.html
http://csrc.nist.gov/publications/nistpubs/800-10/node57.html

Firewalls and Proxies - Notes

Notes

3 Refer to "Dual Homed Gateway Firewall," available at http://csrc.nist.gov/publications/nistpubs/800-
10/node56.html

http://www.sei.cmu.edu/str/descriptions/notes/firewall_03.html7/28/2008 11:30:47 AM

http://csrc.nist.gov/publications/nistpubs/800-10/node56.html
http://csrc.nist.gov/publications/nistpubs/800-10/node56.html

Firewalls and Proxies - Notes

Notes

4 Refer to "User Datagram Protocol RFC 768," available at http://www.ietf.org/rfc/rfc0768.txt.

http://www.sei.cmu.edu/str/descriptions/notes/firewall_04.html7/28/2008 11:30:47 AM

http://www.ietf.org/rfc/rfc0768.txt

Firewalls and Proxies - Notes

Notes

5 Refer to "Internet Control Message Protocol RFC 792," available at http://www.ietf.org/rfc/rfc0792.
txt.

http://www.sei.cmu.edu/str/descriptions/notes/firewall_05.html7/28/2008 11:30:47 AM

http://www.ietf.org/rfc/rfc0792.txt
http://www.ietf.org/rfc/rfc0792.txt

Firewalls and Proxies - Notes

Notes

6 Refer to "Simple Mail Transfer Protocol RFC 821," available at http://www.ietf.org/rfc/rfc0821.txt.

http://www.sei.cmu.edu/str/descriptions/notes/firewall_06.html7/28/2008 11:30:47 AM

http://www.ietf.org/rfc/rfc0821.txt

Firewalls and Proxies - Notes

Notes

7 Refer to "Hypertext Transfer Protocol RFC 2616," available at http://www.ietf.org/rfc/rfc2616.txt.

http://www.sei.cmu.edu/str/descriptions/notes/firewall_07.html7/28/2008 11:30:47 AM

http://www.ietf.org/rfc/rfc2616.txt

Firewalls and Proxies - Notes

Notes

8 Refer to "File Transfer Protocol RFC 959," available at http://www.ietf.org/rfc/rfc0959.txt.

http://www.sei.cmu.edu/str/descriptions/notes/firewall_08.html7/28/2008 11:30:48 AM

http://www.ietf.org/rfc/rfc0959.txt

Firewalls and Proxies - Notes

Notes

9 Refer to "Understanding TCP/IP," available at: http://www.cisco.com/univercd/cc/td/doc/product/
iaabu/centri4/user/scf4ap1.htm

http://www.sei.cmu.edu/str/descriptions/notes/firewall_09.html7/28/2008 11:30:48 AM

http://www.cisco.com/univercd/cc/td/doc/product/iaabu/centri4/user/scf4ap1.htm
http://www.cisco.com/univercd/cc/td/doc/product/iaabu/centri4/user/scf4ap1.htm

Ogletree 00

References and Information Sources

[Ogletree
00]

Ogletree, Terry William. Practical Firewalls. Que, June
2000.

http://www.sei.cmu.edu/str/indexes/references/Oglestree_01.html7/28/2008 11:30:48 AM

Smith 01

References and Information Sources

[Smith
01]

Smith, Gary. "A Brief Taxonomy of FirewallsGreat Walls of Fire." May 18, 2001.
Available at http://www.sans.org/infosecFAQ/firewall/taxonomy.htm

http://www.sei.cmu.edu/str/indexes/references/Smith_01.html7/28/2008 11:30:48 AM

http://www.sans.org/infosecFAQ/firewall/taxonomy.htm

Tyson

References and Information Sources

[Tyson] Tyson, Jeff. "How Network Address Translation Works." Online: http://www.howstuffworks/
nat.htm and Cisco Systems Inc. "How NAT Works." Online: http://www.cisco.com/warp/
public/556/nat-cisco.shtml

http://www.sei.cmu.edu/str/indexes/references/Tyson.html7/28/2008 11:30:49 AM

http://www.howstuffworks/nat.htm
http://www.howstuffworks/nat.htm
http://www.cisco.com/warp/public/556/nat-cisco.shtml
http://www.cisco.com/warp/public/556/nat-cisco.shtml

Marciniak 94

References and Information Sources

[Marciniak
94]

Marciniak, John J., ed. Encyclopedia of Software Engineering, 518-524. New York,
NY: John Wiley & Sons, 1994.

http://www.sei.cmu.edu/str/indexes/references/Marciniak_94_2_bold.html7/28/2008 11:30:49 AM

IFPUG 96

References and Information Sources

[IFPUG
96]

The International Function Point Users' Group (IFPUG) Web site [online]. Available
WWW
<URL: http://www.ifpug.org/> (1996).

http://www.sei.cmu.edu/str/indexes/references/IFPUG_96.html7/28/2008 11:30:49 AM

http://www.ifpug.org/

Umholtz 94

References and Information Sources

[Umholtz
94]

Umholtz, Donald C. & Leitgeb, Arthur J. "Engineering Function Points and Tracking
Systems."Crosstalk, Journal of Defense Software Engineering 7, 11 (November 1994): 9-
14.

http://www.sei.cmu.edu/str/indexes/references/Umholtz_94_bold.html7/28/2008 11:30:49 AM

DeMarco 82

References and Information Sources

[DeMarco
82]

DeMarco, Tom. Controlling Software Projects: Management, Measurement, and
Estimation. New York, NY: Yourdon Press, 1982.

http://www.sei.cmu.edu/str/indexes/references/DeMarco_82.html7/28/2008 11:30:50 AM

Rehesaar 96

References and Information Sources

[Rehesaar
96]

Rehesaar, Hugo. "ISO/IEC Functional Size Measurement Standards," 311-318.
Proceedings of the GUFPI/IFPUG Conference on Software Measurement and
Management. Rome, Italy, February 5-9, 1996. Westerville, OH: International Function
Point Users Group, 1996.

http://www.sei.cmu.edu/str/indexes/references/Rehesaar_96.html7/28/2008 11:30:50 AM

Wittig 94

References and Information Sources

[Wittig
94]

Wittig, G. E. & Finnie, G. R. "Software Design for the Automation of Unadjusted Function
Point Counting," 613-623. Business Process Re-Engineering Information Systems
Opportunities and Challenges, IFIP TC8 Open Conference. Gold Coast, Queensland,
Australia, May 8-11, 1994. The Netherlands: IFIP, 1994.

http://www.sei.cmu.edu/str/indexes/references/Wittig_94.html7/28/2008 11:30:50 AM

Kemerer 93

References and Information Sources

[Kemerer
93]

Kemerer, Chris. "Reliability of Function Points Measurement: A Field Experiment."
Communications of the ACM 36, 2 (February 1993): 85-97.

http://www.sei.cmu.edu/str/indexes/references/Kemerer_93.html7/28/2008 11:30:51 AM

Siddiqee 93

References and Information Sources

[Siddiqee
93]

Siddiqee, M. Waheed. "Function Point Delivery Rates Under Various Environments:
Some Actual Results," 259-264. Proceedings of the Computer Management Group's
International Conference. San Diego, CA, December 5-10, 1993. Chicago, IL: Computer
Management Group, 1993.

http://www.sei.cmu.edu/str/indexes/references/Siddiqee_93.html7/28/2008 11:30:51 AM

Jones 95

References and Information Sources

[Jones
95]

Jones, Capers. "Backfiring: Converting Lines of Code to Function Points." IEEE Computer
28, 11 (November 1995): 87-8.

http://www.sei.cmu.edu/str/indexes/references/Jones_95.html7/28/2008 11:30:51 AM

Selfridge 94

References and Information Sources

[Selfridge
94]

Selfridge, Peter G. & Heineman, George T. "Graphical Support for Code-Level
Software Understanding," 114-24. Ninth Knowledge-Based Software Engineering
Conference. Monterey, CA, September 1994. Los Alamitos, CA: IEEE Computer
Society Press, 1994.

http://www.sei.cmu.edu/str/indexes/references/Selfridge_94_bold.html7/28/2008 11:30:51 AM

Bennett 95

References and Information Sources

[Bennett
95]

Bennett, K. "Legacy Systems: Coping With Stress." IEEE Software 12, 1 (January 1995):
19-23.

http://www.sei.cmu.edu/str/indexes/references/Bennett_95_bold.html7/28/2008 11:30:51 AM

Compatibility - Definition

Glossary Term

Compatibility
the ability of two or more systems or components to perform their required functions while
sharing the same hardware or software environment [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/compatibility.html7/28/2008 11:30:52 AM

Gray 94

References and Information Sources

[Gray
94]

Gray, W. A.; Wikramanayake, G. N.; & Fiddian, N. J. "Assisting Legacy Database
Migration," 5/1-3. IEE Colloquium: Legacy Information System- Barriers to Business
Process Re-Engineering (1994/246). London, UK, December 13, 1994. London, UK: IEE,
1994.

http://www.sei.cmu.edu/str/indexes/references/Gray_94.html7/28/2008 11:30:52 AM

Ning 94

References and Information Sources

[Ning
94]

Ning, Jim Q.; Engberts, Andre; & Kozaczynski, W. "Automated Support for Legacy Code
Understanding." Communications of the ACM 37, 5 (May 1994): 50-57.

http://www.sei.cmu.edu/str/indexes/references/Ning_94_bold.html7/28/2008 11:30:52 AM

Related Topics

Related Topics

Compatibility (QM.4.1.1)

● Graphic Tools for Legacy Database Migration

http://www.sei.cmu.edu/str/taxonomies/qm.4.1.1.html7/28/2008 11:30:52 AM

Myers 95

References and Information Sources

[Myers
95]

Myers, Brad A. "User Interface Software Tools." ACM Transactions on Computer-Human
Interaction 2, 1 (March 1995): 64-108.

http://www.sei.cmu.edu/str/indexes/references/Myers_95_bold.html7/28/2008 11:30:53 AM

OSF 96

References and Information Sources

[OSF
96]

OSF Home Page [online]. Available
WWW
<URL: http://www.osf.org> (1996).

http://www.sei.cmu.edu/str/indexes/references/OSF_96.html7/28/2008 11:30:53 AM

http://www.osf.org/

Halstead 77

References and Information Sources

[Halstead
77]

Halstead, Maurice H. Elements of Software Science, Operating, and Programming
Systems Series Volume 7. New York, NY: Elsevier, 1977.

http://www.sei.cmu.edu/str/indexes/references/Halstead_77_bold.html7/28/2008 11:30:53 AM

Jones 94

References and Information Sources

[Jones
94]

Jones, Capers. "Software Metrics: Good, Bad, and Missing." Computer 27, 9 (September
1994): 98-100.

http://www.sei.cmu.edu/str/indexes/references/Jones_94.html7/28/2008 11:30:53 AM

Oman 91

References and Information Sources

[Oman
91]

Oman, P. HP-MAS: A Tool for Software Maintainability, Software Engineering (#91-08-
TR). Moscow, ID: Test Laboratory, University of Idaho, 1991.

http://www.sei.cmu.edu/str/indexes/references/Oman_91_2_bold.html7/28/2008 11:30:54 AM

Szulewski 84

References and Information Sources

[Szulewski
84]

Szulewski, Paul, et al. Automating Software Design Metrics (RADC-TR-84-27). Rome,
NY: Rome Air Development Center, 1984.

http://www.sei.cmu.edu/str/indexes/references/Szulewski_84.html7/28/2008 11:30:54 AM

Marciniak 94

References and Information Sources

[Marciniak
94]

Marciniak, John J., ed. Encyclopedia of Software Engineering, 131-165. New York,
NY: John Wiley & Sons, 1994.

http://www.sei.cmu.edu/str/indexes/references/Marciniak_94.html7/28/2008 11:30:54 AM

Oman 94

References and Information Sources

[Oman
94]

Oman, P. & Hagemeister, J. "Constructing and Testing of Polynomials Predicting Software
Maintainability." Journal of Systems and Software 24, 3 (March 1994): 251-266.

http://www.sei.cmu.edu/str/indexes/references/Oman_94.html7/28/2008 11:30:54 AM

Related Topics

Related Topics

Debugger (AP.1.4.2.4)

● Halstead Complexity Measures
● Maintainability Index Technique for Measuring Program Maintainability

http://www.sei.cmu.edu/str/taxonomies/ap.1.4.2.4.html7/28/2008 11:30:54 AM

Ware 79

References and Information Sources

[Ware
79]

Ware, W. H. Security Controls for Computer Systems: Report of Defense Science Board,
Task Force on Computer Security. Santa Monica, CA: The Rand Corporation, 1979.

http://www.sei.cmu.edu/str/indexes/references/Ware_79.html7/28/2008 11:30:55 AM

Spafford 88

References and Information Sources

[Spafford
88]

Spafford, Eugene H. The Internet Worm Program: An Analysis (CSD-TR-823). West
Lafayette, IN: Purdue University, 1988.

http://www.sei.cmu.edu/str/indexes/references/Spafford_88.html7/28/2008 11:30:55 AM

Kemmerer 94

References and Information Sources

[Kemmerer
94]

Kemmerer, Richard A. "Computer Security," 1153-1164. Encyclopedia of Software
Engineering. New York, NY: John Wiley and Sons, 1994.

http://www.sei.cmu.edu/str/indexes/references/Kemmerer_94.html7/28/2008 11:30:55 AM

Adaptability - Definition

Glossary Term

Availability
the degree to which a system or component is operational and accessible when required for use
[IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/availability.html7/28/2008 11:30:55 AM

Integrity - Definition

Glossary Term

Integrity
the degree to which a system or component prevents unauthorized access to, or modification of,
computer programs or data [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/integrity.html7/28/2008 11:30:56 AM

Confidentiality - Definition

Glossary Term

Confidentiality
the nonoccurrence of the unauthorized disclosure of information [Barbacci 95].

http://www.sei.cmu.edu/str/indexes/glossary/confidentiality.html7/28/2008 11:30:56 AM

Lunt 93

References and Information Sources

[Lunt
93]

Lunt, Teresa F. "A Survey of Intrusion Detection Techniques." Computers and Security 12,
4 (June 1993): 405-418.

http://www.sei.cmu.edu/str/indexes/references/Lunt_93_bold.html7/28/2008 11:30:56 AM

Mukherjee 94

References and Information Sources

[Mukherjee
94]

Mukherjee, Biswanath, L.; Heberlein, Todd; & Levitt, Karl N. "Network Intrusion
Detection." IEEE Network 8, 3 (May/June 1994): 26-41.

http://www.sei.cmu.edu/str/indexes/references/Mukherjee_94_bold.html7/28/2008 11:30:56 AM

Throughput - Definition

Glossary Term

Throughput
the amount of work that can be performed by a computer system or component in a given period
of time [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/throughput.html7/28/2008 11:30:56 AM

Sun 97e

References and Information Sources

[Sun
97e]

Overview of Java [online]. Available WWW
<URL: http://java.sun.com/docs/Overviews/java/java-overview-1.html>
(1997).

http://www.sei.cmu.edu/str/indexes/references/Sun_97e.html7/28/2008 11:30:57 AM

http://java.sun.com/docs/Overviews/java/java-overview-1.html

van Hoff 96

References and Information Sources

[van Hoff
96]

van Hoff, A. Hooked on Java. Reading, MA: Addison-Wesley,
1996.

http://www.sei.cmu.edu/str/indexes/references/vanHoff_96.html7/28/2008 11:30:57 AM

Trustworthiness - Definition

Glossary Term

Trustworthiness
the degree to which a system or component avoids compromising, corrupting, or delaying
sensitive information.

http://www.sei.cmu.edu/str/indexes/glossary/trustworthiness.html7/28/2008 11:30:57 AM

Sun 99d

References and Information Sources

[Sun
99d]

JavaBeans Home Page [online]. Available WWW <URL:http://java.sun.com/beans/index.
html>

http://www.sei.cmu.edu/str/indexes/references/Sun_99d.html7/28/2008 11:30:58 AM

http://java.sun.com/beans/index.html
http://java.sun.com/beans/index.html

Yourdon 96

References and Information Sources

[Yourdon
96]

Yourdon, Edward. "Java, the Web, and Software Development." Computer 29, 8 (August
1996): 25-30.

http://www.sei.cmu.edu/str/indexes/references/Yourdon_96.html7/28/2008 11:30:58 AM

Java(TM)

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Java(TM)

Status

Advanced

Purpose and Origin

JavaTM is an object-oriented programming language (see Object-Oriented
Programming Languages) developed by a small team of people headed by
James Gosling at Sun Microsystems (development began in 1991) [Sun 97e]. It
was originally intended for use in programming consumer devices, but when the
explosion of interest in the Internet began in 1995 it became clear that Java was
an ideal programming language for Internet applications [van Hoff 96]. Java
addresses many of the issues of software distribution over a network, including
interoperability, security, portability, and trustworthiness. When they are
embedded in a Web page, Java programs are called "applets." Applets, in
conjunction with JavaBeans(tm)[Sun 99d] provide a developer the flexibility to
develop a more sophisticated user interface on a Web page [Yourdon 96]. Java
applets provide executable content, such as event-driven pop-up windows and
graphical user interface (GUI) widgets (see Graphical User Interface Builders)
via peer classes (see Figure 19), which can support a variety of applications.
Java applets are the dominant player of client side Internet computing. However,
the server side computing, i.e. the code that generates the HTML contents, was
considered a stronghold of better performance languages as C++ or script
languages as PERL. This situation is changing with the release of Java 2
Enterprise Edition(tm) (J2EE) [Sun 99a]. J2EE is a new Java platform specifically
designed to address the needs of enterprise server side computing. J2EE
provides scalability, interoperability, reliability, security. Java is also re-
addressing its original purpose (consumer devices) through JINI(tm) connection
technology [Sun 97b]. JINI enables devices to work together without the burden
of setting up networks, loading drivers and so on. JINI devices such as TVs,
DVDs and cameras will be able to self-install, self-organize into communities,
self-configure, and self-diagnose. Jini technology reduces dependence on
system administrators, potentially lowering support costs and allowing impromptu
device communities to assemble in places far from the traditional office. JINI
mainly addresses usability, cost of ownership and interoperability.

Technical Detail

http://www.sei.cmu.edu/str/descriptions/java_body.html (1 of 11)7/28/2008 11:30:59 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/java_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Java(TM)

Java is a high-level programming language similar in flavor to Smalltalk and
similar in syntax to C and C++. However, the Java language is far less complex
than C++. It is an object-oriented, statically typed language that is architecture-
neutral, multi-threaded, and robust. It provides built-in garbage collection,
supports a single-inheritance class hierarchy, and does not use pointers, thereby
eliminating three of the primary sources of errors in many C++ programs.
Because it borrows its syntax from the widely known C and C++, the Java
language feels familiar to most developers. Java provides flexibility in that it
provides dynamic functionality. Classes are linked in as required and can be
downloaded from across networks. Incoming code is verified before execution.
Such flexibility is a paradigm shift from the normal model of computing, which
usually requires the entire suite of possible functionality to be installed onto a
user's platform prior to execution [Yourdon 96]. Java programs start as Java
source code, which is then compiled to bytecode and stored on a server or a
local computer in ".class" files. In order to execute a Java program, a user
invokes a Java Virtual Machine (JVM) that executes the Java bytecode. Unlike
most other programming languages, Java bytecode is not platform-specific or
native to any particular processor; it is a "write once, run anywhere" approach.
This platform-neutrality at both source and binary levels means Java is inherently
portable. The Java system also provides an extensive library of classes that
provides access to the underlying operating system. All of today's popular Web
browsers contain a Java Virtual Machine (JVM), including Netscape Navigator,
Microsoft Internet Explorer, and Sun's HotJava Browser. Desktop platforms such
as Microsoft Windows, MacOS, OS/2 Warp, and Sun Solaris also provide a
standalone JVM which can execute Java code. A new generation of so-called
Network Computers1 executes Java code directly. Sun is extending the
availability of the JVM to enable Java programs to be deployed on a wide range
of consumer devices, such as pagers, telephones, and televisions [Clark 97].
The relationships of code, Java Virtual Machines, and platform independence/
neutrality is shown in Figure 19.

http://www.sei.cmu.edu/str/descriptions/java_body.html (2 of 11)7/28/2008 11:30:59 AM

Java(TM)

Figure 19: Multiple-Platform Application [Halfhill 97]

The Java platform provides portability, a measure of security, and inherent
trustworthiness, including strong memory protection, encryption and signatures,
rules enforcement, and runtime verification. Java is designed to allow applets to
be downloaded and executed without introducing viruses or misbehaved code. It
does this by placing strict limits on applets to prevent malicious actions. For
example, applets cannot read from or write to the local disk. Unfortunately, while
the Java model is theoretically secure, the various implementations of the JVM
continue to show signs of weakness. Exploitation of security flaws in the
implementations is still alarmingly common [Sun 97a]. An applet's actions are
restricted to its "sandbox," an area of the Web browser dedicated to that applet
and within which it may do anything it wants. But a Java applet can't read or alter
any data outside its sandbox. Hence users can run untrusted Java code without
compromising their trusted computing environments. Standalone windows
created by Java applications are clearly labeled as being owned by untrusted
software. Java applications are also prohibited from making network connections
to other computers on a corporate Intranet, so malicious code can't exploit
undiscovered security holes. Applets are not enough to build enterprise systems.
Applets excel delivering functionality to remote clients, but enterprise
applications need much more than remote access, like scalability and
transactions. To address those needs Sun has developed Java(tm) 2 Platform,
Enterprise Edition (J2EE). J2EE is a standard set of Java APIs that define a multi
tier architecture (see Three Tier Software Architectures) suitable for the
development, deployment, and management of enterprise applications written in
the Java(tm) programming language. J2EE is functionally complete in the sense
that it is possible to develop a large class of enterprise applications using only
the J2EE APIs. Figure 20 illustrates the architecture of a J2EE application.

http://www.sei.cmu.edu/str/descriptions/java_body.html (3 of 11)7/28/2008 11:30:59 AM

Java(TM)

Figure 20: J2EE architecture [Sun 99f]

Remote clients are implemented as a combination of html pages and applets (or
as Java Applications if Internet access is not required). The middle tier is split in
two, the Enterprise JavaBeans framework(tm) (EJB) [Sun 99e] containing
Enterprise Beans, which are reusable units that contain transactional business
logic and the Web Server containing JSP Pages and servlets that are software
entities that provide services in response to HTTP requests. The persistence
layer can be implemented in any commercial database.

Usage Considerations

APIs. Java specifies a core set of Application Programming Interfaces (APIs)
required in all Java implementations and an extended set of APIs covering a
much broader set of functionality. The core set of APIs include interfaces for

● basic language types
● file and stream I/O
● network I/O
● container and utility classes
● abstract windowing toolkit

The extended set of APIs includes interfaces for 2D-rendering and 2D-animation;
a 3D-programming model; telephony, time-critical audio, video, and MIDI2 data;
network and systems management; electronic commerce; and encryption and
authentication [Hamilton 96]. J2EE introduces additional APIs to address specific
need of enterprise environments. These APIs provide similar functionality to
CORBA services including:

● Asynchronous communication through the Java Message Service (JMS)
● A naming service through the Java Naming and Directory Interface (JNDI)

http://www.sei.cmu.edu/str/descriptions/java_body.html (4 of 11)7/28/2008 11:30:59 AM

Java(TM)

● A transaction service through the Java Transaction API (JTA)
● Tabular data access though the JDBC API.

Platform-specific implementations. Recently, there has been some debate
about the use of platform-specific APIs and the affect on the future of Java. For
example, Microsoft's Internet Explorer 4.0 includes technology for J/Direct, which
will provide a connection between Java and the Windows programming
environment. Applications that make use of the J/Direct API will run only on the
Windows platform, thereby curtailing one of Java's inherent benefits: platform
neutrality. Providing Java developers with direct access to the Win32 API also
breaks Java's security model and makes it more like Microsoft's platform-
dependent ActiveX technology [Levin 97]. Sun has sued Microsoft for this
practice, there is not a definitive resolution (by November 1999) but Microsoft
has already been banned from using Java trademark with their modified versions.

Traning/education. The Java syntax for expressions and statements are almost
identical to ANSI C, thus making the language easy to learn for C or C++
programmers. Because Java is a programming language, it requires a higher
skill level for content developers than hypertext markup language (HTML).
Programmers need to learn the Java standard library, which contains objects
and methods for opening sockets, implementing the HTTP protocol, creating
threads, writing to the display, and building a user interface. Java provides
mechanisms for interfacing with other programming languages such as C and
existing libraries such as Xlib, Motif, or legacy database software.

Performance. Performance is a major consideration when deciding to use Java.
In most cases, interpreted Java is much slower than compiled C or C++ (as
much as 10-15 times slower). However, most recent versions of the popular Web
browsers and Java development environments provide Just In Time (JIT)
compilers that produce native binary code (while the program is loaded and
executed) that is beginning to rival that of optimized C++. The Java 2 platform
also provides the Java HotSpot(tm) Performance Engine [Sun 97c] that
combines the functionality of a JIT with runtime optimizations that further improve
Java performance. For real-time applications, the performance implications of
the Java garbage collector should also be considered. Garbage collection may
make it difficult to easily bound timing properties of the application.

Language migration. A number of items should be considered if migrating from
C or C++ to Java, including the following:

● Java is totally object-oriented; thus everything must be done via a method
invocation.

● Java has no pointers or parameterized types.
● Java supports multithreading and garbage collection.

Maturity

Java was made available to the general public in May 1995, and has enjoyed
unprecedented rapid transition into practice. Web sites such as the Java Applet
Rating Service (JARS) [JARS 97] and Gamelan [Gamelan 97] contain literally
thousands of Java-based applications available for downloading. All of today's

http://www.sei.cmu.edu/str/descriptions/java_body.html (5 of 11)7/28/2008 11:30:59 AM

Java(TM)

leading Web browsers provide support for Java by including a JVM as part of
their product. There are multitudes of books available that describe all aspects of
Java programming. Many commercial uses of Java have also appeared in a
relatively short period of time. Sun provides a series of "customer success
stories" at their web sites [Sun 97b, Sun 97c]. Some of the many commercial
applications written in Java include

● TWSNet, a shipment tracking and processing application for CSX
Corporation [Sun 96a]

● OC://WebConnect, a Web-based terminal emulation package for
connecting to legacy SNA networks, from OpenConnect Systems

● via World Network, an online travel reservation system, from Andersen
Consulting

There are now several development environments that support Java
programming. These include IBM's Visual Age for Java, Symantec's Visual Café,
Microsoft's J++, and Sun's Java Development Kit (JDK) [Sun 97d]. Most of these
products provide integrated editors, debuggers, JIT compilers, and other tools
commonly associated with computer-aided software engineering (CASE) tools.
J2EE is one of the newest and less mature parts of Java. In fact, by November
1999 there is only a beta release of J2EE. Some constituents of the platform are
quite stable but others are undertaking deep changes. EJB, for example, was
released in Dec 1997 and there already are more than thirty implementations
[EJB-SIG 99] (including from IBM, BEA, Oracle and IONA). However, EJB has
suffered important changes from the 1.1 to the 1.2 release and that volatility is
expected to continue with subsequent releases. In summary, J2EE is currently
usable but there are several important issues to be solved and some time is
needed until it delivers all its potential.

Costs and Limitations

Java and the source for the Java interpreter are freely available for
noncommercial use. Some restrictions exist for incorporating Java into
commercial products. Sun Microsystems licenses Java to hardware and software
companies that are developing products to run the Java virtual machine and
execute Java code. Developers, however, can write Java code without a license.
A complete Java Development Kit (JDK), including a Java compiler, can be
downloaded for free [Sun 97d]. Although a J2EE reference implementation will
be provided by Sun, this implementation is not expected to be usable in industrial
deployments. Several vendors are providing J2EE solutions ranging from free
open source distributions to industrial strength distributions with per developer
fees and per server fees. Yourdon discusses the potential impact of Java on the
cost of software applications in the future- purchased software packages could
be replaced with transaction-oriented rental of Java applets attached to Web
pages [Yourdon 96].

Alternatives

From a programming-language point of view, alternatives to Java include C/C++,
Perl, and Tcl/Tk. Scripting languages often used in Web browsers, such as

http://www.sei.cmu.edu/str/descriptions/java_body.html (6 of 11)7/28/2008 11:30:59 AM

Java(TM)

JavaScript and Visual Basic Scripting Edition (VB Script), can also be used to
perform some of the tasks that Java can do, but not all of them. Perhaps the
biggest challenge to client side Java's success is Microsoft's ActiveX technology.
ActiveX is built on top of COM/DCOM (see Component Object Model (COM),
DCOM, and Related Capabilities). Microsoft provides tools for developers to
create "ActiveX controls" that can serve a similar purpose to Java applets. The
primary difference is that ActiveX is a proprietary technology that only runs on
the Windows platform at present. It also provides a different security model
based on its "Authenticode" certificate technology, security zones, and encrypted
signatures. The ActiveX model itself is not secure in the way Java is; ActiveX
controls have unlimited access to the user's machine when they are executing.
This gives them more power to perform operations, but also makes them
potentially more dangerous to the user's computing environment. The
alternatives for the server side Java computing are CORBA and MTS. As
CORBA and Java are basically complimentary technologies, only MTS can be
considered as a J2EE's competitor. MTS is a product that provides to specifically
designed COM objects with enterprise services as transactions and security.
MTS and COM will converge into a single technology called COM+ that will be
released with Windows 2000.

Complementary Technologies

The entire distributed object technology area (CORBA, COM/DCOM, ActiveX,
etc.) offers technologies that can inter-operate with Java. There are standards
available that let Java objects talk to CORBA objects, thus extending the
capabilities of both technologies. Of particular relevance is the RMI-IIOP
mapping that enable interoperability between RMI objects and IIOP objects. Also
relevant is the CORBA 3 Component Model [OMG 99], this model is strongly
based in EJB and has EJB interoperability as one of its main goals. Java
provides solid foundations to component-based development (see Component-
Based Software Development/COTS Integration). The additions of Remote
Method Invocation (RMI), the JavaBeans component architecture [JavaSoft 97]
and EJB component framework to Java facilitate the reuse of other people's
software. Java components developed in this manner can have their interfaces
examined, can communicate with one another over a network, and can be
integrated with other components all without needing the source code. Java has
evolved to become a serious option to implement three tier architectures (see
Three Tier Software Architectures). Mobile and light clients can be implemented
as Applets or JavaBeans, Enterprise JavaBeans are perfect for transactional
business logic and Java Server Pages can be used to generate the html
representation. The ability to deploy component-oriented enterprise multi-tiers
systems, in a platform-neutral manner, can give fast moving enterprises a
significant and measurable competitive edge.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

http://www.sei.cmu.edu/str/descriptions/java_body.html (7 of 11)7/28/2008 11:30:59 AM

Java(TM)

Name of technology Java

Application category Distributed Computing (AP.2.1.2)
Application Program Interfaces (AP.2.7)
Programming Language (AP.1.4.2.1)
Compiler (AP.1.4.2.3)

Quality measures category Complexity (QM.3.2.1)
Cost of Ownership (QM.5.1)
Interoperability (QM.4.1)
Maintainability (QM.3.1)
Portability (QM.4.2)
Reliability (QM.2.1.2)
Scalability (QM.4.3)
Trustworthiness (QM.2.1.4)
Usability (QM.2.3)

Computing reviews category Programming Languages (D.3)
Distributed Systems (C.2.4)

References and Information Sources

[Clark 97]
Clark, Don. "Sun Microsystems Pours Some New Java." Wall Street
Journal, Page B-4. April 1, 1997.

[EJB-SIG 99]
Special Interest Group - Enterprise JavaBeans [online] Available WWW,
<URL: http://www.mgm-edv.de/ejbsig/ejbservers_tabled.html>

[Gamelan 97]
Gamelan Web site [online]. Available WWW,
<URL: http://www.gamelan.com> (1997).

[Gosling 96]
Gosling, James & McGilton, Henry. The Java Language Environment: A
White Paper [online]. Available WWW,
<URL: http://java.sun.com/docs/white/langenv/> (1996).

[JARS 97]

Java Applet Rating Service (JARS) [online]. Available WWW,
<URL: http://www.jars.com> (1997).

[Halfhill 97]
Halfhill, Tom R. "Today the Web, Tomorrow the World." Byte 22, 1
(January 1997): 68-80.

http://www.sei.cmu.edu/str/descriptions/java_body.html (8 of 11)7/28/2008 11:30:59 AM

http://www.mgm-edv.de/ejbsig/ejbservers_tabled.html
http://www.gamelan.com/
http://java.sun.com/docs/white/langenv/
http://www.jars.com/

Java(TM)

[Hamilton 96]
Hamilton, Marc. "Java and the Shift to Net-Centric Computing."
Computer 29, 8 (August 1996): 31-39.

[JavaSoft 97]

JavaBeans: The Only Component Architecture for Java [online].
Available WWW,
<URL: http://splash.javasoft.com/beans/> (1997).

[Levin 97]
Levin, Rich and Patrizio, Andy. "Breaking Point" [online]. Information
Week, June 23, 1997. Available WWW,
<URL: http://techweb.cmp.com/iw/636/36iujav.htm> (1997).

[OMG 99]
CORBA Component Model RFP [online]. Originally available WWW,
<URL http://www.omg.org/techprocess/meetings/schedule/
CORBA_Component_Model_RFP.html>

[Sun 96a]

CSX Gets on Track With Java [online]. Available WWW,
<URL: http://java.sun.com/features/1996/october/csx102996.html>
(1996).

[Sun 96b]

Java Computing in the Enterprise. Strategic Overview: Java [online].
Available WWW,
<URL: http://www.sun.com/javacomputing> (1996).

[Sun 97a]

Frequently Asked Questions- Applet Security [online]. Available WWW,
<URL: http://java.sun.com/sfaq> (1997).

[Sun 97b]

Java in the Real World [online]. Available WWW,
<URL: http://java.sun.com/nav/used/> (1997).

[Sun 97c]

Customer Successes [online]. Available WWW,
<URL: http://www.sun.com/javastation/customersuccesses/> (1997).

http://www.sei.cmu.edu/str/descriptions/java_body.html (9 of 11)7/28/2008 11:30:59 AM

http://splash.javasoft.com/beans/
http://techweb.cmp.com/iw/636/36iujav.htm
http://java.sun.com/features/1996/october/csx102996.html
http://www.sun.com/javacomputing
http://java.sun.com/sfaq
http://java.sun.com/nav/used/
http://www.sun.com/javastation/customersuccesses/

Java(TM)

[Sun 97d]

Java Development Kit 1.1.2 [online]. Available WWW,
<URL: http://java.sun.com/products/jdk/1.1/> (1997).

[Sun 97e]
Overview of Java [online]. Available WWW,
<URL: http://java.sun.com/docs/Overviews/java/java-overview-1.html>
(1997).

[Sun 99a]
Java(tm) 2 Platform, Enterprise Edition [online]. Available WWW,
<URL:http://java.sun.com/j2ee/>

[Sun 99b]
Jini(tm) connection technology [online]. Available WWW,
<URL: http://www.sun.com/jini/>

[Sun 99c]
Java HotSpot(tm) Performance Engine [online]. Available WWW,
<URL:http://java.sun.com/products/hotspot/>

[Sun 99d]
JavaBeans Home Page [online]. Available WWW,
<URL:http://java.sun.com/beans/index.html>

[Sun 99e]
Enterprise JavaBeans Home Page [online]. Available WWW,
<URL:http://java.sun.com/products/ejb/index.html>

[Sun 99f]
J2EE Sun BluePrints(TM) [online]. Available WWW,
<URL:http://java.sun.com/j2ee/blueprints/>

[van Hoff 96] van Hoff, A. Hooked on Java. Reading, MA: Addison-Wesley, 1996.

[Yourdon 96]
Yourdon, Edward. "Java, the Web, and Software Development."
Computer 29, 8 (August 1996): 25-30.

Current Author/Maintainer

Santiago Comella-Dorda, SEI
Scott Tilley, SEI

External Reviewers

Alan Brown, Texas Instruments
Hausi Müller, University of Victoria

Modifications

24 Feb 2000: Updated to cover new Java developments

http://www.sei.cmu.edu/str/descriptions/java_body.html (10 of 11)7/28/2008 11:30:59 AM

http://java.sun.com/products/jdk/1.1/
http://java.sun.com/docs/Overviews/java/java-overview-1.html
http://java.sun.com/j2ee/
http://www.sun.com/jini/
http://java.sun.com/products/hotspot/
http://java.sun.com/beans/index.html
http://java.sun.com/products/ejb/index.html
http://java.sun.com/j2ee/blueprints/

Java(TM)

More material added to cover Java 2, Jini, Java Beans, and Enterprise
Java Beans. Many new references added.

30 June 1997: Substantially rewritten to reflect developments of the past 5-6
months.

More material added in Usage Considerations, Maturity, and Alternatives.
Added figure to show applets, applications, Virtual Machines, and
platform independence/neutrality. Many new references added.

10 Jan 1997 (original); author: Cory Vondrak, TRW, Redondo Beach, CA

Footnotes

1 The network computer (NC) does not have an agreed-upon definition. Some
NCs are new devices designed to run software written in Java, with gateways to
existing programs and data. These are the official Network Computers (an
Oracle trademark) and JavaStations (a Sun trademark). Other NCs are more like
terminals in the classic sense: they don't execute programs at the desktop.
Instead, applications run remotely on a server, and the client handles only the
graphics locally. The generic term for these and the true NC alternatives to the
personal computer (PC) is "thin client". They are referred to as "thin" because
they are generally less complex and less expensive than a PC. However, recent
developments by Microsoft and others have muddied the waters a bit with the
"NetPC," which is essentially a stripped-down and sealed PC that is meant to be
centrally administered. 2 MIDI stands for "Musical Instrument Digital Interface". It
is a hardware specification and protocol used to communicate note and effect
information between synthesizers, computers, keyboards, controllers and other
electronic music devices.

JavaTM Copyright

Java and all Java-based marks are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. The Software
Engineering Institute is independent of Sun Microsystems, Inc.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/java_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/java_body.html (11 of 11)7/28/2008 11:30:59 AM

http://www.sei.cmu.edu/about/disclaimer.html

Sun 99a

References and Information Sources

[Sun
99a]

Java(tm) 2 Platform, Enterprise Edition [online]. Available WWW <URL:http://java.sun.
com/j2ee/>

http://www.sei.cmu.edu/str/indexes/references/Sun_99a.html7/28/2008 11:30:59 AM

http://java.sun.com/j2ee/
http://java.sun.com/j2ee/

Sun 97b

References and Information Sources

[Sun
97b]

Java in the Real World [online]. Available
WWW
<URL: http://java.sun.com/nav/used/> (1997).

http://www.sei.cmu.edu/str/indexes/references/Sun_97b.html7/28/2008 11:30:59 AM

http://java.sun.com/nav/used/

Cost of ownership - Definition

Glossary Term

Cost of ownership
the overall cost of a computer system to an organization to include the costs associated with
operating and maintaining the system, and the lifetime of operational use of the system.

http://www.sei.cmu.edu/str/indexes/glossary/cost-of-ownership.html7/28/2008 11:31:00 AM

Java - Notes

Notes

1 The network computer (NC) does not have an agreed-upon definition. Some NCs are new devices
designed to run software written in Java, with gateways to existing programs and data. These are the
official Network Computers (an Oracle trademark) and JavaStations (a Sun trademark). Other NCs are
more like terminals in the classic sense: they don't execute programs at the desktop. Instead, applications
run remotely on a server, and the client handles only the graphics locally. The generic term for these and
the true NC alternatives to the personal computer (PC) is "thin client". They are referred to as "thin"
because they are generally less complex and less expensive than a PC. However, recent developments by
Microsoft and others have muddied the waters a bit with the "NetPC," which is essentially a stripped-
down and sealed PC that is meant to be centrally administered.

http://www.sei.cmu.edu/str/descriptions/notes/java_1.html7/28/2008 11:31:00 AM

Clark 97

References and Information Sources

[Clark
97]

Clark, Don. "Sun Microsystems Pours Some New Java." Wall Street Journal, Page B-4.
April 1, 1997.

http://www.sei.cmu.edu/str/indexes/references/Clark_97.html7/28/2008 11:31:00 AM

Halfhill 97

References and Information Sources

[Halfhill
97]

Halfhill, Tom R. "Today the Web, Tomorrow the World." Byte 22, 1 (January 1997): 68-
80.

http://www.sei.cmu.edu/str/indexes/references/Halfhill_97.html7/28/2008 11:31:00 AM

Sun 97a

References and Information Sources

[Sun
97a]

Frequently Asked Questions- Applet Security [online]. Available
WWW
<URL: http://java.sun.com/sfaq> (1997).

http://www.sei.cmu.edu/str/indexes/references/Sun_97a_bold.html7/28/2008 11:31:01 AM

http://java.sun.com/sfaq

Sun 99f

References and Information Sources

[Sun
99f]

J2EE Sun BluePrints(TM) [online]. Available WWW,
<URL:http://java.sun.com/j2ee/blueprints/>

http://www.sei.cmu.edu/str/indexes/references/Sun_99f.html7/28/2008 11:31:01 AM

http://java.sun.com/j2ee/blueprints/

Sun 99e

References and Information Sources

[Sun
99e]

Enterprise JavaBeans Home Page [online]. Available WWW <URL:http://java.sun.com/
products/ejb/index.html>

http://www.sei.cmu.edu/str/indexes/references/Sun_99e.html7/28/2008 11:31:01 AM

http://java.sun.com/products/ejb/index.html
http://java.sun.com/products/ejb/index.html

Java - Notes

Notes

2 MIDI stands for "Musical Instrument Digital Interface". It is a hardware specification and protocol
used to communicate note and effect information between synthesizers, computers, keyboards,
controllers and other electronic music devices.

http://www.sei.cmu.edu/str/descriptions/notes/java_2.html7/28/2008 11:31:01 AM

Hamilton 96

References and Information Sources

[Hamilton
96]

Hamilton, Marc. "Java and the Shift to Net-Centric Computing." Computer 29, 8
(August 1996): 31-39.

http://www.sei.cmu.edu/str/indexes/references/Hamilton_96_bold.html7/28/2008 11:31:02 AM

Levin 97

References and Information Sources

[Levin
97]

Levin, Rich and Patrizio, Andy. "Breaking Point" [online]. Information Week, June 23,
1997. Available WWW
<URL: http://techweb.cmp.com/iw/636/36iujav.htm> (1997).

http://www.sei.cmu.edu/str/indexes/references/Levin_97.html7/28/2008 11:31:02 AM

http://techweb.cmp.com/iw/636/36iujav.htm

Sun 97c

References and Information Sources

[Sun
97c]

Customer Successes [online]. Available WWW
<URL: http://www.sun.com/javastation/customersuccesses/>
(1997).

http://www.sei.cmu.edu/str/indexes/references/Sun_97c.html7/28/2008 11:31:02 AM

http://www.sun.com/javastation/customersuccesses/

JARS 97

References and Information Sources

[JARS
97]

Java Applet Rating Service (JARS) [online]. Available
WWW
<URL: http://www.jars.com> (1997).

http://www.sei.cmu.edu/str/indexes/references/JARS_97.html7/28/2008 11:31:02 AM

http://www.jars.com/

Gamelan 97

References and Information Sources

[Gamelan
97]

Gamelan Web site [online]. Available
WWW
<URL: http://www.gamelan.com> (1997).

http://www.sei.cmu.edu/str/indexes/references/Gamelan_97.html7/28/2008 11:31:02 AM

http://www.gamelan.com/

Sun 97c

References and Information Sources

[Sun
97c]

Customer Successes [online]. Available WWW
<URL: http://www.sun.com/javastation/customersuccesses/>
(1997).

http://www.sei.cmu.edu/str/indexes/references/Sun_97c_bold.html7/28/2008 11:31:03 AM

http://www.sun.com/javastation/customersuccesses/

Sun 96a

References and Information Sources

[Sun
96a]

CSX Gets on Track With Java [online]. Available WWW
<URL: http://java.sun.com/features/1996/october/csx102996.html>
(1996).

http://www.sei.cmu.edu/str/indexes/references/Sun_96a.html7/28/2008 11:31:03 AM

http://java.sun.com/features/1996/october/csx102996.html

Sun 97d

References and Information Sources

[Sun
97d]

Java Development Kit 1.1.2 [online]. Available
WWW
<URL: http://java.sun.com/products/jdk/1.1/> (1997).

http://www.sei.cmu.edu/str/indexes/references/Sun_97d.html7/28/2008 11:31:03 AM

http://java.sun.com/products/jdk/1.1/

EJB-SIG 99

References and Information Sources

[EJB-SIG
99]

Special Interest Group - Enterprise JavaBeans [online] Available WWW <URL: http://
www.mgm-edv.de/ejbsig/ejbservers_tabled.html>

http://www.sei.cmu.edu/str/indexes/references/EJB-SIG_99.html7/28/2008 11:31:03 AM

http://www.mgm-edv.de/ejbsig/ejbservers_tabled.html
http://www.mgm-edv.de/ejbsig/ejbservers_tabled.html

OMG 99

References and Information Sources

[OMG
99]

CORBA Component Model RFP [online]. Available WWW, <URL: http://www.omg.org/
techprocess/meetings/schedule/CORBA_Component_Model_RFP.html>

http://www.sei.cmu.edu/str/indexes/references/OMG_99.html7/28/2008 11:31:04 AM

http://www.omg.org/techprocess/meetings/schedule/CORBA_Component_Model_RFP.html
http://www.omg.org/techprocess/meetings/schedule/CORBA_Component_Model_RFP.html

JavaSoft 97

References and Information Sources

[JavaSoft
97]

JavaBeans: The Only Component Architecture for Java [online]. Available
WWW
<URL: http://splash.javasoft.com/beans/> (1997).

http://www.sei.cmu.edu/str/indexes/references/JavaSoft_97.html7/28/2008 11:31:04 AM

http://splash.javasoft.com/beans/

Siwolp 95

References and Information Sources

[Siwolp
95]

Siwolp, Sana. "Not Your Father's Mainframe." Information Week 546 (Sept 25, 1995): 53-
58.

http://www.sei.cmu.edu/str/indexes/references/Siwolp_95_bold.html7/28/2008 11:31:04 AM

Data 96

References and Information Sources

[Data
96]

Data Warehousing [online]. Available WWW
<URL: http://www-db.stanford.edu/warehousing/publications.html> and
<URL: http://www-db.stanford.edu/warehousing/warehouse.html>
(1996).

http://www.sei.cmu.edu/str/indexes/references/Data_96.html7/28/2008 11:31:04 AM

http://www-db.stanford.edu/warehousing/publications.html
http://www-db.stanford.edu/warehousing/warehouse.html

Mainframe Server Software Architectures

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Mainframe Server Software Architectures

Status

Complete

Note

We recommend Client/Server Software Architectures as prerequisite reading for
this technology description.

Purpose and Origin

Since 1994 mainframes have been combined with distributed architectures to
provide massive storage and to improve system security, flexibility, scalability,
and reusability in the client/server design. In a mainframe server software
architecture, mainframes are integrated as servers and data warehouses in a
client/server environment. Additionally, mainframes still excel at simple
transaction-oriented data processing to automate repetitive business tasks such
as accounts receivable, accounts payable, general ledger, credit account
management, and payroll. Siwolp and Edelstein provide details on mainframe
server software architectures see [Siwolp 95, Edelstein 94].

Technical Detail

While client/server systems are suited for rapid application deployment and
distributed processing, mainframes are efficient at online transactional
processing, mass storage, centralized software distribution, and data
warehousing [Data 96]. Data warehousing is information (usually in summary
form) extracted from an operational database by data mining (drilling down into
the information through a series of related queries). The purpose of data
warehousing and data mining is to provide executive decision makers with data
analysis information (such as trends and correlated results) to make and
improve business decisions.

http://www.sei.cmu.edu/str/descriptions/mssa_body.html (1 of 5)7/28/2008 11:31:05 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/mssa_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Mainframe Server Software Architectures

Figure 20: Mainframe in a Three Tier Client/Server
Architecture

Figure 20 shows a mainframe in a three tier client/server architecture. The
combination of mainframe horsepower as a server in a client/server distributed
architecture results in a very effective and efficient system. Mainframe vendors
are now providing standard communications and programming interfaces that
make it easy to integrate mainframes as servers in a client/server architecture.
Using mainframes as servers in a client/server distributed architecture provides
a more modular system design, and provides the benefits of the client/server
technology.

Using mainframes as servers in a client/server architecture also enables the
distribution of workload between major data centers and provides disaster
protection and recovery by backing up large volumes of data at disparate
locations. The current model favors "thin" clients (contains primarily user
interface services) with very powerful servers that do most of the extensive
application and data processing, such as in a two tier architecture. In a three tier
client/server architecture, process management (business rule execution) could
be off-loaded to another server.

Usage Considerations

Mainframes are preferred for big batch jobs and storing massive amounts of vital
data. They are mainly used in the banking industry, public utility systems, and for
information services. Mainframes also have tools for monitoring performance of
the entire system, including networks and applications not available today on
UNIX servers [Siwolp 95].

New mainframes are providing parallel systems (unlike older bipolar machines)
and use complementary metal-oxide semiconductor (CMOS) microprocessors,
rather than emitter-coupler logic (ECL) processors. Because CMOS processors
are packed more densely than ECL microprocessors, mainframes can be built
much smaller and are not so power-hungry. They can also be cooled with air
instead of water [Siwolp 95].

While it appeared in the early 1990s that mainframes were being replaced by
client/server architectures, they are making a comeback. Some mainframe
vendors have seen as much as a 66% jump in mainframe shipments in 1995

http://www.sei.cmu.edu/str/descriptions/mssa_body.html (2 of 5)7/28/2008 11:31:05 AM

Mainframe Server Software Architectures

due to the new mainframe server software architecture [Siwolp 95].

Given the cost of a mainframe compared to other servers, UNIX workstations
and personal computers (PCs), it is not likely that mainframes would replace all
other servers in a distributed two or three tier client/server architecture.

Maturity

Mainframe technology has been well known for decades. The new improved
models have been fielded since 1994. The new mainframe server software
architecture provides the distributed client/server design with massive storage
and improved security capability. New technologies of data warehousing and
data mining data allow extraction of information from the operational mainframe
server's massive storage to provide businesses with timely data to improve
overall business effectiveness. For example, stores such as Wal-Mart found that
by placing certain products in close proximity within the store, both products sold
at higher rates than when not collocated.1

Costs and Limitations

By themselves, mainframes are not appropriate mechanisms to support
graphical user interfaces. Nor can they easily accommodate increases in the
number of user applications or rapidly changing user needs [Edelstein 94].

Alternatives

Using a client/server architecture without a mainframe server is a possible
alternative. When requirements for high volume (greater than 50 gigabit), batch
type processing, security, and mass storage are minimal, three tier or two tier
architectures without a mainframe server may be viable alternatives. Other
possible alternatives to using mainframes in a client/server distributed
environment are using parallel processing software architecture or using a
database machine.

Complementary Technologies

A complementary technology to mainframe server software architectures is open
systems . This is because movement in the industry towards interoperable
heterogeneous software programs and operating systems will continue to
increase reuse of mainframe technology and provide potentially new applications
for mainframe capabilities.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

http://www.sei.cmu.edu/str/descriptions/mssa_body.html (3 of 5)7/28/2008 11:31:05 AM

Mainframe Server Software Architectures

Name of technology Mainframe Server Software Architectures

Application category Client/Server (AP.2.1.2.1)

Quality measures category Maintainability (QM.3.1)
Scalability (QM.4.3)
Reusability (QM.4.4)

Computing reviews category Distributed Systems (C.2.4)

References and Information Sources

[Data 96] Data Warehousing [online]. Available WWW
<URL: http://www-db.stanford.edu/warehousing/publications.
html> and
<URL: http://www-db.stanford.edu/warehousing/warehouse.
html> (1996).

[Edelstein
94]

Edelstein, Herb. "Unraveling Client/Server Architecture." DBMS
7, 5 (May 1994): 34(7).

[Siwolp 95] Siwolp, Sana. "Not Your Father's Mainframe." Information Week
546 (Sept 25, 1995): 53-58.

Current Author/Maintainer

Darleen Sadoski, GTE

External Reviewers

Frank Rogers, GTE

Modifications

10 Jan 97 (original)

Footnotes

1 Source: Stodder, David. Open Session Very Large Data Base (VLDB) Summit,
New Orleans, LA 23-26 April, 1995.

The Software Engineering Institute (SEI) is a federally funded research and development center

http://www.sei.cmu.edu/str/descriptions/mssa_body.html (4 of 5)7/28/2008 11:31:05 AM

http://www-db.stanford.edu/warehousing/publications.html
http://www-db.stanford.edu/warehousing/publications.html
http://www-db.stanford.edu/warehousing/warehouse.html
http://www-db.stanford.edu/warehousing/warehouse.html

Mainframe Server Software Architectures

sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/mssa_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/mssa_body.html (5 of 5)7/28/2008 11:31:05 AM

http://www.sei.cmu.edu/about/disclaimer.html

Mainframe Server Software Architectures - Notes

Notes

1 Source: Stodder, David. Open Session Very Large Data Base (VLDB) Summit, New Orleans, LA 23-
26 April, 1995.

http://www.sei.cmu.edu/str/descriptions/notes/mssa_1.html7/28/2008 11:31:05 AM

Rule-Based Intrusion Detection - Notes

Notes

1 In an expert system, knowledge about a problem domain is represented by a set of rules. These rules
consist of two parts:

1. The antecedent, which defines when the rule should be applied. An expert system will use pattern
matching techniques to determine when the observed data matches or satisfies the antecedent of a
rule.

2. The consequent, which defines the action(s) that should be taken if its antecedent is satisfied.

A rule is said to be "fired" when the action(s) defined in its consequent are executed. For RBID systems,
rule antecedents will typically be defined in terms of audit trail data, while rule consequents may be used
to increase or decrease the level of monitoring of various entities, or they may be used to notify system
administration personnel about significant changes in system state.

http://www.sei.cmu.edu/str/descriptions/notes/rbid_1.html7/28/2008 11:31:06 AM

Ilgun 93

References and Information Sources

[Ilgun
93]

Ilgun, Koral. "USTAT: A Real-time Intrusion Detection System for UNIX," 16-28.
Proceedings of the 1993 Computer Society Symposium on Research in Security and Privacy.
Oakland, California, May 24-26, 1993. Los Alamitos, CA: IEEE Computer Society Press,
1993.

http://www.sei.cmu.edu/str/indexes/references/Ilgun_93_bold.html7/28/2008 11:31:06 AM

Tener 86

References and Information Sources

[Tener
86]

Tener, W. T. "Discovery: An Expert System in the Commercial Data Security
Environment." Computer Security Journal 6, 1 (Summer 1990): 45.

http://www.sei.cmu.edu/str/indexes/references/Tener_86.html7/28/2008 11:31:06 AM

Denning 87

References and Information Sources

[Denning
87]

Denning, Dorothy E., et al. "Views for Multilevel Database Security." IEEE Transactions
on Software Engineering SE-13, 2 (February 1987): 129-140.

http://www.sei.cmu.edu/str/indexes/references/Denning_87.html7/28/2008 11:31:06 AM

Vaccarro 89

References and Information Sources

[Vaccarro
89]

Vaccarro, H. S. & Liepins, G. E. "Detection of Anomalous Computer Session Activity,"
208-209. Proceedings of the IEEE Symposium on Research in Security and Privacy.
Oakland, California, May 1-3, 1989. Washington, DC: IEEE Computer Society Press,
1989.

http://www.sei.cmu.edu/str/indexes/references/Vaccarro_89.html7/28/2008 11:31:06 AM

Simple Network Management Protocol - Notes

Notes

1 The IETF is a large open community of network designers, operators, vendors, and researchers whose
purpose is to coordinate the operation, management and evolution of the Internet, and to resolve short-
and mid-range protocol and architectural issues. It is a major source of proposed protocol standards
which are submitted to the Internet Engineering Steering Group for final approval. The IETF meets three
times a year and extensive minutes of the plenary proceedings are issued.

http://www.sei.cmu.edu/str/descriptions/notes/snmp_1.html7/28/2008 11:31:07 AM

Simple Network Management Protocol - Notes

Notes

2 The IAB is a technical advisory group of the Internet Society. The IAB provides oversight of the
architecture for the protocols and procedures used by the Internet, the process used to create Internet
Standards and serves as an appeal board for complaints of improper execution of the standards process.

http://www.sei.cmu.edu/str/descriptions/notes/snmp_2.html7/28/2008 11:31:07 AM

IETF 96

References and Information Sources

[IETF
96]

Internet Engineering Task Force home page [online]. Available
WWW
<URL: http://www.ietf.cnri.reston.va.us/> (1996).

http://www.sei.cmu.edu/str/indexes/references/IETF_96.html7/28/2008 11:31:07 AM

http://www.ietf.cnri.reston.va.us/

Henderson 95

References and Information Sources

[Henderson
95]

Henderson and Erwin. "SNMP Version 2: Not So Simple." Business Communications
Review 25, 5 (May 1995): 44-48.

http://www.sei.cmu.edu/str/indexes/references/Henderson_95_bold.html7/28/2008 11:31:07 AM

SNMPv1 Specs

References and Information Sources

[SNMPv1
Specs]

The following RFC's identify the major components of SNMPv1 online]. Available
WWW
<URL: http://www.cis.ohio-state.edu/htbin/rfc/rfcXXXX.html> (1996).

Historical
RFC 1156 - Management Information Base Network Management of TCP/IP based
internets
RFC 1161 - SNMP over OSI

Informational
RFC 1215 - A Convention for Defining Traps for use with the SNMP
RFC 1270 - SNMP Communication Services
RFC 1303 - A Convention for Describing SNMP-based Agents
RFC 1470 - A Network Management Tool Catalog

Standard and Draft
RFC 1089 - SNMP over Ethernet
RFC 1140 - IAB Official Protocol Standards
RFC 1155 - Structure and Identification of Management Information for TCP/IP
based internets.
RFC 1157 - A Simple Network Management Protocol
RFC 1158 - Management Information Base Network Management of TCP/IP based
internets: MIB-II
RFC 1187 - Bulk Table Retrieval with the SNMP
RFC 1212 - Concise MIB Definitions
RFC 1213 - Management Information Base for Network Management of TCP/IP-
based internets: MIB-II
RFC 1224 - Techniques for Managing Asynchronously-Generated Alerts
RFC 1418 - SNMP over OSI
RFC 1419 - SNMP over AppleTalk
RFC 1420 - SNMP over IPX

http://www.sei.cmu.edu/str/indexes/references/SNMPv1_Specs.html7/28/2008 11:31:08 AM

http://www.cis.ohio-state.edu/htbin/rfc/rfc1156.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1161.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1215.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1270.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1303.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1470.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1089.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1140.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1155.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1157.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1158.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1187.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1212.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1213.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1224.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1418.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1419.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1420.html

SNMPv2 Specs

References and Information Sources

[SNMPv2
Specs]

The following RFC's identify the major components of SNMPv2 online]. Available
WWW
<URL: http://www.cis.ohio-state.edu/htbin/rfc/rfcXXXX.html> (1996).

Historical
RFC 1441 - Introduction to SNMP v2
RFC 1442 - SMI For SNMP v2
RFC 1443 - Textual Conventions for SNMP v2
RFC 1444 - Conformance Statements for SNMP v2
RFC 1445 - Administrative Model for SNMP v2
RFC 1446 - Security Protocols for SNMP v2
RFC 1447 - Party MIB for SNMP v2
RFC 1448 - Protocol Operations for SNMP v2
RFC 1449 - Transport Mappings for SNMP v2
RFC 1450 - MIB for SNMP v2
RFC 1451 - Manager to Manager MIB
RFC 1452 - Coexistence between SNMP v1 and SNMP v2

Draft
RFC 1902 - SMI for SNMPv2
RFC 1903 - Textual Conventions for SNMPv2
RFC 1904 - Conformance Statements for SNMPv2
RFC 1905 - Protocol Operations for SNMPv2
RFC 1906 - Transport Mappings for SNMPv2
RFC 1907 - MIB for SNMPv2
RFC 1908 - Coexistence between SNMPv1 and SNMPv2

Experimental
RFC 1901 - Introduction to Community-based SNMPv2
RFC 1909 - An Administrative Infrastructure for SNMPv2
RFC 1910 - User-based Security Model for SNMPv2

http://www.sei.cmu.edu/str/indexes/references/SNMPv2_Specs.html7/28/2008 11:31:08 AM

http://www.cis.ohio-state.edu/htbin/rfc/rfc1441.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1442.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1443.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1444.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1445.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1446.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1447.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1448.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1449.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1450.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1451.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1452.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1902.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1903.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1904.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1905.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1906.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1907.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1908.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1901.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1909.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1910.html

Simple Network Management Protocol

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Simple Network Management Protocol

Status

Advanced

Note

We recommend Network Management -- An Overview as prerequisite reading for this
technology description.

Purpose and Origin

Simple Network Management Protocol (SNMP) is a network management specification
developed by the Internet Engineering Task Force (IETF),1 a subsidiary group of the
Internet Activities Board (IAB),2 in the mid 1980s to provide standard, simplified, and
extensible management of LAN-based internetworking products such as bridges,
routers, and wiring concentrators [IETF 96, Henderson 95]. SNMP was designed to
reduce the complexity of network management and minimize the amount of resources
required to support it. SNMP provides for centralized, robust, interoperable network
management, along with the flexibility to allow for the management of vendor-specific
information.

Technical Detail

SNMP is a communication specification that defines how management information is
exchanged between network management applications and management agents. There
are several versions of SNMP, two of the most common are SNMPv1 [SNMPv1 Specs]
and SNMPv2 [SNMPv2 Specs]. SNMPv2 and some of the less common versions will be
discussed later in this text.

The architecture of SNMPv1 is shown in Figure 33, which is a more detailed version of
the managed device and network management application shown in Figure 27 of
Network Management-An Overview. SNMPv1 is a simple message based request/
response application-layer protocol which typically uses the User Datagram Protocol
(UDP) [RFC 96] for data delivery. The SNMPv1 network management architecture
contains:

● Network Management Station (NMS) - Workstation that hosts the network

http://www.sei.cmu.edu/str/descriptions/snmp_body.html (1 of 10)7/28/2008 11:31:09 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/snmp_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Simple Network Management Protocol

management application.
● SNMPv1 network management application - Polls management agents for

information and provides control information to agents.
● Management Information Base (MIB) - Defines the information that can be

collected and controlled by the management application.
● SNMPv1 management agent(s) - Provides information contained in the MIB to

management applications and may accept control information.

A MIB is basically a database of managed objects3 that resides on the agent. Managed
objects are a characteristic of a managed device that can be monitored, modified or
controlled, such as a threshold, network address or counter. The management
application or user can define the relationship between the SNMPv1 manager and the
management agent.

Attributes of managed objects may be monitored or set by the network management
application using the following operations:

● GET_NEXT_REQUEST - Requests the next object instance from a table or list
from an agent

● GET_RESPONSE - Returned answer to get_next_request, get_request, or
set_request

● GET_REQUEST - Requests the value of an object instance from the agent
● SET_REQUEST - Set the value of an object instance within an agent
● TRAP - Send trap (event) asynchronously to network management application.

Agents can send a trap when a condition has occurred, such as change in state
of a device, device failure or agent initialization/restart.

Figure 33: The SNMPv1 Architecture [Lake 96]

http://www.sei.cmu.edu/str/descriptions/snmp_body.html (2 of 10)7/28/2008 11:31:09 AM

Simple Network Management Protocol

By specifying the protocol to be used between the network management application and
management agent, SNMP allows products (software and managed devices) from
different vendors (and their associated management agents) to be managed by the
same SNMP network management application. A "proxy function" is also specified by
SNMP to enable communication with non-SNMP devices to accommodate legacy
equipment.

The main attributes of SNMP are as follows [Moorhead 95]:

● It is simple to implement, making it easy for a vendor to accommodate it into its
device.

● It does not require large computational or memory resources from the devices
that do accommodate it.

Network management, as defined by SNMP, is based on polling and asynchronous
events. The SNMP manager polls for information gathered by each of the agents. Each
agent has the responsibility of collecting information (e.g., performance statistics)
pertaining to the device it resides within and storing that information in the agent's own
management information base (MIB). This information is sent to the SNMP manager in
response to the manager's polling.

SNMP events (alerts) are driven by trap messages generated as a result of certain
device parameters. These parameters can be either generic or vendor device specific.
Enterprise-specific trap messages are vendor proprietary and generally provide more
device-specific detail.

The SNMPv2 [SNMPv2 Specs] (SNMP Version 2) specification included the following
new capabilities:

● manager to manager communication to support the coexistence of multiple/
distributed managers and mid-level managers, increasing the flexibility and
scalability of the network being managed

● enhanced security (known as "Secure SNMP") by specifying three layers of
security

❍ encryption: Used to keep content of messages private. Encryption is based
on the Data Encryption Standard (DES) [DES 93] defined by the National
Institute of Standards and Technology (NIST) and the American National
Standards Institute (ANSI)4.

❍ authentication: Proof of the identity of the sender of a message.
❍ authorization: Provides access restrictions thru access control lists.

● improved efficiency and performance through the addition of bulk transfers of
data. This means that in some cases, using SNMPv2 instead of SNMPv1,
network management can be provided over low-bandwidth, wide-area links.

● support for additional network protocols besides UDP/IP, for example, OSI,
NetWare IPX/SPX and Appletalk [Broadhead 95]

Usage Considerations

Problem isolation. Neither version of SNMP does an effective job at helping network
managers isolate problem devices in large, complex networks. It sometimes becomes

http://www.sei.cmu.edu/str/descriptions/snmp_body.html (3 of 10)7/28/2008 11:31:09 AM

Simple Network Management Protocol

difficult for an SNMP manager to determine which network events/alarms are
significant-- all are treated equally.

Focus. SNMPv1 provides information only on individual devices, not on how the devices
work as a system.

Incompatibilities. SNMPv1 and SNMPv2 are incompatible with each other and can not
interact, however, some SNMP network management applications packages support
both specifications.

Performance. The performance impact on the network being managed should be
considered when using the polling scheme that SNMP uses for collecting information
from distributed agents. A higher frequency of polling, which may be required to manage
a network effectively, will increase the overhead on a network, possibly resulting in a
need for additional networking or processor resources. The frequency of polling can be
controlled by the SNMP manager, but can be dependent on what kind of messages
(generic or enterprise-specific) a device vendor supports. Many vendors offer generic
trap messages on their devices rather than enterprise-specific messages, because it is
easier and takes less time for the vendor to implement. Devices that provide only generic
trap information must be polled frequently to obtain the granularity of information to
manage the device effectively.

Maturity

SNMPv1 has been incorporated into many products and management platforms. It has
been deployed by virtually all internetworking vendors. It has been widely adopted for the
enterprise (business organization) networks and may be the manager of choice for the
internetworking arena in the future because it is well-suited for managing TCP/IP
networks. Limitations are discussed below in Costs and Limitations.

SNMPv2 has many unresolved issues and was supported by few vendors as of January
1998. The members of IETF subcommittee can not agree upon several parts of the
SNMPv2 specification (primarily the security and administrative needs of the protocol);
as a result only certain parts of SNMPv2 specification have reached draft standard
status within the IETF [SNMP FAQ 98]. There has been several attempts to achieve
acceptance of SNMPv2 through the release of experimental modified versions
commonly known as SNMPv2*, SNMPv2c, SNMPv2u, SNMPv1+ and SNMP1.5 that do
not contain the contentious parts.

SNMPv3 is the latest proposed version for the next generation of SNMP functionality. It
is based upon the protocol operations, data types, and proxy support from SNMPv2 with
user-based seucurity from SNMPv2u and SNMPv2*. It may take years before a new
version is accepted.

Costs and Limitations

The attractiveness of SNMP is its simplicity and relative ease of implementation. With
this comes a price: e.g., the more fine grained information that is need or required, such
as the variance in interarrival time (jitter) of packets sent to a particular local address, the
less likely it is that it will be available.

http://www.sei.cmu.edu/str/descriptions/snmp_body.html (4 of 10)7/28/2008 11:31:09 AM

Simple Network Management Protocol

SNMPv1 uses the underlying User Datagram Protocol (UDP) for data delivery, which
does not ensure reliability of data transfer. The loss of data may be a limitation to a
network manager, depending on the criticality of the information being gathered and the
frequency at which the polling is being performed.

SNMP is best suited for network monitoring and capacity planning. SNMP does not
provide even the basic troubleshooting information that can be obtained from simple
network troubleshooting tools [Wellens 96]. SNMP agents do not analyze information,
they just collect information and provide it to the network management application.

SNMPv1 has minimal security capability. Because SNMPv1 lacks the control of
unauthorized access to critical network devices and systems, it may be necessary to
restrict the use of SNMP management to non-critical networks. Lack of authentication in
SNMPv1 has led many vendors to not include certain commands, thus reducing
extensibility and consistency across managed devices. SNMPv2 addresses these
security problems but is difficult and expensive to set up and administer (e.g., each MIB
must be locally set up).

Vendors often include SNMP agents with their software and public domain agents are
available. Management applications are available from a variety of vendors as well as
the public domain, however they can differ greatly in terms of functionality, plots and
visual displays.

SNMP out-of-the-box can not be used to track information contained in application/user
level protocols (e.g., radar track message, http, mail). However these might be
accomplished through the use of a extensible (customized) SNMP agent that has user
defined MIB.5 It is important to note that a specialized or extensible network manager
may be required for use with the customized agents.

There are also concerns about the use of SNMP in the real-time domain where bounded
response, deadlines, and priorities are required.

SNMPv2 is intended to be able to coexist with existing SNMPv2, but in order to use
SNMPv2 as the SNMP manager or to migrate from SNMPv1 to SNMPv2, all SNMPv1
compliant agents must be entirely replaced with SNMPv2 compliant agents-gateways or
bilingual managers and proxy agents were not available to support the gradual migration
as of early-1995. Since SNMPv1 and SNMPv2 are incompatible with each other and
SNMPv2 is not stable, it is important when procuring a managed device to determine
which network management protocol(s) is supported.

Alternatives

Common Management Information Protocol (CMIP) may be a better alternative for large,
complex networks or security-critical networks.

CMIP is similar to SNMP and was developed to address SNMP's shortcomings.
However, CMIP takes significantly more system resources than SNMP, is difficult to
program, and is designed to run on the ISO protocol stack [X.700 96]. (However, the
technology standard used today in most systems is TCP/IP.)

http://www.sei.cmu.edu/str/descriptions/snmp_body.html (5 of 10)7/28/2008 11:31:09 AM

Simple Network Management Protocol

The biggest feature in CMIP is that an agent can perform tasks or trigger events based
upon the value of a variable or a specific condition. For example, when a computer can
not reach its network fileserver for a predetermined number of times, an event can be
generated to notify the appropriate personnel [Vallillee 96]. With SNMP, this task would
have to be performed by a user, because an SNMP agent does not analyze information.

Index Categories

This technology is classified under the following categories. Select a category for a list of
related topics.

Name of technology Simple Network Management Protocol

Application category Protocols (AP.2.2.3)
Network Management (AP.2.2.2)

Quality measures category Maintainability (QM.3.1)
Simplicity (QM.3.2.2)
Complexity (QM.3.2.1)
Efficiency/ Resource Utilization (QM.2.2)
Scalability (QM.4.3)
Security (QM.2.1.5)

Computing reviews category Network Operations (C.2.3)
Distributed Systems (C.2.4)

References and Information Sources

[Broadhead 95] Broadhead, Steve. "SNMP Too Simple for Security?" Secure
Computing (April 1995): 24-29.

[DES 93] Federal Information Processing Standards Publication 46-2 DATA
ENCRYPTION STANDARD, 1993 [online]. Available WWW
<URL: http://csrc.ncsl.nist.gov/fips/fips46-2.txt> (1996).

[Feit 94] Feit, Sidnie. A Guide to Network Management. New York, NY:
McGraw Hill, 1994.

[Henderson 95] Henderson and Erwin. "SNMP Version 2: Not So Simple." Business
Communications Review 25, 5 (May 1995): 44-48.

[Herman 94] Herman, James. "Network Computing Inches Forward." Business
Communications Review 24, 5 (May 1994): 45-50.

[IETF 96] Internet Engineering Task Force home page [online]. Available WWW
<URL: http://www.ietf.cnri.reston.va.us/> (1996).

http://www.sei.cmu.edu/str/descriptions/snmp_body.html (6 of 10)7/28/2008 11:31:09 AM

http://csrc.ncsl.nist.gov/fips/fips46-2.txt
http://www.ietf.cnri.reston.va.us/

Simple Network Management Protocol

[Kapoor 94] Kapoor, K. "SNMP Platforms: What's Real, What Isn't." Data
Communications International 23, 12 (September 1994): 115-18.

[Lake 96] Lake, Craig. Simple Network Management Protocol (SNMP) [online].
Available WWW
<URL: http://www.sei.cmu.edu/str/docs/SNMP.html> (1996).

[MIB 96] Development of an MIB for http [online]. Available WWW
<URL: http://http-mib.onramp.net/bof/> (1996).

[Moorhead 95] Moorhead, R.J. & Amirthalingam, K. "SNMP- An Overview of its
Merits and Demerits," 180-3. Proceedings of the Twenty-Seventh
Southeastern Symposium on System Theory. Starkvill, MS, March 12-
14, 1995. Los Alamitos, CA: IEEE Computer Society Press, 1995.

[Phifer 94] Phifer, L.A. "Tearing Down the Wall: Integrating ISO and Internet
Management." Journal of Network and Systems Management 2, 3
(September 1994): pp. 317-22.

[RFC 96] Postel T. User Datagram Protocol (RFC 768) [online]. Available
WWW
<URL: http://ds.internic.net/rfc/rfc768.txt> (1996).

[Rose 94] Rose, Marshall T. The Simple Book: An Introduction to Internet
Management. Englewood Cliffs, NJ: Prentice-Hall, 1994.

[SNMP 98] Simple Network Management Protocol [online]. Available WWW
<URL: http://www.snmp.com> and
<URL: http://www.snmp.com/snmppages.html> (1998).

[SNMP FAQ
98]

Simple Network Management Protocol FAQ [online]. Available
WWW
<URL: http://www.snmp.com/FAQs/snmp-faq-part1.txt> and
<URL: http://www.snmp.com/FAQs/snmp-faq-part2.txt> (1998).

[SNMPv1
Specs]

The following RFC's identify the major components of SNMPv1
online]. Available WWW
<URL: http://www.cis.ohio-state.edu/htbin/rfc/rfcXXXX.html>
(1996).

Historical
RFC 1156 - Management Information Base Network Management of
TCP/IP based internets
RFC 1161 - SNMP over OSI

Informational
RFC 1215 - A Convention for Defining Traps for use with the SNMP
RFC 1270 - SNMP Communication Services
RFC 1303 - A Convention for Describing SNMP-based Agents
RFC 1470 - A Network Management Tool Catalog

Standard and Draft
RFC 1089 - SNMP over Ethernet

http://www.sei.cmu.edu/str/descriptions/snmp_body.html (7 of 10)7/28/2008 11:31:09 AM

http://www.sei.cmue.edu/str/docs/SNMP.html
http://http-mib.onramp.net/bof/
http://ds.internic.net/rfc/rfc768.txt
http://www.snmp.com/
http://www.snmp.com/snmppages.html
http://www.snmp.com/FAQs/snmp-faq-part1.txt
http://www.snmp.com/FAQs/snmp-faq-part2.txt
http://www.cis.ohio-state.edu/htbin/rfc/rfc1156.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1161.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1215.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1270.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1303.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1470.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1089.html

Simple Network Management Protocol

RFC 1140 - IAB Official Protocol Standards
RFC 1155 - Structure and Identification of Management Information
for TCP/IP based internets.
RFC 1157 - A Simple Network Management Protocol
RFC 1158 - Management Information Base Network Management of
TCP/IP based internets: MIB-II
RFC 1187 - Bulk Table Retrieval with the SNMP
RFC 1212 - Concise MIB Definitions
RFC 1213 - Management Information Base for Network Management
of TCP/IP-based internets: MIB-II
RFC 1224 - Techniques for Managing Asynchronously-Generated
Alerts
RFC 1418 - SNMP over OSI
RFC 1419 - SNMP over AppleTalk
RFC 1420 - SNMP over IPX

[SNMPv2
Specs]

The following RFC's identify the major components of SNMPv2
online]. Available WWW
<URL: http://www.cis.ohio-state.edu/htbin/rfc/rfcXXXX.html>
(1996).

Historical
RFC 1441 - Introduction to SNMP v2
RFC 1442 - SMI For SNMP v2
RFC 1443 - Textual Conventions for SNMP v2
RFC 1444 - Conformance Statements for SNMP v2
RFC 1445 - Administrative Model for SNMP v2
RFC 1446 - Security Protocols for SNMP v2
RFC 1447 - Party MIB for SNMP v2
RFC 1448 - Protocol Operations for SNMP v2
RFC 1449 - Transport Mappings for SNMP v2
RFC 1450 - MIB for SNMP v2
RFC 1451 - Manager to Manager MIB
RFC 1452 - Coexistence between SNMP v1 and SNMP v2

Draft
RFC 1902 - SMI for SNMPv2
RFC 1903 - Textual Conventions for SNMPv2
RFC 1904 - Conformance Statements for SNMPv2
RFC 1905 - Protocol Operations for SNMPv2
RFC 1906 - Transport Mappings for SNMPv2
RFC 1907 - MIB for SNMPv2
RFC 1908 - Coexistence between SNMPv1 and SNMPv2

Experimental
RFC 1901 - Introduction to Community-based SNMPv2

http://www.sei.cmu.edu/str/descriptions/snmp_body.html (8 of 10)7/28/2008 11:31:09 AM

http://www.cis.ohio-state.edu/htbin/rfc/rfc1140.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1155.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1157.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1158.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1187.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1212.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1213.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1224.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1418.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1419.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1420.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1441.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1442.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1443.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1444.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1445.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1446.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1447.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1448.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1449.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1450.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1451.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1452.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1902.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1903.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1904.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1905.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1906.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1907.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1908.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1901.html

Simple Network Management Protocol

RFC 1909 - An Administrative Infrastructure for SNMPv2
RFC 1910 - User-based Security Model for SNMPv2

[Stallings 93] Stallings, William. SNMP, SNMPv2, and CMIP: The Practical Guide
to Network Management Standards. Reading, MA: Addison-Wesley,
1993.

[Vallillee 96] Vallillee, Tyler. SNMP & CMIP: An Introduction To Network
Management [online]. Available WWW
<URL: http://www.inforamp.net/~kjvallil/t/snmp.html> (1996).

[Wellens 96] Wellens, Chris & Auerbach, Karl. "Towards Useful
Management" [online]. The Quarterly Newsletter of SNMP
Technology, Comment, and Events(sm) 4, 3 (July 1996). Available
WWW
<URL: http://www.iwl.com/Press/thefuture.html> (1996).

[X.700 96] X.700 and Other Network Management Services [online]. Available
WWW
<URL: http://ganges.cs.tcd.ie/4ba2/x700/index.html> (1996).

Current Author/Maintainer

Dan Plakosh, SEI

External Reviewers

Craig Meyers, SEI
Patrick Place, SEI

Modifications

16 Jan 98: Changes included

● Increased the consistency of terminology
● Minor change to the SNMPv1 architecture figure
● Updated status of SNMPv2 and added information about other SNMP versions
● Clarified some areas
● Updated references

19 Jun 97: Changes included

● Creating an overview technical description on network management, which
includes overview material and figures applicable to all network management
techniques

● Clarifying the discussion of SNMPv1 and SNMPv2
● Minor changes to the SNMPv1 architecture figure
● Increased the consistency of terminology
● added many new references

http://www.sei.cmu.edu/str/descriptions/snmp_body.html (9 of 10)7/28/2008 11:31:09 AM

http://www.cis.ohio-state.edu/htbin/rfc/rfc1909.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1910.html
http://www.inforamp.net/~kjvallil/t/snmp.html
http://www.iwl.com/Press/thefuture.html
http://ganges.cs.tcd.ie/4ba2/x700/index.html

Simple Network Management Protocol

10 Jan 97 (original); author for this version: Cory Vondrak, TRW, Redondo Beach, CA

Footnotes

1 The IETF is a large open community of network designers, operators, vendors, and
researchers whose purpose is to coordinate the operation, management and evolution of
the Internet, and to resolve short- and mid-range protocol and architectural issues. It is a
major source of proposed protocol standards which are submitted to the Internet
Engineering Steering Group for final approval. The IETF meets three times a year and
extensive minutes of the plenary proceedings are issued.

2 The IAB is a technical advisory group of the Internet Society. The IAB provides
oversight of the architecture for the protocols and procedures used by the Internet, the
process used to create Internet Standards and serves as an appeal board for complaints
of improper execution of the standards process.

3 Managed objects: a characteristic of a managed device that can be monitored,
modified or controlled.

4 This organization is responsible for approving U.S. standards in many areas, including
computers and communications. Standards approved by this organization are often
called ANSI standards (e.g., ANSI C is the version of the C language approved by
ANSI).

5 There is an MIB being developed for http [MIB 96], and the MIB for mail monitoring is
now a proposed standard.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored
by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/snmp_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/snmp_body.html (10 of 10)7/28/2008 11:31:09 AM

http://www.sei.cmu.edu/about/disclaimer.html

RFC 96

References and Information Sources

[RFC
96]

Postel T. User Datagram Protocol (RFC 768) [online]. Available
WWW
<URL: http://ds.internic.net/rfc/rfc768.txt> (1996).

http://www.sei.cmu.edu/str/indexes/references/RFC_96.html7/28/2008 11:31:09 AM

http://ds.internic.net/rfc/rfc768.txt

Simple Network Management Protocol - Notes

Notes

3 Managed objects: a characteristic of a managed device that can be monitored, modified or controlled.

http://www.sei.cmu.edu/str/descriptions/notes/snmp_3.html7/28/2008 11:31:09 AM

Lake 96

References and Information Sources

[Lake
96]

Lake, Craig. Simple Network Management Protocol (SNMP) [online]. Available
WWW
<URL: http://www.sei.cmu.edu/str/docs/SNMP.html> (1996).

http://www.sei.cmu.edu/str/indexes/references/Lake_96.html7/28/2008 11:31:10 AM

http://www.sei.cmu.edu/str/docs/SNMP.html

Moorhead 95

References and Information Sources

[Moorhead
95]

Moorhead, R.J. & Amirthalingam, K. "SNMP- An Overview of its Merits and
Demerits," 180-3. Proceedings of the Twenty-Seventh Southeastern Symposium on
System Theory. Starkvill, MS, March 12-14, 1995. Los Alamitos, CA: IEEE Computer
Society Press, 1995.

http://www.sei.cmu.edu/str/indexes/references/Moorhead_95_bold.html7/28/2008 11:31:10 AM

DES 93

References and Information Sources

[DES
93]

Federal Information Processing Standards Publication 46-2 DATA ENCRYPTION
STANDARD, 1993 [online]. Available WWW
<URL: http://csrc.ncsl.nist.gov/fips/fips46-2.txt> (1996).

http://www.sei.cmu.edu/str/indexes/references/DES_93.html7/28/2008 11:31:10 AM

http://csrc.ncsl.nist.gov/fips/fips46-2.txt

Simple Network Management Protocol - Notes

Notes

4 This organization is responsible for approving U.S. standards in many areas, including computers and
communications. Standards approved by this organization are often called ANSI standards (e.g., ANSI C
is the version of the C language approved by ANSI).

http://www.sei.cmu.edu/str/descriptions/notes/snmp_4.html7/28/2008 11:31:10 AM

Broadhead 95

References and Information Sources

[Broadhead
95]

Broadhead, Steve. "SNMP Too Simple for Security?" Secure Computing (April
1995): 24-29.

http://www.sei.cmu.edu/str/indexes/references/Broadhead_95_bold.html7/28/2008 11:31:10 AM

SNMP FAQ 98

References and Information Sources

[SNMP FAQ
98]

Simple Network Management Protocol FAQ [online]. Available
WWW
<URL: http://www.snmp.com/FAQs/snmp-faq-part1.txt> and
<URL: http://www.snmp.com/FAQs/snmp-faq-part2.txt> (1998).

http://www.sei.cmu.edu/str/indexes/references/SNMP_FAQ_98.html7/28/2008 11:31:11 AM

http://www.snmp.com/FAQs/snmp-faq-part1.txt
http://www.snmp.com/FAQs/snmp-faq-part2.txt

Wellens 96

References and Information Sources

[Wellens
96]

Wellens, Chris & Auerbach, Karl. "Towards Useful Management" [online]. The
Quarterly Newsletter of SNMP Technology, Comment, and Events(sm) 4, 3 (July 1996).
Available WWW
<URL: http://www.iwl.com/Press/thefuture.html> (1996).

http://www.sei.cmu.edu/str/indexes/references/Wellens_96.html7/28/2008 11:31:11 AM

http://www.iwl.com/Press/thefuture.html

Simple Network Management Protocol - Notes

Notes

5 There is an MIB being developed for http [MIB 96], and the MIB for mail monitoring is now a
proposed standard.

http://www.sei.cmu.edu/str/descriptions/notes/snmp_5.html7/28/2008 11:31:11 AM

X.700 96

References and Information Sources

[X.700
96]

X.700 and Other Network Management Services [online]. Available
WWW
<URL: http://ganges.cs.tcd.ie/4ba2/x700/index.html> (1996).

http://www.sei.cmu.edu/str/indexes/references/X.700_96.html7/28/2008 11:31:11 AM

http://ganges.cs.tcd.ie/4ba2/x700/index.html

Vallillee 96

References and Information Sources

[Vallillee
96]

Vallillee, Tyler. SNMP & CMIP: An Introduction To Network Management [online].
Available WWW
<URL: http://www.inforamp.net/~kjvallil/t/snmp.html> (1996).

http://www.sei.cmu.edu/str/indexes/references/Vallillee_96.html7/28/2008 11:31:12 AM

http://www.inforamp.net/~kjvallil/t/snmp.html

MIB 96

References and Information Sources

[MIB
96]

Development of an MIB for http [online]. Available
WWW
<URL: http://http-mib.onramp.net/bof/> (1996).

http://www.sei.cmu.edu/str/indexes/references/MIB_96.html7/28/2008 11:31:12 AM

http://http-mib.onramp.net/bof/

Reference-Title

References and Information Sources

[Harry 00] Harry, Mikel. "Six Sigma: The Breakthrough Management Strategy Revolutionizing the
World's Top Corporations." New York, N.Y. Random House Publishers, 2000.

http://www.sei.cmu.edu/str/indexes/references/Harry_00.html7/28/2008 11:31:12 AM

Reference-Title

References and Information Sources

[Arnold
99]

Arnold, Paul V. Pursuing the Holy Grail [online]. Available WWW <URL: http://www.
progressivedistributor.com/mro/archives/editorials/editJJ1999.html> (1999).

http://www.sei.cmu.edu/str/indexes/references/Arnold_99.html7/28/2008 11:31:12 AM

http://www.progressivedistributor.com/mro/archives/editorials/editJJ1999.html
http://www.progressivedistributor.com/mro/archives/editorials/editJJ1999.html

Reference-Title

References and Information Sources

[Harrold
99]

Harrold, Dave. Designing for Six Sigma Capability [Online]. Available WWW <URL:
http://www.controleng.com/archives/1999/ctl0101.99/01a103.htm> (1999).

http://www.sei.cmu.edu/str/indexes/references/Harrold_99.html7/28/2008 11:31:12 AM

http://www.controleng.com/archives/1999/ctl0101.99/01a103.htm

Reference-Title

References and Information Sources

[Pyzdek
01]

Pyzdek, Thomas. The Six Sigma Handbook. New York, N.Y.: McGraw-Hill Professional
Publishing, 2001.

http://www.sei.cmu.edu/str/indexes/references/Pyzdek_01.html7/28/2008 11:31:13 AM

Reference-Title

References and Information Sources

[ASQ
00]

ASQ Statistics Division. Improving Performance Through Statistical Thinking. Milwaukee,
WI: ASQ Quality Press, 2000.

http://www.sei.cmu.edu/str/indexes/references/ASQ_00.html7/28/2008 11:31:13 AM

Reference-Title

References and Information Sources

[ASA 01] American Statistical Association, Quality & Productivity Section. Enabling Broad
Application of Statistical Thinking [online]. Available WWW <URL: http://web.utk.edu/
~asaqp/thinking.html> (2001).

http://www.sei.cmu.edu/str/indexes/references/ASA_01.html7/28/2008 11:31:13 AM

http://web.utk.edu/~asaqp/thinking.html
http://web.utk.edu/~asaqp/thinking.html

Reference-Title

References and Information Sources

[Bylinsky
98]

Bylinsky, Gene. How to Bring Out Better Products Faster [online]. Available WWW
<URL: http://www.amsup.com/media/fortune.htm> (1998).

http://www.sei.cmu.edu/str/indexes/references/Bylinsky_98.html7/28/2008 11:31:13 AM

http://www.amsup.com/media/fortune.htm

Reference-Title

References and Information Sources

[Pyzdek 2-01] Pyzdek, Thomas. Six Sigma and Beyond: Why Six Sigma Is Not TQM [online]. Available
WWW <URL: http://www.qualitydigest.com/feb01/html/sixsigma.html> (2001).

http://www.sei.cmu.edu/str/indexes/references/Pyzdek_2-01.html7/28/2008 11:31:14 AM

http://www.qualitydigest.com/feb01/html/sixsigma.html

Reference-Title

References and Information Sources

[Marash 99] Marash, Stanley A. Six Sigma: Passing Fad or a Sign of Things to Come? [online].
Available WWW <URL: http://www.thesamgroup.com/sixsigmaarticle.htm> (1999).

http://www.sei.cmu.edu/str/indexes/references/Marash_99.html7/28/2008 11:31:14 AM

http://www.thesamgroup.com/sixsigmaarticle.htm

Simplex Architecture

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Simplex Architecture

Status

complete

Purpose and Origin

Real-time applications that play a mission-critical role are prevalent throughout
the DoD and industry. The complexity of these systems make them expensive to
design, maintain, and support. Their mission critical nature requires assurance of
operational availability. These systems are often safety-critical, requiring a high
degree of reliability. The long life cycles of these systems usually result in
multiple capability upgrades as well as platform migrations. As the use of COTS
products increases, upgrade cycles will become shorter.

Simplex architecture is a paradigm and an engineering framework that permits
the quick, easy, and reliable insertion of new capabilities and technologies into
mission critical real-time systems [Sha 96]. Simplex is the synthesis of selected
best practices in several technology areas that support the safe, online upgrade
of hardware and software, in spite of residual errors in the new components.
Through the use of Simplex, it becomes possible to shift resources from static
design and extensive testing to reliable incremental evolution.

Technical Detail

Software is pervasive within the critical systems that form the infrastructure of
modern society, both military and civilian. These systems are often large and
complex and require periodic and extensive upgrading. The important technical
problems include the following:

● Integration of new and revised components. The need for periodic and
extensive upgrading and technology refreshment of systems challenges
developers to integrate new or changed components into systems without
compromising the strict reliability and availability requirements of the
applications. There are significant strategic and tactical advantages
afforded by the ability to adapt quickly to changing situations. These
potential advantages challenge developers to find ways of modifying,
upgrading, or adding system components more quickly while reducing the
possibility of error.

● Vendor driven upgrade. To cut costs and gain leverage from technical

http://www.sei.cmu.edu/str/descriptions/simplex_body.html (1 of 7)7/28/2008 11:31:15 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/simplex_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Simplex Architecture

advances in the commercial sector, the DoD has encouraged more
frequent use of COTS components in its software. For similar reasons,
industry is often following suit. COTS components have a short life cycle
(roughly one year.) DoD platforms change at a much slower rate and
typically have longer life cycles (often 25-30 years or more). This make
the DoD platform susceptible to a problem that occurs when the vendor
releases a new version of the COTS component. The upgrade can either
be ignored or incorporated into the system. Ignoring it will eventually
result in a system that is burdened with unsupported and obsolete
components. Incorporating it forces the DoD platform to change on a
schedule determined by the vendor, rather than the system developer,
maintainer, or customer. New releases usually add features and fix
existing bugs, but in the process they also often introduce new bugs. So
upgrading is risky; a way to manage the risk is needed.

● Upgrade paradox. The upgrade paradox results from the use of
replication or functional redundancy and majority voting. A minority
upgrade will have no effect because it will be voted out of the system by
the majority. A majority upgrade with residual errors can cause the
system to fail.

Collectively, these technical problems present a formidable challenge to the
developers and maintainers of systems with long life cycles.

Simplex is a framework for system integration and evolution. It integrates a
number of technologies, including:

● Analytic Redundancy. These technologies are used for integrated
availability and reliability management. They employ sophisticated
monitoring and switching logic which includes a simple leadership
protocol. Analytic redundancy allows high-performance, but possibly less-
reliable, components to be used in systems demanding a high degree of
reliability. This is accomplished without sacrificing the performance and
reliability levels provided by existing highly reliable components.

● Replaceable Units. These technologies (dynamic binding) allow the
replacement of software modules at runtime without having to shut down
and restart the system.

● Publish/Subscribe. These are flexible real-time group communication
technologies that allow components to dynamically publish and subscribe
to needed information [Rajkumar 95].

● Rate Monotonic Scheduling. These technologies for real-time computing
(see Rate Monotonic Analysis) allow components to be replaced or
modified in real time, transparently to the applications, while still meeting
deadlines. These technologies are integrated into the real-time operating
system.

The above technologies are shown in the context of the overall structure of a
Simplex-based application in Figure 33.

http://www.sei.cmu.edu/str/descriptions/simplex_body.html (2 of 7)7/28/2008 11:31:15 AM

Simplex Architecture

Figure 33: Simplex Technologies and Architecture

Figure 34 is a highly simplified view of the data flow in a system using Simplex.
Notice that multiple versions of a component are employed-a Highly Reliable
Component (HRC) and a High Performance Component (HPC). The HRC might
be legacy software designed to control the device. It has known performance
characteristics and presumably, due to long use, is relatively bug free. If we
suppose that the HPC is a new version of the software with improved
performance characteristics, but possibly also containing bugs since it has not
yet been used extensively, the following scenario takes place.

Figure 34: Simplex: Simplified Data Flow

The device under control is sampled at a regular interval. The data is processed
by both HRC and HPC. Instead of controlling the device directly, a simple
leadership protocol is used. Under this protocol, both modules send their results
to the Monitoring and Switching Logic (MSL), which also uses inputs obtained
from the device under control to decide which output to pass back to the device.
As long as HPC is behaving properly, it is the leader and its output will be
transmitted to the device. Should MSL decide that HPC is not behaving
correctly, it makes the HRC the leader and uses its output instead. Thus the
device will perform no worse than it did before the upgrade to HPC occurred.
This solves the upgrade paradox even in the presence of multiple alternatives
because at any instant only the output of one of the alternatives is used. Not

http://www.sei.cmu.edu/str/descriptions/simplex_body.html (3 of 7)7/28/2008 11:31:15 AM

Simplex Architecture

shown, for reasons of complexity, is the module that would actually remove a
failed HPC from the system and allow it to be replaced with a corrected version
for another try.

Usage Considerations

Simplex is most suitable for systems that have high availability and reliability
requirements. It seems especially suitable for systems such as control systems
(real-time or process) whose behavior can be modeled and monitored.

Because Simplex is relatively immature, pilot studies will be needed to determine
its suitability for any intended application. This would involve developing a rapid
prototype, using Simplex, of a simplified instance of the intended application.

Maturity

The safe, online upgrade of both software and hardware, including COTS
components, using Simplex has been successfully demonstrated in the
laboratory. Simplex is being transitioned into practice via several pilot studies:

● Silicon Wafer Manufacturing. The objective was to demonstrate the use of
Simplex as the basis for the control architecture in manufacturing process-
control software. This was a joint effort between the Software Engineering
Institute and the Department of Electrical and Computer Engineering at
Carnegie Mellon, guided by engineers from SEMATECH.

● NSSN (new attack submarine program). This study involved a US Navy
program whose goal is the development, demonstration, and transition of
a COTS-based fault-tolerant submarine control system that can be
upgraded inexpensively and dependably.

● INSERT (INcremental Software Evolution for Real-Time Systems). This
project was funded by the Air Force/DARPA EDCS (evolutionary design
of complex software) program, whose goal is to evaluate the possible use
of Simplex in the context of onboard avionics systems. Work is
proceeding with Lockheed-Martin Tactical Aircraft Systems to investigate
the application of this technology to the automated maneuvering
capability of the F-16 fighter.

Costs and Limitations

Simplex is designed to support the evolution of mission-critical systems that
have high availability or reliability requirements. Its suitability for management
information systems (e.g., MIS) applications that do not have such requirements
has yet to be determined. Its usefulness in C4I systems is currently being
investigated.

Although Simplex has been designed to reduce the life-cycle cost of systems,
data on its impact on system life-cycle cost is not available at this time. Much of
Simplex is built upon COTS components such as a POSIX compliant real-time
operating system running on modern hardware. This tends to reduce costs
relative to custom designs.

http://www.sei.cmu.edu/str/descriptions/simplex_body.html (4 of 7)7/28/2008 11:31:15 AM

Simplex Architecture

When using Simplex, engineering costs are increased by the need to analyze
and create the analytically redundant modules. Additionally, there is some
overhead involved in the operation of the monitoring and switching logic. Finally,
the need to run multiple copies of an application (i.e., the HRC and HPC
simultaneously) requires additional resources-at the very least additional
memory and CPU cycles. These factors tend to have an upward effect on costs-
compensated for by the increased reliability and flexibility which Simplex
provides.

A perhaps more important consideration is the savings that Simplex provides by
reducing the required testing and downtime when installing an upgraded
component. The expectation is that the use of Simplex will provide a significant
savings in total life-cycle cost.

Complementary Technologies

Software and hardware reliability modeling and analysis allow users to estimate
the impact of Simplex on system reliability. System life-cycle cost estimation
techniques will allow users to estimate the cost impact.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of Technology Simplex Architecture

Application category Reapply Software Life Cycle (AP.1.9.3)
Reengineering (AP.1.9.5)
Software Architecture (AP.2.1)
Restart/Recovery (AP.2.10)

Quality measures category Availability/Robustness (QM.2.1.1)
Reliability (QM.2.1.2)
Safety (QM.2.1.3)
Real-time Responsiveness/Latency (QM.2.2.2)
Maintainability (QM.3.1)

Computing reviews category Fault-tolerance (D.4.5)
Real-time and embedded systems (D.4.7)
Network communication (D.4.4)

References and Information Sources

http://www.sei.cmu.edu/str/descriptions/simplex_body.html (5 of 7)7/28/2008 11:31:15 AM

Simplex Architecture

[Altman 97] Altman, Neal. The Simplex Architecture [online]. Available
WWW
<URL: http://www.sei.cmu.edu/simplex/simplex_architecture.
html> (May 6, 1997).

[Sha 96] Sha, L.; Rajkumar, R.; & Gagliardi, M. "Evolving Dependable
Real Time Systems," 335-346. Proceedings of the 1996 IEEE
Aerospace Applications Conference. Aspen, CO, February 3-10,
1996. New York, NY: IEEE Computer Society Press, 1996.

[Rajkumar
95]

Rajkumar, R.; Gagliardi, M.; & Sha, L. "The Real-Time
Publisher/Subscriber Inter-Process Communication Model for
Distributed Real-Time Systems: Design and Implementation," 66-
75. The First IEEE Real-Time Technology and Applications
Symposium. Chicago, IL, May 15-17, 1995. Los Alamitos, CA:
IEEE Computer Society Press, 1995.

Current Author/Maintainer

Charles B. Weinstock, SEI
Lui R. Sha, SEI

External Reviewers

John Lehoczky, Professor, Statistics Department, CMU

Modifications

29 Oct 97 changes include:

· Updated list of pilot studies.

· Provided additional detail on constituent technologies.

· Added application architecture diagram.

· Improved data flow diagram and enhanced the explanation.

· Added additional information on anticipated costs (where these are generally
understood.)

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

http://www.sei.cmu.edu/str/descriptions/simplex_body.html (6 of 7)7/28/2008 11:31:15 AM

http://www.sei.cmu.edu/simplex/index.html
http://www.sei.cmu.edu/simplex/index.html

Simplex Architecture

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/simplex_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/simplex_body.html (7 of 7)7/28/2008 11:31:15 AM

http://www.sei.cmu.edu/about/disclaimer.html

Related Topics

Related Topics

Restart/Recovery (AP.2.10)

● Simplex Architecture

http://www.sei.cmu.edu/str/taxonomies/ap.2.10.html7/28/2008 11:31:15 AM

Related Topics

Related Topics

Safety (QM.2.1.3)

● Simplex Architecture

http://www.sei.cmu.edu/str/taxonomies/qm.2.1.3.html7/28/2008 11:31:15 AM

Fagan 76

References and Information Sources

[Fagan
76]

Fagan, M. "Design and Code Inspections to Reduce Errors in Program Development." IBM
Systems Journal 15, 3 (1976): 182-211.

http://www.sei.cmu.edu/str/indexes/references/Fagan_76.html7/28/2008 11:31:15 AM

Software Inspections - Notes

Notes

1 Capability Maturity Model and CMM are service marks of Carnegie Mellon University.

http://www.sei.cmu.edu/str/descriptions/notes/inspections_1.html7/28/2008 11:31:15 AM

Ebenau 94

References and Information Sources

[Ebenau
94]

Ebenau, Robert G. & Strauss, Susan H. Software Inspection Process. New York, NY:
McGraw-Hill, 1994.

http://www.sei.cmu.edu/str/indexes/references/Ebenau_94_bold.html7/28/2008 11:31:16 AM

O'Neill 95

References and Information Sources

[O'Neill
01a]

O'Neill, Don. Peer Reviews. Encyclopedia of Software Engineering. New York, New
York: Wiley Publishing, Inc., to appear 2001.

http://www.sei.cmu.edu/str/indexes/references/ONeill_01a_bold.html7/28/2008 11:31:16 AM

O'Neill 88

References and Information Sources

[O'Neill
88]

O'Neill, Don & Ingram, Albert L. "Software Inspections Tutorial," 92-120. Software
Engineering Institute Technical Review 1988. Pittsburgh, PA: Carnegie Mellon University,
Software Engineering Institute, 1988.

http://www.sei.cmu.edu/str/indexes/references/ONeill_88.html7/28/2008 11:31:16 AM

O'Neill 92

References and Information Sources

[O'Neill
92]

O'Neill, Don. "Software Inspections: More Than a Hunt for Errors." Crosstalk, Journal Of
Defense Software Engineering 30 (January 1992): 8-10.

http://www.sei.cmu.edu/str/indexes/references/ONeill_92.html7/28/2008 11:31:16 AM

Linger 79

References and Information Sources

[Linger
79]

Linger, R.C.; Mills, H.D.; & Witt, B.I. Structured Programming: Theory and Practice.
Reading, MA: Addison-Wesley, 1979.

http://www.sei.cmu.edu/str/indexes/references/Linger_79.html7/28/2008 11:31:17 AM

Freedman 90

References and Information Sources

[Freedman
90]

Freedman, D.P. & Weinberg, G.M. Handbook of Walkthroughs, Inspections, and
Technical Reviews. New York, NY: Dorset House, 1990.

http://www.sei.cmu.edu/str/indexes/references/Freedman_90.html7/28/2008 11:31:17 AM

O'Neill 95

References and Information Sources

[O'Neill 01c] O'Neill, Don. Return on Investment Tool [online]. Available WWW <URL: http://
members.aol.com/ONeillDon/nsqe-roi.html> (2001).

http://www.sei.cmu.edu/str/indexes/references/ONeill_01c.html7/28/2008 11:31:17 AM

http://members.aol.com/ONeillDon/nsqe-roi.html
http://members.aol.com/ONeillDon/nsqe-roi.html

O'Neill 95

References and Information Sources

[Basili/Boehm 01] Basili, Vic, & Barry Boehm. "Software Defect Reduction Top 10 List." Computer
34,1, (January 2001): 135-137.

http://www.sei.cmu.edu/str/indexes/references/Basili_Boehm_01.html7/28/2008 11:31:17 AM

O'Neill 89

References and Information Sources

[O'Neill
89]

O'Neill, Don. Software Inspections Course and Lab. Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1989.

http://www.sei.cmu.edu/str/indexes/references/ONeill_89.html7/28/2008 11:31:18 AM

O'Neill 95

References and Information Sources

[O'Neill 95,96,00] O'Neill, Don. "National Software Quality Experiment: Results 1992-1999."
Software Technology Conference, Salt Lake City, 1995, 1996, and 2000.

http://www.sei.cmu.edu/str/indexes/references/ONeill_959600_bold.html7/28/2008 11:31:18 AM

O'Neill 95

References and Information Sources

[O'Neill 01b] O'Neill, Don. Software Inspection Measurements and Derived Metrics Tool [online].
Available WWW <URL: http://members.aol.com/ONeillDon/nsqe-assessment.html>
(2001).

http://www.sei.cmu.edu/str/indexes/references/ONeill_01b.html7/28/2008 11:31:18 AM

http://members.aol.com/ONeillDon/nsqe-assessment.html

Humphrey 89

References and Information Sources

[Humphrey
89]

Humphrey, Watts S. Managing the Software Process. Reading, MA: Addison-Wesley,
1989.

http://www.sei.cmu.edu/str/indexes/references/Humphrey_89_bold.html7/28/2008 11:31:18 AM

Sundaram 96

References and Information Sources

[Sundaram
96]

Sundaram, Aurobindo. An Introduction to Intrusion Detection [online]. Available
WWW
<URL: http://www.acm.org/crossroads/xrds2-4/xrds2-4.html> (1996).

http://www.sei.cmu.edu/str/indexes/references/Sundaram_96_bold.html7/28/2008 11:31:19 AM

http://www.acm.org/crossroads/xrds2-4/xrds2-4.html

Teng 90

References and Information Sources

[Teng
90]

Teng, Henry S.; Chen, Kaihu; & Lu, Stephen C. "Security Audit Trail Analysis Using
Inductively Generated Predictive Rules," 24-29. Sixth Conference on Artificial Intelligence
Applications. Santa Barbara, CA, May 5-9, 1990. Los Alamitos, CA: IEEE Computer
Society Press, 1990.

http://www.sei.cmu.edu/str/indexes/references/Teng_90.html7/28/2008 11:31:19 AM

Lunt 93

References and Information Sources

[Lunt
93]

Lunt, Teresa F. "A Survey of Intrusion Detection Techniques." Computers and Security 12, 4
(June 1993): 405-418.

http://www.sei.cmu.edu/str/indexes/references/Lunt_93.html7/28/2008 11:31:19 AM

Smaha 88

References and Information Sources

[Smaha
88]

Smaha, Stephen E. "Haystack: An Intrusion Detection System," 37-44. Proceedings of the
Fourth Aerospace Computer Security Applications Conference. Orlando, Florida,
December 12-16, 1988. Washington, DC: IEEE Computer Society Press, 1989.

http://www.sei.cmu.edu/str/indexes/references/Smaha_88.html7/28/2008 11:31:19 AM

Statistical-Based Intrusion Detection - Notes

Notes

1 See http://www.research.att.com for more details.

http://www.sei.cmu.edu/str/descriptions/notes/sbid_1.html7/28/2008 11:31:19 AM

http://www.research.att.com/

Florac 99

References and Information Sources

[Florac
99]

William A. Florac and Anita D. Carleton, Measuring the Software Process: Statistical
Process Control for Software Process Improvement, Addison &endash;Wesley, 1999.

http://www.sei.cmu.edu/str/indexes/references/Florac_99.html7/28/2008 11:31:20 AM

Wheeler 92

References and Information Sources

[Wheeler
92]

Donald J. Wheeler and David S. Chambers, Understanding Statistical Process Control,
Second Edition, SPC Press, Knoxville, TN, 1992.

http://www.sei.cmu.edu/str/indexes/references/Wheeler_92.html7/28/2008 11:31:20 AM

Paige 93

References and Information Sources

[Paige
93]

Paige, Emmett. Selection of Migration Systems ASD (C3I) Memorandum. Washington, DC:
Department of Defense, November 12, 1993.

http://www.sei.cmu.edu/str/indexes/references/Paige_93.html7/28/2008 11:31:20 AM

TAFIM 94

References and Information Sources

[TAFIM
94]

U.S. Department Of Defense. Technical Architecture Framework For Information
Management (TAFIM) Volumes 1-8, Version 2.0. Reston, VA: DISA Center for
Architecture, 1994. Also available [online] WWW
<URL: http://www-library.itsi.disa.mil/tafim/tafim.html> (1996).

http://www.sei.cmu.edu/str/indexes/references/TAFIM_94_bold.html7/28/2008 11:31:20 AM

http://www-library.itsi.disa.mil/tafim/tafim.html

TAFIM Reference Model

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

TAFIM Reference Model

Status

Advanced

Note

We recommend Reference Models, Architectures, Implementations- An Overview as
prerequisite reading for this technology.

Purpose and Origin

The Technical Architectural Framework for Information Management (TAFIM) reference model
was developed by the Defense Information Systems Agency (DISA) to guide the evolution of
Department of Defense (DoD) systems, including sustaining base, strategic, and tactical
systems, as well as interfaces to weapon systems. Application of the TAFIM reference model is
required on most DoD systems [Paige 93]. TAFIM is a set of services, standards, design
components, and configurations that are used in design, implementation, and enhancement of
information management system architectures. The intent is that the DoD infrastructure will
have a common architecture that will, over time, be a fully flexible and interoperable enterprise.
Details on the TAFIM model are available in a seven volume TAFIM document, but are
primarily in Volume 3 [TAFIM 94].

Technical Detail

The TAFIM reference model (Figure 27) describes services (functionality) needed within each
of the model's components. It contains a set of general principles on how components and
component services relate to each other. This model is designed to enhance transition from
legacy applications to a distributed environment. TAFIM addresses the following six software
components:

1. Application software. Application software consists of mission area applications and
support applications. Mission area applications may be custom-developed software,
commercial-off-the-shelf (COTS) products, or Non-developmental items (NDI). Support
applications are building blocks for mission area applications. They manage processing
for the communication environment and can be shared by multiple mission and support
applications. Common COTS support applications include multimedia, communications,
business processing, environment management, database utilities, and engineering
support (analysis, design, modeling, development, and simulation) capabilities.

2. Application platform. Application platform consists of hardware services and software

http://www.sei.cmu.edu/str/descriptions/tafim_body.html (1 of 6)7/28/2008 11:31:21 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/tafim_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

TAFIM Reference Model

services, including operating system, real-time monitoring program, and peripheral
drivers. Application software must access platform resources by a request across
Application Programming Interfaces (APIs) to ensure integrity and consistency. A
platform service may be realized by a single process shared by a group of applications,
or by a distributed system with portions of an application operating on separate
processors. Application platform services include software engineering, user interface,
data management, data interchange, graphic, network, and operating system
capabilities.

3. Application platform cross-area services. Application platform cross-area services are
services that have a direct effect on the operation of one or more of the functional areas.
Application platform cross-area services include culturally-related application
environments, security, system administration and distributed computing capabilities.

4. External environment. The external environment supports system and application
interoperability and user and data portability. The external environment interface
specifies a complete interface between the application platform and underlying external
environment. The external environment includes human-computer interaction,
information services, and communication capabilities.

5. TAFIM application program interface (API).The API is the interface between an
application and a service that resides on a platform. The API specifies how a service is
invoked- without specifying its implementation- so that the implementation may be
changed without causing a change in the applications that use that API. The API makes
the platform transparent to the application. A platform may be a single computer or a
network of hosts, clients, and servers where distributed applications are implemented. A
service invoked through an API can reside on the same platform as the requesting
application, on a different platform, or on a remote platform. APIs are defined for mission
and support applications and platform services. APIs are generally required for platform
services such as compilers, window management, data dictionaries, database
management systems, communication protocols, and system management utilities.

6. TAFIM external environment interface. The TAFIM external environment interface (which
could be considered and API) is between the application platform and the external
environment. This interface allows the exchange of information. It supports system and
application software interoperability. User and data portability are directly provided by
the external environment interface.

http://www.sei.cmu.edu/str/descriptions/tafim_body.html (2 of 6)7/28/2008 11:31:21 AM

TAFIM Reference Model

Figure 27: DoD TAFIM Technical Reference Model

Usage Considerations

The TAFIM reference model is applicable to most information systems, including sustaining
base, strategic, and tactical systems, as well as interfaces to weapon systems [TAFIM 94]. It is
mandatory for use on most DoD programs [Paige 93]. However, systems built using the
reference model have been criticized by Rear Adm. John Gauss, the Interoperability Chief at
DISA, when speaking on systems in the field in Bosnia: "We have built a bunch of state-of-the-
art, open-systems, TAFIM-compliant stove-pipes" [Temin 96]. TAFIM-compliant means that the
applicable standards and guidelines are met for the implemented component services. This
suggests that even when complying with the TAFIM reference model, problems of
interoperability are not necessarily resolved. The Joint Technical Architecture (JTA) provides a
set of standards and guidelines for C4I systems, specifically in the area of interoperability, that
supersedes TAFIM Volume 7 [JTA 96].

There are TAFIM-compliant software products available for use when implementing a TAFIM-
based architecture in areas such as support applications, communication services, business
process services, environment management, and engineering services. Additional products
exist or are being developed in areas such as user interface, data management, data

http://www.sei.cmu.edu/str/descriptions/tafim_body.html (3 of 6)7/28/2008 11:31:21 AM

TAFIM Reference Model

interchange, graphics, operating systems, internationalization, security system management,
and distributed computing.

Maturity

The latest version of TAFIM, Version 2.0, was published in 1994. DoD organizations and
contractors have been applying this set of guidelines to current and future information systems.
The Defense Information Infrastructure Common Operating Environment is an implementation
of TAFIM. This COE is currently being used by the Global Command and Control System
(GCCS) and the Global Combat Support System (GCSS). The Air Force Theater Battle
Management Core System (TBMCS) is also required to comply with the TAFIM and use the
COE. It may take several years, after multiple new TAFIM-compliant systems are in the field, to
determine the effectiveness of the reference model with respect to achieving a common,
flexible, and interoperable DoD infrastructure.

Costs and Limitations

The TAFIM reference model does not fully specify components and component connections
[Clements 96]. It does not dictate the specific components for implementation. (No reference
model prescribes implementation solutions.) TAFIM does provide the guidance necessary to
improve commonality among DoD information technical architectures.

One contractor has found that there is no cost difference in using the TAFIM reference model
(as compared to any other reference model) when designing and implementing a software
architecture. This is based on the fact that application of a reference model is part of the
standard design and implementation practice.

Dependencies

The TAFIM reference model is dependent on the evolution of component and service standards
that apply specifically to software; it may be affected by computer platforms and network
hardware as well.

Alternatives

Under conditions where the TAFIM reference model is not required, an alternative model would
be the Reference Model for Frameworks of Software Engineering Environments (known as the
ECMA model [ECMA 93]) that is promoted in Europe and used commercially and worldwide.
Commercially-available Hewlett-Packard products use this model [HP 96]. Another alternative
would be the Common Object Request Broker Architecture (CORBA) if the design called for
object-oriented infrastructure .

Complementary Technologies

Open systems (see COTS and Open Systems-An Overview) would be a complementary
technology to TAFIM because work done in open system supports the TAFIM goals of
achieving interoperable systems.

http://www.sei.cmu.edu/str/descriptions/tafim_body.html (4 of 6)7/28/2008 11:31:21 AM

TAFIM Reference Model

Index Categories

This technology is classified under the following categories. Select a category for a list of
related topics.

Name of technology TAFIM Reference Model

Application category Software Architecture Models (AP.2.1.1)
Distributed Computing (AP.2.1.2)

Quality measures category Maintainability (QM.3.1)
Interoperability (QM.4.1)

Computing reviews category Distributed Systems (C.2.4)
Software Engineering Design (D.2.10)

References and Information Sources

[Clements
96]

Clements, Paul C. & Northrop, Linda M. Software Architecture: An Executive
Overview (CMU/SEI-96-TR-003). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1996.

[ECMA 93] Reference Model for Frameworks of Software Engineering Environments, 3rd
Edition (NIST Special Publication 500-211/Technical Report ECMA TR/55).
Prepared jointly by NIST and the European Computer Manufacturers
Association (ECMA). Washington, DC: U.S. Government Printing Office, 1993.

[HP 96] Integrated Solutions Catalog for the SoftBench Product Family. Palo Alto, CA:
Hewlett-Packard, 1996.

[JTA 96] U.S. Department of Defense. Joint Technical Architecture (JTA) [online].
Available WWW
<URL: http://www-jta.itsi.disa.mil/>(1996).

[Paige 93] Paige, Emmett. Selection of Migration Systems ASD (C3I) Memorandum.
Washington, DC: Department of Defense, November 12, 1993.

[TAFIM 94] U.S. Department Of Defense. Technical Architecture Framework For
Information Management (TAFIM) Volumes 1-8, Version 2.0. Reston, VA:
DISA Center for Architecture, 1994. Also available [online] WWW
<URL: http://www-library.itsi.disa.mil/tafim/tafim.html> (1996).

[Temin 96] Temin, Thomas, ed. "Mishmash at Work (DoD Systems in Bosnia are not
Interoperable)." Government Computer News 15, 7 (April 1996): 28.

Current Author/Maintainer

Darleen Sadoski, GTE

http://www.sei.cmu.edu/str/descriptions/tafim_body.html (5 of 6)7/28/2008 11:31:21 AM

http://www-jta.itsi.disa.mil/
http://www-library.itsi.disa.mil/tafim/tafim.html

TAFIM Reference Model

External Reviewers

Peter Garrabrant, GTE
Tricia Oberndorf, SEI

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the
U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/tafim_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/tafim_body.html (6 of 6)7/28/2008 11:31:21 AM

http://www.sei.cmu.edu/about/disclaimer.html

Temin 96

References and Information Sources

[Temin
96]

Temin, Thomas, ed. "Mishmash at Work (DoD Systems in Bosnia are not Interoperable)."
Government Computer News 15, 7 (April 1996): 28.

http://www.sei.cmu.edu/str/indexes/references/Temin_96.html7/28/2008 11:31:21 AM

JTA 96

References and Information Sources

[JTA
96]

U.S. Department of Defense. Joint Technical Architecture (JTA) [online]. Available
WWW
<URL: http://www-jta.itsi.disa.mil/>(1996).

http://www.sei.cmu.edu/str/indexes/references/JTA_96_bold.html7/28/2008 11:31:22 AM

http://www-jta.itsi.disa.mil/

Clements 96

References and Information Sources

[Clements
96]

Clements, Paul C. & Northrop, Linda M. Software Architecture: An Executive Overview
(CMU/SEI-96-TR-003). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 1996.

http://www.sei.cmu.edu/str/indexes/references/Clements_96.html7/28/2008 11:31:22 AM

Humphrey 95

References and Information Sources

[Humphrey
95]

Watts S. Humphrey, A Discipline for Software Engineering, ISBN 0-201-54610-8,
Addison-Wesley Publishing Company, Reading, MA, 1995.

http://www.sei.cmu.edu/str/indexes/references/Humphrey_95.html7/28/2008 11:31:22 AM

Ferguson 97

References and Information Sources

[Ferguson 97]

Ferguson, P.; Humphrey, W. S.; Khajenoori, S.; Macke, S.; and Matvya, A. "Introducing the Personal
Software Process: Three Industry Case Studies." IEEE Computer 30 (May 1997): 24-31.

http://www.sei.cmu.edu/str/indexes/references/Ferguson_97.html7/28/2008 11:31:22 AM

Humphrey 00

References and Information Sources

[Humphrey
00]

Humphrey, Watts. The Team Software ProcessSM (TSPSM) (CMU/SEI-2000-TR-023).
Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon University, 2000.

http://www.sei.cmu.edu/str/indexes/references/Humphrey_00.html7/28/2008 11:31:22 AM

http://www.sei.cmu.edu/publications/documents/00.reports/00tr023.html

Eckerson 95

References and Information Sources

[Eckerson
95]

Eckerson, Wayne W. "Three Tier Client/Server Architecture: Achieving Scalability,
Performance, and Efficiency in Client Server Applications." Open Information Systems
10, 1 (January 1995): 3(20).

http://www.sei.cmu.edu/str/indexes/references/Eckerson_95_bold.html7/28/2008 11:31:23 AM

Three Tier Software Architectures

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Three Tier Software Architectures

Status

Complete

Note

We recommend Client/Server Software Architectures as prerequisite reading for
this technology description.

Purpose and Origin

The three tier software architecture (a.k.a. three layer architectures) emerged in
the 1990s to overcome the limitations of the two tier architecture (see Two Tier
Software Architectures). The third tier (middle tier server) is between the user
interface (client) and the data management (server) components. This middle
tier provides process management where business logic and rules are executed
and can accommodate hundreds of users (as compared to only 100 users with
the two tier architecture) by providing functions such as queuing, application
execution, and database staging. The three tier architecture is used when an
effective distributed client/server design is needed that provides (when
compared to the two tier) increased performance, flexibility, maintainability,
reusability, and scalability, while hiding the complexity of distributed processing
from the user. For detailed information on three tier architectures see Schussel
and Eckerson. Schussel provides a graphical history of the evolution of client/
server architectures [Schussel 96, Eckerson 95].

The three tier architecture is used when an effective distributed client/server
design is needed that provides (when compared to the two tier) increased
performance, flexibility, maintainability, reusability, and scalability, while hiding
the complexity of distributed processing from the user. These characteristics
have made three layer architectures a popular choice for Internet applications
and net-centric information systems.

Technical Detail

A three tier distributed client/server architecture (as shown in Figure 28) includes

http://www.sei.cmu.edu/str/descriptions/threetier_body.html (1 of 7)7/28/2008 11:31:24 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/threetier_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Three Tier Software Architectures

a user system interface top tier where user services (such as session, text input,
dialog, and display management) reside.

Figure 28: Three tier distributed client/server architecture depiction [Louis
95]

The third tier provides database management functionality and is dedicated to
data and file services that can be optimized without using any proprietary
database management system languages. The data management component
ensures that the data is consistent throughout the distributed environment
through the use of features such as data locking, consistency, and replication. It
should be noted that connectivity between tiers can be dynamically changed
depending upon the user's request for data and services.

The middle tier provides process management services (such as process
development, process enactment, process monitoring, and process resourcing)
that are shared by multiple applications.

The middle tier server (also referred to as the application server) improves
performance, flexibility, maintainability, reusability, and scalability by centralizing
process logic. Centralized process logic makes administration and change
management easier by localizing system functionality so that changes must only
be written once and placed on the middle tier server to be available throughout
the systems. With other architectural designs, a change to a function (service)
would need to be written into every application [Eckerson 95].

In addition, the middle process management tier controls transactions and
asynchronous queuing to ensure reliable completion of transactions [Schussel
96]. The middle tier manages distributed database integrity by the two phase
commit process (see Database Two Phase Commit). It provides access to
resources based on names instead of locations, and thereby improves scalability
and flexibility as system components are added or moved [Edelstein 95].

Sometimes, the middle tier is divided in two or more unit with different functions,
in these cases the architecture is often referred as multi layer. This is the case,
for example, of some Internet applications. These applications typically have
light clients written in HTML and application servers written in C++ or Java, the
gap between these two layers is too big to link them together. Instead, there is
an intermediate layer (web server) implemented in a scripting language. This

http://www.sei.cmu.edu/str/descriptions/threetier_body.html (2 of 7)7/28/2008 11:31:24 AM

Three Tier Software Architectures

layer receives requests from the Internet clients and generates html using the
services provided by the business layer. This additional layer provides further
isolation between the application layout and the application logic.

It should be noted that recently, mainframes have been combined as servers in
distributed architectures to provide massive storage and improve security (see
Distributed/Collaborative Enterprise Architectures).

Usage Considerations

Three tier architectures are used in commercial and military distributed client/
server environments in which shared resources, such as heterogeneous
databases and processing rules, are required [Edelstein 95]. The three tier
architecture will support hundreds of users, making it more scalable than the two
tier architecture (see Two Tier Software Architectures) [Schussel 96].

Three tier architectures facilitate software development because each tier can be
built and executed on a separate platform, thus making it easier to organize the
implementation. Also, three tier architectures readily allow different tiers to be
developed in different languages, such as a graphical user interface language or
light internet clients (HTML, applets) for the top tier; C, C++, SmallTalk, Basic,
Ada 83, or Ada 95 for the middle tier; and SQL for much of the database tier
[Edelstein 95].

Migrating a legacy system to a three tier architecture can be done in a manner
that is low-risk and cost-effective. This is done by maintaining the old database
and process management rules so that the old and new systems will run side by
side until each application and data element or object is moved to the new
design. This migration might require rebuilding legacy applications with new sets
of tools and purchasing additional server platforms and service tools, such as
transaction monitors (see Transaction Processing Monitor Technology) and
Message-Oriented Middleware. The benefit is that three tier architectures hide
the complexity of deploying and supporting underlying services and network
communications.

Maturity

Three tier architectures have been used successfully since the early 1990s on
thousands of systems of various types throughout the Department of Defense
(DoD) and in commercial industry, where distributed information computing in a
heterogeneous environment is required. An Air Force system that is evolving
from a legacy architecture to a three tier architecture is Theater Battle
Management Core System (TBMCS). Multi tier architectures have been widely
and successfully applied in some of the biggest Internet servers.

http://www.sei.cmu.edu/str/descriptions/threetier_body.html (3 of 7)7/28/2008 11:31:24 AM

Three Tier Software Architectures

Costs and Limitations

Building three tier architectures is complex work. Programming tools that support
the design and deployment of three tier architectures do not yet provide all of the
desired services needed to support a distributed computing environment.

A potential problem in designing three tier architectures is that separation of user
interface logic, process management logic, and data logic is not always obvious.
Some process management logic may appear on all three tiers. The placement
of a particular function on a tier should be based on criteria such as the following
[Edelstein 95]:

● ease of development and testing
● ease of administration
● scalability of servers
● performance (including both processing and network load)

Dependencies

Database management systems must conform to X/Open systems standards
and XA Transaction protocols to ensure distributed database integrity when
implementing a heterogeneous database two phase commit.

Alternatives

Two tier client server architectures (see Two Tier Software Architectures) are
appropriate alternatives to the three tier architectures under the following
circumstances:

● when the number of users is expect to be less than 100
● for non-real-time information processing in non-complex systems that

requires minimal operator intervention

Distributed/collaborative enterprise computing (see Distributed/Collaborative
Enterprise Architectures) is seen as a viable alternative, particularly if object-
oriented technology on an enterprise-wide scale is desired. An enterprise-wide
design is comprised of numerous smaller systems or subsystems.

Although three tier architecture has proven sound, the supporting products
implementing the architecture are not as mature as other competing
technologies. Transaction Monitors (TM) are a valid alternative when reliability
and scalability requirements can not be fulfilled with existing multi layer

http://www.sei.cmu.edu/str/descriptions/threetier_body.html (4 of 7)7/28/2008 11:31:24 AM

Three Tier Software Architectures

technology. Although TMs don't support modern development paradigms like
Object Orientation (OO) they are still quite useful when massive scalability and
robustness is needed.

Complementary Technologies

Complementary technologies to three tier architectures are Object-Oriented
Design (to implement decomposable applications), three tier client/server
architecture tools, and Database Two Phase Commit processing.

For communication between potentially distributed layers some middleware is
needed. This middleware can be a Remote Procedure Call (RPC) mechanism or
a Message-Oriented Middleware (MOM), depending on whether synchronous or
asynchronous communication is preferred.

The middle tier encapsulates business logic. Some of this logic is application
specific but a significant percentage is organization or even domain wide.
Domain Engineering and Domain Analysis can be used to capture this inter-
application commonality and create a set of assets that can be effectively reused
in different application.

It should be noted that recently, mainframes have been combined as servers in
distributed architectures to provide massive storage and improve security (see
Distributed/Collaborative Enterprise Architectures).

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Three Tier Software Architectures

Application category Client/Server (AP.2.1.2.1)

Quality measures category Maintainability (QM.3.1)
Scalability (QM.4.3)
Reusability (QM.4.4)
Reliability (QM.2.1.2)

Computing reviews category Distributed Systems (C.2.4)
Software Engineering Design (D.2.10)

References and Information Sources

http://www.sei.cmu.edu/str/descriptions/threetier_body.html (5 of 7)7/28/2008 11:31:24 AM

Three Tier Software Architectures

[Dickman 95] Dickman, A. "Two-Tier Versus Three-Tier Apps."
Informationweek 553 (November 13, 1995): 74-80.

[Eckerson 95] Eckerson, Wayne W. "Three Tier Client/Server Architecture:
Achieving Scalability, Performance, and Efficiency in Client
Server Applications." Open Information Systems 10, 1 (January
1995): 3(20).

[Edelstein 95] Edelstein, Herb. "Unraveling Client Server Architectures."
DBMS 7, 5 (May 1994): 34(7).

[Gallaugher 96] Gallaugher, J. & Ramanathan, S. "Choosing a Client/Server
Architecture. A Comparison of Two-Tier and Three-Tier
Systems." Information Systems Management Magazine 13, 2
(Spring 1996): 7-13.

[Louis 95] Louis [online]. Available WWW
<URL: http://www.softis.is> (1995).

[Newell 95] Newell, D.; Jones, O.; & Machura, M. "Interoperable Object
Models for Large Scale Distributed Systems," 30-31.
Proceedings. International Seminar on Client/Server
Computing. La Hulpe, Belgium, October 30-31, 1995. London,
England: IEE, 1995.

[Schussel 96] Schussel, George. Client/Server Past, Present, and Future
[online]. Formerly Available WWW
<URL: http://news.dci.com/geos/dbsejava.htm> (1995).

Current Author/Maintainer

Darleen Sadoski, GTE
Santiago Comella-Dorda, SEI

External Reviewers

Paul Clements, SEI
Frank Rogers, GTE

Modifications

16 Feb 2000: Inclusion of multi-layer architectures and net-centric systems.

10 Jan 1997 (original)

http://www.sei.cmu.edu/str/descriptions/threetier_body.html (6 of 7)7/28/2008 11:31:24 AM

http://www.softis.is/

Three Tier Software Architectures

| Home | What's New | Background & Overview | Technology Descriptions |
| Taxonomies | Glossary & Indexes | Feedback & Participation |

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use

URL: http://www.sei.cmu.edu/str/descriptions/threetier_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/threetier_body.html (7 of 7)7/28/2008 11:31:24 AM

http://www.sei.cmu.edu/str/new/
http://www.sei.cmu.edu/about/disclaimer.html

Louis 95

References and Information Sources

[Louis
95]

Louis [online]. Available WWW
<URL: http://www.softis.is>
(1995).

http://www.sei.cmu.edu/str/indexes/references/Louis_95.html7/28/2008 11:31:24 AM

http://www.softis.is/

Edelstein 95

References and Information Sources

[Edelstein
95]

Edelstein, Herb. "Unraveling Client Server Architectures." DBMS 7, 5 (May 1994): 34
(7).

http://www.sei.cmu.edu/str/indexes/references/Edelstein_95.html7/28/2008 11:31:24 AM

About The STR

Software
Technology
Roadmap

Background &
Overview

Background

Target
Audiences

Sponsors &
Contributors

Technology
Descriptions

Taxonomies

Glossary &
Indexes

About The STR

 Background

 Target Audiences

 Sponsors &
Contributors

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/about/index.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/about/7/28/2008 11:31:25 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/about/index.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/about/disclaimer.html

Taxonomies

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

About the
Taxonomies

View the
Application
Taxonomy

View the
Quality
Measures
Taxonomy

Glossary &
Indexes

Taxonomies

About the Taxonomies

View the Application Taxonomy

View the Quality Measures Taxonomy

Search the Taxonomies

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/taxonomies/index.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/taxonomies/7/28/2008 11:31:26 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/taxonomies/index.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/cgi-bin/tax.cgi?Go=Locate%20Articles
http://www.sei.cmu.edu/about/disclaimer.html

Glossary & Indexes

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

Glossary &
Indexes

Glossary

Keyword Index

Glossary & Indexes

Glossary

Keyword Index

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/indexes/index.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/indexes/7/28/2008 11:31:26 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/indexes/index.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/about/disclaimer.html

Dickman 95

References and Information Sources

[Dickman
95]

Dickman, A. "Two-Tier Versus Three-Tier Apps." Informationweek 553 (November 13,
1995): 74-80.

http://www.sei.cmu.edu/str/indexes/references/Dickman_95_bold.html7/28/2008 11:31:27 AM

Hudson 94

References and Information Sources

[Hudson
94]

Hudson, D. & Johnson, J. Client-Server Goes Business Critical. Dennis, MA: The
Standish Group International, 1994.

http://www.sei.cmu.edu/str/indexes/references/Hudson_94_bold.html7/28/2008 11:31:27 AM

Transaction Processing Monitor Technology

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Transaction Processing Monitor Technology

Status

Advanced

Note

We recommend Client/Server Software Architectures as prerequisite reading for this
technology description.

Purpose and Origin

Transaction processing (TP) monitor technology provides the distributed client/server
environment the capacity to efficiently and reliably develop, run, and manage transaction
applications.

TP monitor technology controls transaction applications and performs business logic/rules
computations and database updates. TP monitor technology emerged 25 years ago when
Atlantic Power and Light created an online support environment to share concurrently
applications services and information resources with the batch and time sharing operating
systems environment. TP monitor technology is used in data management, network access,
security systems, delivery order processing, airline reservations, and customer service. Use of
TP monitor technology is a cost-effective alternative to upgrading database management
systems or platform resources to provide this same functionality. Dickman and Hudson provide
more details on TP monitor technology [Dickman 95, Hudson 94].

Technical Detail

TP monitor technology is software that is also referred to as Middleware. It can provide
application services to thousands of clients in a distributed client/server environment. TP
monitor technology does this by multiplexing client transaction requests (by type) onto a
controlled number of processing routines that support particular services. These events are
depicted in Figure 37.

http://www.sei.cmu.edu/str/descriptions/tpmt_body.html (1 of 5)7/28/2008 11:31:28 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/tpmt_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Transaction Processing Monitor Technology

Figure 37: Transaction Processing Monitor Technology

Clients are bound, serviced, and released using stateless servers that minimize overhead. The
database sees only the controlled set of processing routines as clients [Dickman 95, Hudson
94].

TP monitor technology maps numerous client requests through application services routines to
improve system performance. The TP monitor technology (located as a server) can also take
the application transitions logic from the client. This reduces the number of upgrades required
by these client platforms. In addition, TP monitor technology includes numerous management
features, such as restarting failed processes, dynamic load balancing, and enforcing
consistency of distributed data. TP monitor technology is easily scalable by adding more
servers to meet growing numbers of users [Dickman 95, Hudson 94].

TP monitor technology is independent of the database architecture. It supports flexible and
robust business modeling and encourages modular, reusable procedures. TP monitor designs
allow Application Programming Interfaces (APIs) to support components such as
heterogeneous client libraries, databases and resource managers, and peer-level application
systems. TP monitor technology supports architecture flexibility because each component in a
distributed system is comprised of products that are designed to meet specific functionality,
such as graphical user interface builders and database engines [Dickman 95, Hudson 94].

Usage Considerations

Within distributed client/server systems, each client that is supported adds overhead to system
resources (such as memory). Responsiveness is improved and system resource overhead is
reduced by using TP monitor technology to multiplex many clients onto a much smaller set of
application service routines. TP monitor technology provides a highly active system that
includes services for delivery order processing, terminal and forms management, data
management, network access, authorization, and security.

http://www.sei.cmu.edu/str/descriptions/tpmt_body.html (2 of 5)7/28/2008 11:31:28 AM

Transaction Processing Monitor Technology

TP monitor technology supports a number of program-to-program communication models, such
as store-and-forward, asynchronous, Remote Procedure Call (RPC), and conversational. This
improves interactions among application components. TP monitor technology provides the
ability to construct complex business applications from modular, well-defined functional
components. Because this technology is well-known and well-defined it should reduce program
risk and associated costs [Dickman 95, Hudson 94].

Maturity

TP monitor technology has been used successfully in the field for 25 years. TP monitor
technology is used for delivery order processing, hotel and airline reservations, electronic fund
transfers, security trading, and manufacturing resource planning and control. It improves batch
and time-sharing application effectiveness by creating online support to share application
services and information resources [Dickman 95, Hudson 94].

Costs and Limitations

TP monitor technology makes database processing cost-effective for online applications.
Spending relatively little money on TP monitor technology can result in significant savings
compared to the resources required to improve database or platform resources to provide the
same functionality [Dickman 95].

A limitation to TP technology is that the implementation code is usually written in a lower-level
language (such as COBOL), and is not yet widely available in the popular visual toolsets
[Schussel 96].

Alternatives

A variation of TP monitor technology is session based technology. In the TP monitor
technology, transactions from the client are treated as messages. In the session based
technology, a single server provides both database and transaction services. In session based
technology, the server must be aware of clients in advance to maintain each client's processing
thread. The session server must constantly send messages to the client (even when work is not
being done in the client) to ensure that the client is still alive. Session based architectures are
not as scalable because of the adverse effect on network performance as the number of clients
grow.

Another alternative to TP monitor technology is remote data access (RDA). The RDA centers
the application in a client computer, communicating with back-end database servers. Clients
can be network-intensive, but scalability is limited.

A third alternative to TP monitor technology is the database server approach, which provides
functions (usually specific to the database) and is architecturally locked to the specific database
system [Dickman 95, Hudson 94].

Complementary Technologies

Complementary technologies include mainframe client/server software architectures (see
Mainframe Server Software Architectures) and Three Tier Software Architectures; in both cases

http://www.sei.cmu.edu/str/descriptions/tpmt_body.html (3 of 5)7/28/2008 11:31:28 AM

Transaction Processing Monitor Technology

the TP monitor technology could server as the middle tier.

Index Categories

This technology is classified under the following categories. Select a category for a list of
related topics.

Name of technology Transaction Processing Monitor Technology

Application category Client/Server (AP.2.1.2.1)
Client/Server Communication (AP.2.2.1)

Quality measures category Efficiency/ Resource Utilization (QM.2.2)
Reusability (QM.4.4)
Maintainability (QM.3.1)

Computing reviews category Distributed Systems (C.2.4)

References and Information Sources

[Dickman
95]

Dickman, A. "Two-Tier Versus Three-Tier Apps." Informationweek 553
(November 13, 1995): 74-80.

[Hudson 94] Hudson, D. & Johnson, J. Client-Server Goes Business Critical. Dennis, MA:
The Standish Group International, 1994.

[Schussel 96] Schussel, George. Client/Server Past, Present, and Future [online]. Available
WWW
<URL: http://www.dciexpo.com/geos/> (1995).

[TP 96] TP Lite vs. TP Heavy [online]. Available WWW
<URL: http://www.byte.com/art/9504/sec11/art4.htm> (1996).

Current Author/Maintainer

Darleen Sadoski, GTE

External Reviewers

David Altieri, GTE

Modifications

10 Jan 97 (original)

http://www.sei.cmu.edu/str/descriptions/tpmt_body.html (4 of 5)7/28/2008 11:31:28 AM

http://www.dciexpo.com/geos/
http://www.byte.com/art/9504/sec11/art4.htm

Transaction Processing Monitor Technology

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the
U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/tpmt_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/tpmt_body.html (5 of 5)7/28/2008 11:31:28 AM

http://www.sei.cmu.edu/about/disclaimer.html

Schussel 96

References and Information Sources

[Schussel
96]

Schussel, George. Client/Server Past, Present, and Future [online]. Originally available
WWW
<URL: http://www.dciexpo.com/geos/> (1995).

http://www.sei.cmu.edu/str/indexes/references/Schussel_96.html7/28/2008 11:31:28 AM

Abrams 95

References and Information Sources

[Abrams
95]

Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J. Information Security An
Integrated Collection of Essays. Los Alamitos, CA: IEEE Computer Society Press, 1995.

http://www.sei.cmu.edu/str/indexes/references/Abrams_95_bold.html7/28/2008 11:31:28 AM

Trusted Operating Systems

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Trusted Operating Systems

Status

Advanced

Note

We recommend Computer System Security--An Overview as prerequisite
reading for this technology description.

Purpose and Origin

Trusted operating systems provide the basic security mechanisms and services
that allow a computer system to protect, distinguish, and separate classified
data. Trusted operating systems have been developed since the early 1980s
and began to receive National Security Agency (NSA) evaluation in 1984.

Technical Detail

Trusted operating systems lower the security risk of implementing a system that
processes classified data. Trusted operating systems implement security policies
and accountability mechanisms in an operating system package. A security
policy is the rules and practices that determine how sensitive information is
managed, protected, and distributed [Abrams 95]. Accountability mechanisms
are the means of identifying and tracing who has had access to what data on the
system so they can be held accountable for their actions.

Trusted operating systems are evaluated by the NSA National Computer
Security Center (NCSC) against a series of six requirements-level classes listed
in the table below. C1 systems have basic capabilities. A1 systems provide the
most capability. The higher the rating level is, the wider the range of classified
data is that may be processed.

Table 10 below shows the NCSC Evaluation Criteria Classes.

Table 10: NCSC Evaluation Criteria Classes

http://www.sei.cmu.edu/str/descriptions/trusted_body.html (1 of 4)7/28/2008 11:31:32 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/trusted_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Trusted Operating Systems

Class Title
Number of Approved
Operating Systems in this Class
[TPEP 96]

A1 Verified Design 0

B3 Security Domains 1

B2 Structured Protection 1

B1 Labeled Security Protection 7

C2 Controlled Access Protection 5

C1 Discretionary Security Protection No Longer Evaluated

A low level (C1 and C2) system provides limited discretionary access controls
and identification and authentication mechanisms. Discretionary access controls
identify who can have access to system data based on the need to know.
Mandatory access controls identify who or what process can have access to
data based on the requester having formal clearance for the security level of the
data. A low-level system is used when the system only needs to be protected
against human error and it is unlikely that a malicious user can gain access to
the system.

A higher level (B2, B3, and A1) system provides complete mandatory and
discretionary access control, thorough security identification of data devices,
rigid control of transfer of data and access to devices, and complete auditing of
access to the system and data. These higher level systems are used when the
system must be protected against a malicious user's abuse of authority, direct
probing, and human error [Abrams 95].

The portion of the trusted operating system that grants requesters access to
data and records the action is frequently called the reference monitor because it
refers to an authorization database to determine if access should be granted.
Higher level trusted operating systems are used in MLS hosts and
compartmented mode workstations (see Computer System Security- an
Overview for overview information).

Usage Considerations

Trusted operating systems must be used to implement multi-level security
systems and to build security guards that allow systems of different security
levels to be connected to exchange data. Use of a trusted operating system may

http://www.sei.cmu.edu/str/descriptions/trusted_body.html (2 of 4)7/28/2008 11:31:32 AM

Trusted Operating Systems

be the only way that a system can be networked with other high security
systems. Trusted operating systems may be required if a C4I system processes
intelligence data and provides data to war fighters. Department of Defense
(DoD) security regulations define what evaluation criteria must be satisfied for a
multi-level system based on the lowest and highest classification of the data in a
system and the clearance level of the users of the system. Using an NCSC-
evaluated system reduces accreditation cost and risk. The security officer
identified as the Designated Approving Authority (DAA) for secure computer
systems has the responsibility and authority to review and approve the systems
to process classified information. The DAA will require analysis and tests of the
system to assure that it will operate securely. The DAA can accept the NCSC
evaluation of a system rather than generating the data. For a B3 or A1 system,
that can represent a savings of 1 to 2 years in schedule and the operating
system will provide a proven set of functions.

Maturity

This technology has been implemented by several vendors for commercial-off-
the-shelf (COTS) use in secure systems. As of September 1996, the NCSC
Evaluated Product List indicated that fourteen operating systems have been
evaluated as level C2, B1,B2, and B3 systems in the last three years [TPEP 96].
The number of operating systems evaluated by class (excluding evaluations of
updated versions of operating systems) is included in the table. Use of one of
the approved trusted operating systems can result in substantial cost and
schedule reductions for a system development effort and provide assurance that
the system can be operated securely.

Costs and Limitations

The heavy access control and accounting associated with high security systems
can affect system performance; as such, higher performance processors, I/O,
and interfaces may be required. Trusted operating systems have unique
interfaces and operating controls that require special security knowledge to use
and operate. Frequently COTS products that operate satisfactorily with a
standard operating system must be replaced or augmented to operate with a
trusted operating system.

Dependencies

Trusted operating systems at B2 and above enable the development of system
interoperability for systems at different security levels and allow applications to
perform data fusion. They are dependent on a trusted computing base that
provides secure data paths and protected memory.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

http://www.sei.cmu.edu/str/descriptions/trusted_body.html (3 of 4)7/28/2008 11:31:32 AM

Trusted Operating Systems

Name of technology Trusted Operating Systems

Application category Trusted Operating Systems (AP.2.4.1)

Quality measures category Security (QM.2.1.5)

Computing reviews category Operating System Security and Protection (D.4.6)
Computer-Communications Network Security
Protection (C.2.0)

References and Information Sources

[Abrams
95]

Abrams, Marshall D.; Jajodia, Sushil; & Podell, Harold J.
Information Security An Integrated Collection of Essays. Los
Alamitos, CA: IEEE Computer Society Press, 1995.

[Russel 91] Russel, Deborah & Gangemi, G.T. Sr. Computer Security Basics.
Sebastopol, CA: O'Reilly & Associates, Inc., 1991.

[TPEP 96] Trusted Product Evaluation Program Evaluated Product List
[online]. Available WWW
<URL: http://www.radium.ncsc.mil/tpep/index.html> (1996).

[White 96] White, Gregory B.; Fisch, Eric A.; & Pooch, Udo W. Computer
System and Network Security. Boca Raton, FL: CRC Press, 1996.

Current Author/Maintainer

Tom Mills, Lockheed Martin

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/trusted_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/trusted_body.html (4 of 4)7/28/2008 11:31:32 AM

http://www.radium.ncsc.mil/tpep/index.html
http://www.sei.cmu.edu/about/disclaimer.html

Related Topics

Related Topics

Trusted Operating Systems (AP.2.4.1)

● Trusted Operating Systems

http://www.sei.cmu.edu/str/taxonomies/ap.2.4.1.html7/28/2008 11:31:32 AM

Two Tier Software Architectures

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Two Tier Software Architectures

Status

Complete

Note

We recommend Client/Server Software Architectures, as prerequisite reading for
this technology description.

Purpose and Origin

Two tier software architectures were developed in the 1980s from the file server
software architecture design. The two tier architecture is intended to improve
usability by supporting a forms-based, user-friendly interface. The two tier
architecture improves scalability by accommodating up to 100 users (file server
architectures only accommodate a dozen users), and improves flexibility by
allowing data to be shared, usually within a homogeneous environment
[Schussel 96]. The two tier architecture requires minimal operator intervention,
and is frequently used in non-complex, non-time critical information processing
systems. Detailed readings on two tier architectures can be found in Schussel
and Edelstein [Schussel 96, Edelstein 94].

Technical Detail

Two tier architectures consist of three components distributed in two layers:
client (requester of services) and server (provider of services). The three
components are

1. User System Interface (such as session, text input, dialog, and display
management services)

2. Processing Management (such as process development, process
enactment, process monitoring, and process resource services)

3. Database Management (such as data and file services)

The two tier design allocates the user system interface exclusively to the client. It
places database management on the server and splits the processing
management between client and server, creating two layers. Figure 38 depicts
the two tier software architecture.

http://www.sei.cmu.edu/str/descriptions/twotier_body.html (1 of 5)7/28/2008 11:31:32 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/twotier_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Two Tier Software Architectures

Figure 38: Two Tier Client Server Architecture Design [Louis 95]

In general, the user system interface client invokes services from the database
management server. In many two tier designs, most of the application portion of
processing is in the client environment. The database management server
usually provides the portion of the processing related to accessing data (often
implemented in store procedures). Clients commonly communicate with the
server through SQL statements or a call-level interface. It should be noted that
connectivity between tiers can be dynamically changed depending upon the
user's request for data and services.

As compared to the file server software architecture (that also supports
distributed systems), the two tier architecture improves flexibility and scalability
by allocating the two tiers over the computer network. The two tier improves
usability (compared to the file sever software architecture) because it makes it
easier to provide a customized user system interface.

It is possible for a server to function as a client to a different server- in a
hierarchical client/server architecture. This is known as a chained two tier
architecture design.

Usage Considerations

Two tier software architectures are used extensively in non-time critical
information processing where management and operations of the system are not
complex. This design is used frequently in decision support systems where the
transaction load is light. Two tier software architectures require minimal operator
intervention. The two tier architecture works well in relatively homogeneous
environments with processing rules (business rules) that do not change very
often and when workgroup size is expected to be fewer than 100 users, such as
in small businesses.

Maturity

Two tier client/server architectures have been built and fielded since the middle
to late 1980s. The design is well known and used throughout industry. Two tier
architecture development was enhanced by fourth generation languages.

Costs and Limitations

http://www.sei.cmu.edu/str/descriptions/twotier_body.html (2 of 5)7/28/2008 11:31:32 AM

Two Tier Software Architectures

Scalability. The two tier design will scale-up to service 100 users on a network.
It appears that beyond this number of users, the performance capacity is
exceeded. This is because the client and server exchange "keep alive"
messages continuously, even when no work is being done, thereby saturating
the network [Schussel 96].

Implementing business logic in stored procedures can limit scalability because
as more application logic is moved to the database management server, the
need for processing power grows. Each client uses the server to execute some
part of its application code, and this will ultimately reduce the number of users
that can be accommodated.

Interoperability. The two tier architecture limits interoperability by using stored
procedures to implement complex processing logic (such as managing
distributed database integrity) because stored procedures are normally
implemented using a commercial database management system's proprietary
language. This means that to change or interoperate with more than one type of
database management system, applications may need to be rewritten.
Moreover, database management system's proprietary languages are generally
not as capable as standard programming languages in that they do not provide a
robust programming environment with testing and debugging, version control,
and library management capabilities.

System administration and configuration. Two tier architectures can be
difficult to administer and maintain because when applications reside on the
client, every upgrade must be delivered, installed, and tested on each client. The
typical lack of uniformity in the client configurations and lack of control over
subsequent configuration changes increase administrative workload.

Batch jobs. The two tiered architecture is not effective running batch programs.
The client is typically tied up until the batch job finishes, even if the job executes
on the server; thus, the batch job and client users are negatively affected
[Edelstein 94].

Dependencies

Developing a two tier client/server architecture following an object-oriented
methodology would be dependent on the CORBA standards for design
implementation. See Common Object Request Broker Architecture.

Alternatives

Possible alternatives for two tier client server architectures are

● the three-tier architecture (see Three Tier Software Architectures) if there
is a requirement to accommodate greater than 100 users

● distributed/collaborative architectures (see Distributed/Collaborative
Enterprise Architectures) if there is a requirement to design on an
enterprise-wide scale. An enterprise-wide design is comprised of

http://www.sei.cmu.edu/str/descriptions/twotier_body.html (3 of 5)7/28/2008 11:31:32 AM

Two Tier Software Architectures

numerous smaller systems or subsystems.

When preparing a two tier architecture for possible migration to an alternative
three tier architecture, the following five steps will make the transition less costly
and of lower risk [Dickman 95]:

1. Eliminate application diversity by ensuring a common, cross-hardware
library and development tools.

2. Develop smaller, more comparable service elements, and allow access
through clearly-defined interfaces.

3. Use an Interface Definition Language (IDL) to model service interfaces
and build applications using header files generated when compiled.

4. Place service elements into separate directories or files in the source
code.

5. Increase flexibility in distributed functionality by inserting service elements
into Dynamic Linked Libraries (DLLs) so that they do not need to be
complied into programs.

Complementary Technologies

Complementary technologies for two tier architectures are CASE (computer-
aided software engineering) tools because they facilitate two tier architecture
development, and open systems (see COTS and Open Systems-An Overview)
because they facilitate developing architectures that improve scalability and
flexibility.

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Two Tier Software Architectures

Application category Client/Server (AP.2.1.2.1)

Quality measures category Usability (QM.2.3)
Maintainability (QM.3.1)
Scalability (QM.4.3)

Computing reviews category Distributed Systems (C.2.4)
Software Engineering Design (D.2.10)

References and Information Sources

http://www.sei.cmu.edu/str/descriptions/twotier_body.html (4 of 5)7/28/2008 11:31:32 AM

Two Tier Software Architectures

[Dickman 95] Dickman, A. "Two-Tier Versus Three-Tier Apps."
Informationweek 553 (November 13, 1995): 74-80.

[Edelstein 94] Edelstein, Herb. "Unraveling Client/Server Architecture."
DBMS 7, 5 (May 1994): 34(7).

[Gallaugher
96]

Gallaugher, J. & Ramanathan, S. "Choosing a Client/Server
Architecture. A Comparison of Two-Tier and Three-Tier
Systems." Information Systems Management Magazine 13, 2
(Spring 1996): 7-13.

[Louis 95] Louis [online]. Available WWW
<URL: http://www.softis.is> (1995).

[Newell 95] Newell, D.; Jones, O.; & Machura, M. "Interoperable Object
Models for Large Scale Distributed Systems," 30-31.
Proceedings. International Seminar on Client/Server
Computing. La Hulpe, Belgium, October 30-31, 1995. London,
England: IEE, 1995.

[Schussel 96] Schussel, George. Client/Server Past, Present, and Future
[online]. Available WWW
<URL: http://www.dciexpo.com/geos/> (1995).

Current Author/Maintainer

Darleen Sadoski, GTE

External Reviewers

Paul Clements, SEI
Frank Rogers, GTE

Modifications

10 Jan 97 (original)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/twotier_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/twotier_body.html (5 of 5)7/28/2008 11:31:32 AM

http://www.softis.is/
http://www.dciexpo.com/geos/
http://www.sei.cmu.edu/about/disclaimer.html

Dickman 95

References and Information Sources

[Dickman
95]

Dickman, A. "Two-Tier Versus Three-Tier Apps." Informationweek 553 (November 13,
1995): 74-80.

http://www.sei.cmu.edu/str/indexes/references/Dickman_95.html7/28/2008 11:31:33 AM

Denning 90

References and Information Sources

[Denning
90]

Denning, Peter J. Computers Under Attack Intruders, Worms and Viruses. New York,
NY: ACM Press, 1990.

http://www.sei.cmu.edu/str/indexes/references/Denning_90.html7/28/2008 11:31:33 AM

Slade 96b

References and Information Sources

[Slade
96b]

Slade, Robert. Reviewing Anti-virus Products [online]. Available
WWW
<URL: http://www.bocklabs.wisc.edu/~janda/sladerev.html> (1996).

http://www.sei.cmu.edu/str/indexes/references/Slade_96b_bold.html7/28/2008 11:31:33 AM

http://www.bocklabs.wisc.edu/~janda/sladerev.html

Slade 96a

References and Information Sources

[Slade
96a]

Slade, Robert. Quick Reference Antiviral Review Chart [online]. Available
WWW
<URL: http://csrc.ncsl.nist.gov/virus/quickref.rvw> (1996).

http://www.sei.cmu.edu/str/indexes/references/Slade_96a.html7/28/2008 11:31:33 AM

http://csrc.ncsl.nist.gov/virus/quickref.rvw

Related Topics

Related Topics

Denial of Service (Accessibility) (QM.2.1.4.1.3)

● Virus Detection

http://www.sei.cmu.edu/str/taxonomies/qm.2.1.4.1.3.html7/28/2008 11:31:34 AM

Peercy 81

References and Information Sources

[Peercy
81]

Peercy, David E. "A Software Maintainability Evaluation Methodology." Transactions on
Software Engineering 7, 7 (July 1981): 343-351.

http://www.sei.cmu.edu/str/indexes/references/Peercy_81.html7/28/2008 11:31:34 AM

Bennett 93

References and Information Sources

[Bennett
93]

Bennett, Brad & Satterthwaite, Paul. "A Maintainability Measure of Embedded Software,"
560-565. Proceedings of the IEEE 1993 National Aerospace and Electronics Conference.
Dayton, OH, May 24-28, 1993. New York, NY: IEEE, 1993.

http://www.sei.cmu.edu/str/indexes/references/Bennett_93.html7/28/2008 11:31:34 AM

Oman 92a

References and Information Sources

[Oman
92a]

Oman, P. & Hagemeister, J. Construction and Validation of Polynomials for Predicting
Software Maintainability (92-01TR). Moscow, ID: Software Engineering Test Lab,
University of Idaho, 1992.

http://www.sei.cmu.edu/str/indexes/references/Oman_92a.html7/28/2008 11:31:34 AM

Oman 94

References and Information Sources

[Oman
94]

Oman, P. & Hagemeister, J. "Constructing and Testing of Polynomials Predicting Software
Maintainability." Journal of Systems and Software 24, 3 (March 1994): 251-266.

http://www.sei.cmu.edu/str/indexes/references/Oman_94_bold.html7/28/2008 11:31:35 AM

Oman 91

References and Information Sources

[Oman
91]

Oman, P. HP-MAS: A Tool for Software Maintainability, Software Engineering (#91-08-
TR). Moscow, ID: Test Laboratory, University of Idaho, 1991.

http://www.sei.cmu.edu/str/indexes/references/Oman_91_2.html7/28/2008 11:31:35 AM

Pearse 95

References and Information Sources

[Pearse
95]

Pearse, Troy & Oman, Paul. "Maintainability Measurements on Industrial Source Code
Maintenance Activities," 295-303. Proceedings. of the International Conference on
Software Maintenance. Opio, France, October 17-20, 1995. Los Alamitos, CA: IEEE
Computer Society Press, 1995.

http://www.sei.cmu.edu/str/indexes/references/Pearse_95.html7/28/2008 11:31:35 AM

Maintainability Index Technique for Measuring Program Maintainability

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Defining
Software
Technology

Technology
Categories

Template for
Technology
Descriptions

Taxonomies

Glossary &
Indexes

Maintainability Index Technique for Measuring Program
Maintainability

Status

Complete

Purpose and Origin

Quantitative measurement of an operational system's maintainability is desirable
both as an instantaneous measure and as a predictor of maintainability over
time. Efforts to measure and track maintainability are intended to help reduce or
reverse a system's tendency toward "code entropy" or degraded integrity, and to
indicate when it becomes cheaper and/or less risky to rewrite the code than to
change it. Software Maintainability Metrics Models in Practice is the latest report
from an ongoing, multi-year joint effort (involving the Software Engineering Test
Laboratory of the University of Idaho, the Idaho National Engineering Laboratory,
Hewlett-Packard, and other companies) to quantify maintainability via a
Maintainability Index (MI) [Welker 95]. Measurement and use of the MI is a
process technology, facilitated by simple tools, that in implementation becomes
part of the overall development or maintenance process. These efforts also
indicate that MI measurement applied during software development can help
reduce lifecycle costs. The developer can track and control the MI of code as it is
developed, and then supply the measurement as part of code delivery to aid in
the transition to maintenance.

Other studies to define code maintainability in various environments have been
done [Peercy 81, Bennett 93], but the set of reports leading to the MI
measurement technique offered by Welker [Welker 95] describes a method that
appears to be very applicable to today's Department of Defense (DoD) systems.

Technical Detail

The literature of at least the last ten years shows that there have been several
efforts to characterize and quantify software maintainability; Maintenance of
Operational Systems--An Overview provides a broad overview of software
maintenance issues. In this specific technology, a program's maintainability is
calculated using a combination of widely-used and commonly-available
measures to form a Maintainability Index (MI). The basic MI of a set of programs
is a polynomial of the following form (all are based on average-per-code-module

http://www.sei.cmu.edu/str/descriptions/mitmpm_body.html (1 of 8)7/28/2008 11:31:36 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/descriptions/mitmpm_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Maintainability Index Technique for Measuring Program Maintainability

measurement):

171 - 5.2 * ln(aveV) - 0.23 * aveV(g') - 16.2 * ln (aveLOC) + 50 * sin (sqrt(2.4 *
perCM))

The coefficients are derived from actual usage (see Usage Considerations). The
terms are defined as follows:

aveV = average Halstead Volume V per module (see Halstead Complexity
Measures)

aveV(g') = average extended cyclomatic complexity per module (see Cyclomatic
Complexity)

aveLOC = the average count of lines of code (LOC) per module; and, optionally

perCM = average percent of lines of comments per module

Oman develops the MI equation forms and their rationale [Oman 92a]; the Oman
study indicates that the above metrics are good and sufficient predictors of
maintainability. Oman builds further on this work using a modification of the MI
and describing how it was calibrated for a specific large suite of industrial-use
operational code [Oman 94]. Oman describes a prototype tool that was
developed specifically to support capture and use of maintainability measures for
Pascal and C [Oman 91]. The aggregate strength of this work and the underlying
simplicity of the concept make the MI technique potentially very useful for
operational Department of Defense (DoD) systems.

Usage Considerations

Calibration of the equations. The coefficients shown in the equation are the
result of calibration using data from numerous software systems being
maintained by Hewlett-Packard. Detailed descriptions of how the MI equation
was calibrated and used appear in Coleman, Pearse, and Welker [Coleman 94,
Coleman, 95, Pearse 95, Welker 95]. The authors claim that follow-on efforts
show that this form of the MI equation generally fits other industrial-sized
software systems [Oman 94 and Welker 95], and the breadth of the work tends
to support this claim. It is advisable to test the coefficients for proper fit with each
major system to which the MI is applied.

Effects from comments in code. The user must analyze comment content and
quality in the specific system to decide whether the comment term perCM is
useful.

Ways of using MI

http://www.sei.cmu.edu/str/descriptions/mitmpm_body.html (2 of 8)7/28/2008 11:31:36 AM

Maintainability Index Technique for Measuring Program Maintainability

1. The system can be checked periodically for maintainability, which is also
a way of calibrating the equations.

2. It can be integrated into a development effort to screen code quality as it
is being built and modified; this could yield potentially significant life cycle
cost savings.

3. It can be used to drive maintenance activities by evaluating modules
either selectively or globally to find high-risk code.

4. MI can be used to compare or evaluate systems: Comparing the MIs of a
known-quality system and a third-party system can provide key
information in a make-or-buy decision.

Example of usage. Welker relates how a module containing a routine with some
"very ugly" code was assessed as unmaintainable, when expressed in terms of
the MI (note that just quantifying the problem is a step forward) [Welker 95]. The
module was first redesigned, and then functionally enhanced. The measured
results are shown in Table 7:

Table 7: Measured Results

Measure Initial Code
Restructured

Code
After

Enhancement

Code Unit Routine Module Routine Module Routine Module

MI (larger MI
= more
maintainable)

6.47 33.55 39.93 70.13 37.62 69.60

Halstead
Effort1

2,216,499 2,233,072 182,216 480,261 201,429 499,474

Extended
Cyclomatic
Complexity2

45 49 18 64 21 67

Lines of Code 622 663 196 732 212 748

1 Halstead Effort, rather than Halstead Volume, was used in this case study. See
Halstead Complexity Measures for more information on both these measures.
Generally, the lower a program's measure of effort, the simpler a change to the
program will be (because Halstead measures are weighted toward measuring
computational complexity, not all programs will behave this way).

2 Note that a low Cyclomatic Complexity is generally indicative of a lower risk,
hence more maintainable, program. In this case, restructuring increased the
module complexity slightly (from 49 to 64), but reduced the "ugly" routine's

http://www.sei.cmu.edu/str/descriptions/mitmpm_body.html (3 of 8)7/28/2008 11:31:36 AM

Maintainability Index Technique for Measuring Program Maintainability

complexity significantly. In both, the subsequent enhancement drove the
complexity slightly higher.

If the enhancement had been made without first doing the restructuring, these
figures indicate the change would have been much more risky.

Coleman, Pearse, and Welker provide detailed descriptions of how MI was
calibrated and used at Hewlett-Packard [Coleman 94, Coleman 95, Pearse 95,
Welker 95].

Maturity

Oman tested the MI approach by using production operational code containing
around 50 KLOC to determine the metric parameters, and by checking the
results against subjective data gathered using the 1989 AFOTEC maintainability
evaluation questionnaire [AFOTEC 89, Oman 94]. Other production code of
about half that size was used to check the results, with apparent consistency.

Welker applied the results to analyses of a US Air Force (USAF) system, the
Improved Many-On-Many (IMOM) electronic combat modeling system. The
original IMOM (in FORTRAN) was translated to C and the C version was later
reengineered into Ada. The maintainability of both newer versions was
measured over time using the MI approach [Welker 95]. Results were as follows:

● The reengineered version's MI was more than twice as high as the
original code (larger MI = more maintainable), and declined only slightly
over time (note that the original code was not measured over time for
maintainability, so change in its MI could not be measured).

● The translated baseline's MI was not significantly different from the
original. This is of special interest to those considering translation,
because one of the primary objectives of translation is to reduce future
maintenance costs. There was also evidence that the MI of translated
code deteriorates more quickly than reengineered code.

Costs and Limitations

Calculating the MI is generally simple and straightforward, given that several
commercially-available programming environments contain utilities to count code
lines, comment lines, and even Cyclomatic Complexity. Other than the tool
described in Oman [Oman 91], tools to calculate Halstead Complexity Measures
are less common because the measure is not used as widely. However, once
conventions for the counting have been established, it is generally not difficult to
write language-specific code scanners to count the Halstead components
(operators and operands) and calculate the E and V measures. In relating that
removal of unused code in a single module did not affect the MI, Pearse
highlights the fact that MI is a system measurement; its parameters are average
values [Pearse 95]. However, measuring the MI of individual modules is useful

http://www.sei.cmu.edu/str/descriptions/mitmpm_body.html (4 of 8)7/28/2008 11:31:36 AM

Maintainability Index Technique for Measuring Program Maintainability

because changes in either structural or computational complexity are reflected in
a module's MI. A product/process measurement program not already gathering
the metrics used in MI could find them useful additions. Those metrics already
being gathered may be useful in constructing a custom MI for the system.
However, it would be advisable to consult the references for their findings on the
effectiveness of metrics, other than Halstead E and V and cyclomatic complexity,
in determining maintainability.

Dependencies

The MI method depends on the use of Cyclomatic Complexity and Halstead
Complexity Measures. To realize the full benefit of MI, the maintenance
environment must allow the rewriting of a module when it becomes measurably
unmaintainable. The point of measuring the MI is to identify risk; when
unacceptably risky code is identified, it should be rewritten.

Alternatives

The process described by Sittenauer is designed to assist in deciding whether or
not to reengineer a system [Sittenauer 92]. There are also many research and
analytic efforts that deal with maintainability as a function of program structure,
design, and content, but none was found that was as clearly appropriate as MI to
current DoD systems in the lifecycle phases described in Maintenance of
Operational Systems--An Overview.

Complementary Technologies

The test in Sittenauer is meant to verify generally the condition of a system, and
would be useful as a periodic check of a software system and to compare to the
MI [Sittenauer 92].

Index Categories

This technology is classified under the following categories. Select a category for
a list of related topics.

Name of technology Maintainability Index Technique for Measuring
Program Maintainability

Application category Debugger (AP.1.4.2.4)
Test (AP.1.4.3)
Unit Testing (AP.1.4.3.4)
Component Testing (AP.1.4.3.5)
Reapply Software Life Cycle (AP.1.9.3)
Reengineering (AP.1.9.5)

http://www.sei.cmu.edu/str/descriptions/mitmpm_body.html (5 of 8)7/28/2008 11:31:36 AM

Maintainability Index Technique for Measuring Program Maintainability

Quality measures category Maintainability (QM.3.1)
Testability (QM.1.4.1)
Understandability (QM.3.2)

Computing reviews category Software Engineering Distribution and
Maintenance (D.2.7)
Software Engineering Metrics (D.2.8)
Complexity Classes (F.1.3)
Tradeoffs Among Complexity Measures (F.2.3)

References and Information Sources

[AFOTEC 89] Software Maintainability Evaluation Guide 800-2, Volume 3.
Kirtland AFB, NM: HQ Air Force Operational Test and
Evaluation Center (AFOTEC), 1989.

[Ash 94] Ash, Dan, et al. "Using Software Maintainability Models to
Track Code Health," 154-160. Proceedings of the International
Conference on Software Maintenance. Victoria, BC, Canada,
September 19-23, 1994. Los Alamitos, CA: IEEE Computer
Society Press, 1994.

[Bennett 93] Bennett, Brad & Satterthwaite, Paul. "A Maintainability Measure
of Embedded Software," 560-565. Proceedings of the IEEE 1993
National Aerospace and Electronics Conference. Dayton, OH,
May 24-28, 1993. New York, NY: IEEE, 1993.

[Coleman 94] Coleman, Don, et al. "Using Metrics to Evaluate Software
System Maintainability." Computer 27, 8 (August 1994): 44-49.

[Coleman 95] Coleman, Don; Lowther, Bruce; & Oman, Paul. "The Application
of Software Maintainability Models in Industrial Software
Systems." Journal of Systems Software 29, 1 (April 1995): 3-16.

[Oman 91] Oman, P. HP-MAS: A Tool for Software Maintainability,
Software Engineering (#91-08-TR). Moscow, ID: Test
Laboratory, University of Idaho, 1991.

[Oman 92a] Oman, P. & Hagemeister, J. Construction and Validation of
Polynomials for Predicting Software Maintainability (92-01TR).
Moscow, ID: Software Engineering Test Lab, University of
Idaho, 1992.

http://www.sei.cmu.edu/str/descriptions/mitmpm_body.html (6 of 8)7/28/2008 11:31:36 AM

Maintainability Index Technique for Measuring Program Maintainability

[Oman 92b] Oman, P. & Hagemeister, J. "Metrics for Assessing a Software
System's Maintainability," 337-344. Conference on Software
Maintenance 1992. Orlando, FL, November 9-12, 1992. Los
Alamitos, CA: IEEE Computer Society Press, 1992.

[Oman 94] Oman, P. & Hagemeister, J. "Constructing and Testing of
Polynomials Predicting Software Maintainability." Journal of
Systems and Software 24, 3 (March 1994): 251-266.

[Pearse 95] Pearse, Troy & Oman, Paul. "Maintainability Measurements on
Industrial Source Code Maintenance Activities," 295-303.
Proceedings. of the International Conference on Software
Maintenance. Opio, France, October 17-20, 1995. Los Alamitos,
CA: IEEE Computer Society Press, 1995.

[Peercy 81] Peercy, David E. "A Software Maintainability Evaluation
Methodology." Transactions on Software Engineering 7, 7 (July
1981): 343-351.

[Sittenauer 92] Sittenauer, Chris & Olsem, Mike. "Time to Reengineer?"
Crosstalk, Journal of Defense Software Engineering 32 (March
1992): 7-10.

[Welker 95] Welker, Kurt D. & Oman, Paul W. "Software Maintainability
Metrics Models in Practice." Crosstalk, Journal of Defense
Software Engineering 8, 11 (November/December 1995): 19-23.

[Zhuo 93] Zhuo, Fang, et al. "Constructing and Testing Software
Maintainability Assessment Models," 61-70. Proceedings of the
First International Software Metrics Symposium. Baltimore, MD,
May 21-22, 1993. Los Alamitos, CA: IEEE Computer Society
Press, 1993.

Current Author/Maintainer

Edmond VanDoren, Kaman Sciences, Colorado Springs

External Reviewers

Paul W. Oman, Ph.D., Computer Science Department, University of Idaho,
Moscow, ID
Kurt Welker, Lockheed Martin, Idaho Falls, ID

Modifications

http://www.sei.cmu.edu/str/descriptions/mitmpm_body.html (7 of 8)7/28/2008 11:31:36 AM

Maintainability Index Technique for Measuring Program Maintainability

10 Jan 97 (original)
12 Mar 02 Correction of Maintainability Index (MI) formula

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/descriptions/mitmpm_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/descriptions/mitmpm_body.html (8 of 8)7/28/2008 11:31:36 AM

http://www.sei.cmu.edu/about/disclaimer.html

AFOTEC 89

References and Information Sources

[AFOTEC
89]

Software Maintainability Evaluation Guide 800-2, Volume 3. Kirtland AFB, NM: HQ
Air Force Operational Test and Evaluation Center (AFOTEC), 1989.

http://www.sei.cmu.edu/str/indexes/references/AFOTEC_89.html7/28/2008 11:31:36 AM

Application Taxonomy

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

About the
Taxonomies

View the
Application
Taxonomy

View the
Quality
Measures
Taxonomy

Glossary &
Indexes

Application Taxonomy

Readers will use the application taxonomy if they are looking for software
technologies that address a particular use, such as design or testing. The
technology descriptions have been classified into this taxonomy according to
how they are used in systems. Specifically, the application taxonomy divides
software technologies into two major categories:

1. Used to support operational systems
2. Used in operational systems

Under the category "Used to Support Operational Systems" (AP.1), by
referencing ANSI/IEEE Std 1002-1987 [IEEE 87], we provide the standard life
cycle phases plus two major activities that cross all of the phases. IEEE Std
1074-1991 [IEEE 91] helped provide a breakdown of the activities that occur in
each life cycle phase. Support in this context means any technology used to
develop and maintain an operational system within the life-cycle framework.

The category "Used in Operational Systems" (AP.2) simply provides a
breakdown of categories of technologies that are used and operate in
operational systems.

View the Application Taxonomy

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/taxonomies/ap_tax_body.html
Last Modified: 24 July 2008

References

This frame provides full citations for references.

http://www.sei.cmu.edu/str/taxonomies/ap_tax.html7/28/2008 11:31:37 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/taxonomies/ap_tax_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/about/disclaimer.html

Quality Measures Taxonomy

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

About the
Taxonomies

View the
Application
Taxonomy

View the
Quality
Measures
Taxonomy

Glossary &
Indexes

Quality Measures Taxonomy

Readers will use the quality measures taxonomy if they are looking for software
technologies that affect particular quality measures or attributes of a software
component or system. The technology descriptions have been categorized into
this taxonomy by the particular quality measure(s) that they directly influence.
Software quality can be defined as the degree to which software possesses a
desired combination of attributes (e.g., reliability, interoperability) [IEEE 90].
Software technologies are typically developed to affect certain quality measures.

We developed a reasonably exhaustive an non-overlapping set of measures by
which the quality of software is judged. With the help of work done by Boehm,
Barbacci, Deutsch and Willis, and Evans and Marciniak, we established a
hierarchical relationship among our list of quality measures to create the
taxonomy [Boehm 78, Barbacci 95, Deutsch 88, Evans 87]. The following table
explains the categories of quality measures and the areas they address:

Quality Measure Area Addressed

Need Satisfaction (QM.1)
How well does the system meet the user's needs and
requirements?

Performance (QM.2) How well does the system function?

Maintenance (QM.3) How easily can the system be repaired or changed?

Adaptive (QM.4) How easily can the system evolve or migrate?

Organizational (QM.5) none specifically, usually indirect

Categories 1 - 4 are all considered to be direct measures, i.e., quality attributes
that can be directly impacted by software technologies. The measures listed in
category 5 are measures that generally can not be affected directly by software
technologies, but have an indirect relationship. Many factors influence these
measures, such as management, politics, bureaucracy, employee skill-level, and
work environment. For example, software alone can not improve productivity. A
software technology that improves a direct measure such as understandability
may indirectly improve productivity. Therefore, most technology descriptions will
not be categorized into category 5. An example of a technology the reader may
find in this category is a technology that was specifically developed to measure
or estimate costs of productivity associated with software.

View the Quality Measures Taxonomy

http://www.sei.cmu.edu/str/taxonomies/qm_tax.html (1 of 2)7/28/2008 11:31:38 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/taxonomies/qm_tax_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Quality Measures Taxonomy

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/taxonomies/qm_tax_body.html
Last Modified: 24 July 2008

References

This frame provides full citations for references.

http://www.sei.cmu.edu/str/taxonomies/qm_tax.html (2 of 2)7/28/2008 11:31:38 AM

http://www.sei.cmu.edu/about/disclaimer.html

Related Topics

Related Topics

Parallel Computing (AP.2.1.3)

Parallel Processing Software Architecture

http://www.sei.cmu.edu/str/taxonomies/ap.2.1.3.html7/28/2008 11:31:45 AM

Related Topics

Related Topics

User Interfaces (AP.2.3.1)

Window Managers

http://www.sei.cmu.edu/str/taxonomies/ap.2.3.1.html7/28/2008 11:31:46 AM

Related Topics

Related Topics

Target Operating Systems (AP.2.5)

POSIX
Real-Time Operating Systems

http://www.sei.cmu.edu/str/taxonomies/ap.2.5.html7/28/2008 11:31:46 AM

Related Topics

Related Topics

Agents (AP.2.8)

Mediating

http://www.sei.cmu.edu/str/taxonomies/ap.2.8.html7/28/2008 11:31:46 AM

Related Topics

Related Topics

Database Utilities (AP.1.4.2.2)

SQL

http://www.sei.cmu.edu/str/taxonomies/ap.1.4.2.2.html7/28/2008 11:31:48 AM

Related Topics

Related Topics

Create Test Data (AP.1.4.3.1)

Test Data Generation by Chaining

http://www.sei.cmu.edu/str/taxonomies/ap.1.4.3.1.html7/28/2008 11:31:49 AM

Related Topics

Related Topics

Test Tools (AP.1.4.3.3)

Automatic Test Case Generation
Redundant Test Case Elimination
Statistical Test Plan Generation and Coverage Analysis Techniques
Test and Analysis Tool Generation

http://www.sei.cmu.edu/str/taxonomies/ap.1.4.3.3.html7/28/2008 11:31:49 AM

Related Topics

Related Topics

Fidelity (QM.2.4)

● Hybrid Automata

http://www.sei.cmu.edu/str/taxonomies/qm.2.4.html7/28/2008 11:31:52 AM

Glossary

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

Glossary &
Indexes

Glossary

Keyword Index

Glossary

A-H I-P Q-Z

Abstractness
the degree to which a system or component performs only the necessary
functions relevant to a particular purpose.

Acceptance testing
formal testing conducted to determine whether or not a system satisfies
its acceptance criteria and to enable the customer to determine whether
or not to accept the system [IEEE 90].

Accessibility
1. (Denial of Service) the degree to which the software system protects

system functions or service from being denied to the user
2. (Reusability) the degree to which a software system or component

facilitates the selective use of its components [Boehm 78].

Accuracy

a quantitative measure of the magnitude of error [IEEE 90].

Acquisition cycle time
the period of time that starts when a system is conceived and ends when
the product meets its initial operational capability.

Adaptability
the ease with which software satisfies differing system constraints and
user needs [Evans 87].

Adaptive maintenance
software maintenance performed to make a computer program usable in
a changed environment [IEEE 90].

Adaptive measures
a category of quality measures that address how easily a system can
evolve or migrate.

Agent
a piece of software which acts to accomplish tasks on behalf of its user
[McGill 96].

Anonymity

http://www.sei.cmu.edu/str/indexes/glossary/index_body.html (1 of 16)7/28/2008 11:31:58 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/indexes/glossary/index_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Glossary

the degree to which a software system or component allows for or
supports anonymous transactions.

ANSI
American National Standards Institute. This organization is responsible
for approving U.S. standards in many areas, including computers and
communications. Standards approved by this organization are often
called ANSI standards (e.g., ANSI C is the version of the C language
approved by ANSI). ANSI is a member of ISO. See also: International
Organization for Standardization.

Application program interface
a formalized set of software calls and routines that can be referenced by
an application program in order to access supporting system or network
services [ITS 96].

Architectural design
the process of defining a collection of hardware and software components
and their interfaces to establish the framework for the development of a
computer system [IEEE 90].

Artificial intelligence
a subfield within computer science concerned with developing technology
to enable computers to solve problems (or assist humans in solving
problems) using explicit representations of knowledge and reasoning
methods employing that knowledge [DoD 91].

Auditable
the degree to which a software system records information concerning
transactions performed against the system.

Availability
the degree to which a system or component is operational and accessible
when required for use [IEEE 90].

Capacity
a measure of the amount of work a system can perform [Barbacci 95].

Code
the transforming of logic and data from design specifications (design
descriptions) into a programming language [IEEE 90].

Commonality
the degree to which standards are used to achieve interoperability.

Communication software
software concerned with the representation, transfer, interpretation, and
processing of data among computer systems or networks. The meaning
assigned to the data must be preserved during these operations.

Compactness
the degree to which a system or component makes efficient use of its
data storage space- occupies a small volume.

http://www.sei.cmu.edu/str/indexes/glossary/index_body.html (2 of 16)7/28/2008 11:31:58 AM

Glossary

Compatibility
the ability of two or more systems or components to perform their
required functions while sharing the same hardware or software
environment [IEEE 90].

Completeness
the degree to which all the parts of a software system or component are
present and each of its parts is fully specified and developed [Boehm 78].

Complexity
1. (Apparent) the degree to which a system or component has a design or

implementation that is difficult to understand and verify [IEEE 90].
2. (Inherent) the degree of complication of a system or system component,

determined by such factors as the number and intricacy of interfaces, the
number and intricacy of conditional branches, the degree of nesting, and
the types of data structures [Evans 87].

Component testing

testing of individual hardware or software components or groups of
related components [IEEE 90].

Concept phase
the initial phase of a software development project, in which the user
needs are described and evaluated through documentation (for example,
statement of needs, advance planning report, project initiation memo,
feasibility studies, system definition, documentation, regulations,
procedures, or policies relevant to the project) [IEEE 90].

Conciseness
the degree to which a software system or component has no excessive
information present.

Confidentiality
the nonoccurrence of the unauthorized disclosure of information [Barbacci
95].

Consistency
the degree of uniformity, standardization, and freedom from contradiction
among the documents or parts of a system or component [IEEE 90].

Corrective maintenance
maintenance performed to correct faults in hardware or software [IEEE
90].

Correctness
the degree to which a system or component is free from faults in its
specification, design, and implementation [IEEE 90].

Cost estimation
the process of estimating the "costs" associated with software
development projects, to include the effort, time, and labor required.

http://www.sei.cmu.edu/str/indexes/glossary/index_body.html (3 of 16)7/28/2008 11:31:58 AM

Glossary

Cost of maintenance
the overall cost of maintaining a computer system to include the costs
associated with personnel, training, maintenance control, hardware and
software maintenance, and requirements growth.

Cost of operation
the overall cost of operating a computer system to include the costs
associated with personnel, training, and system operations.

Cost of ownership
the overall cost of a computer system to an organization to include the
costs associated with operating and maintaining the system, and the
lifetime of operational use of the system.

Data management security
the protection of data from unauthorized (accidental or intentional)
modification, destruction, or disclosure [ITS 96].

Data management
the function that provides access to data, performs or monitors the
storage of data, and controls input/output operations [McDaniel 94].

Data recording
to register all or selected activities of a computer system. Can include
both external and internal activity.

Data reduction
any technique used to transform data from raw data into a more useful
form of data. For example, grouping, summing, or averaging related data
[IEEE 90].

Database administration
the responsibility for the definition, operation, protection, performance,
and recovery of a database [IEEE 90].

Database design
the process of developing a database that will meet a user's
requirements. The activity includes three separate but dependent steps:
conceptual database design, logical database design, and physical
database design [IEEE 91].

Database
1. a collection of logically related data stored together in one or more

computerized files. Note: Each data item is identified by one or more keys
[IEEE 90].

2. an electronic repository of information accessible via a query language
interface [DoD 91].

Denial of service

the degree to which a software system or component prevents the
interference or disruption of system services to the user.

Dependability

http://www.sei.cmu.edu/str/indexes/glossary/index_body.html (4 of 16)7/28/2008 11:31:58 AM

Glossary

that property of a computer system such that reliance can justifiably be
placed on the service it delivers [Barbacci 95].

Design phase
the period of time in the software life cycle during which the designs for
architecture, software components, interfaces, and data are created,
documented, and verified to satisfy requirements [IEEE 90].

Detailed design
the process of refining and expanding the preliminary design of a system
or component to the extent that the design is sufficiently complete to be
implemented [IEEE 90].

Distributed computing
a computer system in which several interconnected computers share the
computing tasks assigned to the system [IEEE 90].

Domain analysis
the activity that determines the common requirements within a domain for
the purpose of identifying reuse opportunities among the systems in the
domain. It builds a domain architectural model representing the
commonalities and differences in requirements within the domain
(problem space) [ARC 96].

Domain design
the activity that takes the results of domain analysis to identify and
generalize solutions for those common requirements in the form of a
Domain-Specific Software Architecture (DSSA). It focuses on the problem
space, not just on a particular system's requirements, to design a solution
(solution space) [ARC 96].

Domain engineering
the process of analysis, specification and implementation of software
assets in a domain which are used in the development of multiple
software products [SEI 96]. The three main activities of domain
engineering are: domain analysis, domain design, and domain
implementation [ARC 96].

Domain implementation
the activity that realizes the reuse opportunities identified during domain
analysis and design in the form of common requirements and design
solutions, respectively. It facilitates the integration of those reusable
assets into a particular application [ARC 96].

Effectiveness
the degree to which a system's features and capabilities meet the user's
needs.

Efficiency
the degree to which a system or component performs its designated
functions with minimum consumption of resources (CPU, Memory, I/O,
Peripherals, Networks) [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/index_body.html (5 of 16)7/28/2008 11:31:58 AM

Glossary

Error handling
the function of a computer system or component that identifies and
responds to user or system errors to maintain normal or at the very least
degraded operations.

Error proneness
the degree to which a system may allow the user to intentionally or
unintentionally introduce errors into or misuse the system.

Error tolerance
the ability of a system or component to continue normal operation despite
the presence of erroneous inputs [IEEE 90].

Evolvability
the ease with which a system or component can be modified to take
advantage of new software or hardware technologies.

Expandability
see Extendability [IEEE 90].

Extendability
the ease with which a system or component can be modified to increase
its storage or functional capacity [IEEE 90].

Fail safe
pertaining to a system or component that automatically places itself in a
safe operating mode in the event of a failure [IEEE 90].

Fail soft
pertaining to a system or component that continues to provide partial
operational capability in the event of certain failures [IEEE 90].

Fault tolerance
the ability of a system or component to continue normal operation despite
the presence of hardware or software faults [IEEE 90].

Fault
an incorrect step, process, or data definition in a computer program [IEEE
90].

Fidelity
the degree of similarity between a model and the system properties being
modeled [IEEE 90].

Flexibility
the ease with which a system or component can be modified for use in
applications or environments other than those for which it was specifically
designed [IEEE 90].

Functional scope
the range or scope to which a system component is capable of being
applied.

Functional testing

http://www.sei.cmu.edu/str/indexes/glossary/index_body.html (6 of 16)7/28/2008 11:31:58 AM

Glossary

testing that ignores the internal mechanism of a system or component
and focuses solely on the outputs generated in response to selected
inputs and execution conditions. Synonym: black-box testing [IEEE 90].

Generality
the degree to which a system or component performs a broad range of
functions [IEEE 90].

Graphics
methods and techniques for converting data to or from graphic display via
computers [McDaniel 94].

Hardware maintenance
the cost associated with the process of retaining a hardware system or
component in, or restoring it to, a state in which it can perform its required
functions.

Human Computer Interaction
a subfield within computer science concerned with the design, evaluation,
and implementation of interactive computing systems for human use and
with the study of major phenomena surrounding them [Toronto 95].

Human engineering
the extent to which a software product fulfills its purpose without wasting
user's time and energy or degrading their morale [Boehm 78].

Implementation phase
the period of time in the software life cycle during which a software
product is created from design documentation and debugged [IEEE 90].

Incompleteness
the degree to which all the parts of a software system or component are
not present and each of its parts is not fully specified or developed.

Information Security
the concepts, techniques, technical measures, and administrative
measures used to protect information assets from deliberate or
inadvertent unauthorized acquisition, damage, disclosure, manipulation,
modification, loss, or use [McDaniel 94].

Installation and checkout phase
the period of time in the software life cycle during which a software
product is integrated into its operational environment and tested in this
environment to ensure it performs as required [IEEE 90].

Integration testing
testing in which software components, hardware components, or both are
combined and tested to evaluate the interaction between them [IEEE 90].

Integrity
the degree to which a system or component prevents unauthorized
access to, or modification of, computer programs or data [IEEE 90].

Interface testing

http://www.sei.cmu.edu/str/indexes/glossary/index_body.html (7 of 16)7/28/2008 11:31:58 AM

Glossary

testing conducted to evaluate whether systems or components pass data
and control correctly to one another [IEEE 90].

Interfaces design
the activity concerned with the interfaces of the software system
contained in the software requirements and software interface
requirements documentation. Consolidates the interface descriptions into
a single interface description of the software system [IEEE 91].

Interoperability
the ability of two or more systems or components to exchange information
and to use the information that has been exchanged [IEEE 90].

ISO
International Organization for Standardization. A voluntary, non-treaty
organization founded in 1946 which is responsible for creating
international standards in many areas, including computers and
communications. Its members are the national standards organizations of
the 89 member countries, including ANSI for the U.S.

Latency
the length of time it takes to respond to an event [Barbacci 95].

Lifetime of operational capability
the total period of time in a system's life that it is operational and meeting
the user's needs.

Maintainability
the ease with which a software system or component can be modified to
correct faults, improve performance, or other attributes, or adapt to a
changed environment [IEEE 90].

Maintenance control
the cost of planning and scheduling hardware preventive maintenance,
and software maintenance and upgrades, managing the hardware and
software baselines, and providing response for hardware corrective
maintenance.

Maintenance measures
a category of quality measures that address how easily a system can be
repaired or changed.

Maintenance personnel
the number of personnel needed to maintain all aspects of a computer
system, including the support personnel and facilities needed to support
that activity.

Managed device
any type of node residing on a network, such as a computer, printer or
routers that contain a management agent.

Managed object
a characteristic of a managed device that can be monitored, modified or
controlled.

http://www.sei.cmu.edu/str/indexes/glossary/index_body.html (8 of 16)7/28/2008 11:31:58 AM

Glossary

Management agent

software that resides in a managed device that allows the device to be
monitored and/or controlled by a network management application.

Manufacturing phase
the period of time in the software life cycle during which the basic version
of a software product is adapted to a specified set of operational
environments and is distributed to a customer base [IEEE 90].

Model
an approximation, representation, or idealization of selected aspects of
the structure, behavior, operation, or other characteristics of a real-world
process, concept, or system. Note: Models may have other models as
components [IEEE 90].

Modifiability
the degree to which a system or component facilitates the incorporation of
changes, once the nature of the desired change has been determined
[Boehm 78].

Necessity of characteristics
the degree to which all of the necessary features and capabilities are
present in the software system.

Need satisfaction measures
a category of quality measures that address how well a system meets the
user's needs and requirements.

Network management
the execution of the set of functions required for controlling, planning,
allocating, deploying, coordinating, and monitoring the resources of a
computer network [ITS 96].

Network management application
application that provides the ability to monitor and control the network.

Network management information
information that is exchanged between the network management station
(s) and the management agents that allows the monitoring and control of
a managed device.

Network management protocol
protocol used by the network management station(s) and the
management agent to exchange management information.

Network management station
system that hosts the network management application.

Openness
the degree to which a system or component complies with standards.

Operability
the ease of operating the software [Deutsch 88].

http://www.sei.cmu.edu/str/indexes/glossary/index_body.html (9 of 16)7/28/2008 11:31:58 AM

Glossary

Operational testing
testing conducted to evaluate a system or component in its operational
environment [IEEE 90].

Operations and maintenance phase
the period of time in the software life cycle during which a software
product is employed in its operational environment, monitored for
satisfactory performance, and modified as necessary to correct problems
or to respond to changing requirements [IEEE 90].

Operations personnel
the number of personnel needed to operate all aspects of a computer
system, including the support personnel and facilities needed to support
that activity.

Operations system
the cost of environmentals, communication, licenses, expendables, and
documentation maintenance for an operational system.

Organizational measures
a category of quality measures that address how costly a system is to
operate and maintain.

Parallel computing
a computer system in which interconnected processors perform
concurrent or simultaneous execution of two or more processes
[McDaniel 94].

Perfective maintenance
software maintenance performed to improve the performance,
maintainability, or other attributes of a computer program [IEEE 90].

Performance measures
a category of quality measures that address how well a system functions.

Performance testing
testing conducted to evaluate the compliance of a system or component
with specified performance requirements [IEEE 90].

Portability
the ease with which a system or component can be transferred from one
hardware or software environment to another [IEEE 90].

Productivity
the quality or state of being productive [Webster 87].

Protocol
a set of conventions that govern the interaction of processes, devices,
and other components within a system [IEEE 90].

Provably correct
the ability to mathematically verify the correctness of a system or
component.

http://www.sei.cmu.edu/str/indexes/glossary/index_body.html (10 of 16)7/28/2008 11:31:58 AM

Glossary

Qualification phase
the period of time in the software life cycle during which it is determined
whether a system or component is suitable for operational use.

Qualification testing
testing conducted to determine whether a system or component is
suitable for operational use [IEEE 90].

Quality measure
a software feature or characteristic used to assess the quality of a system
or component.

Readability
the degree to which a system's functions and those of its component
statements can be easily discerned by reading the associated source
code.

Real-time responsiveness
the ability of a system or component to respond to an inquiry or demand
within a prescribed time frame.

Recovery
the restoration of a system, program, database, or other system resource
to a prior state following a failure or externally caused disaster; for
example, the restoration of a database to a point at which processing can
be resumed following a system failure [IEEE 90].

Reengineering
rebuilding a software system or component to suit some new purpose; for
example to work on a different platform, to switch to another language, to
make it more maintainable.

Regression testing
selective retesting of a system or component to verify that modifications
have not caused unintended effects and that the system or component
still complies with its specified requirements [IEEE 90].

Reliability
the ability of a system or component to perform its required functions
under stated conditions for a specified period of time [IEEE 90].

Requirements engineering
involves all life-cycle activities devoted to identification of user
requirements, analysis of the requirements to derive additional
requirements, documentation of the requirements as a specification, and
validation of the documented requirements against user needs, as well as
processes that support these activities [DoD 91].

Requirements growth
the rate at which the requirements change for an operational system. The
rate can be positive or negative.

Requirements phase
the period of time in the software life cycle during which the requirements

http://www.sei.cmu.edu/str/indexes/glossary/index_body.html (11 of 16)7/28/2008 11:31:58 AM

Glossary

for a software product are defined and documented [IEEE 90].

Requirements tracing
describing and following the life of a requirement in both forwards and
backwards direction (i.e., from its origins, through its development and
specification, to its subsequent deployment and use, and through periods
of ongoing refinement and iteration in any of these phases) [Gotel 95].

Resource utilization
the percentage of time a resource (CPU, Memory, I/O, Peripheral,
Network) is busy [Barbacci 95].

Responsiveness
the degree to which a software system or component has incorporated
the user's requirements.

Restart
to cause a computer program to resume execution after a failure, using
status and results recorded at a checkpoint [IEEE 90].

Retirement phase
the period of time in the software life cycle during which support for a
software product is terminated [IEEE 90].

Reusability
the degree to which a software module or other work product can be used
in more than one computing program or software system [IEEE 90].

Reverse engineering
the process of analyzing a system's code, documentation, and behavior
to identify its current components and their dependencies to extract and
create system abstractions and design information. The subject system is
not altered; however, additional knowledge about the system is produced.

Robustness
the degree to which a system or component can function correctly in the
presence of invalid inputs or stressful environment conditions [IEEE 90].

Safety
a measure of the absence of unsafe software conditions. The absence of
catastrophic consequences to the environment [Barbacci 95].

Scalability
the ease with which a system or component can be modified to fit the
problem area.

Security
the ability of a system to manage, protect, and distribute sensitive
information.

Select or develop algorithms
the activity concerned with selecting or developing a procedural
representation of the functions in the software requirements
documentation for each software component and data structure. The

http://www.sei.cmu.edu/str/indexes/glossary/index_body.html (12 of 16)7/28/2008 11:31:58 AM

Glossary

algorithms shall completely satisfy the applicable functional and/or
mathematical specifications [IEEE 91].

Self-descriptiveness
the degree to which a system or component contains enough information
to explain its objectives and properties [IEEE 90].

Simplicity
the degree to which a system or component has a design and
implementation that is straightforward and easy to understand [IEEE 90].

Software architecture
the structure of the components of a program/system, their
interrelationships, and principles and guidelines governing their design
and evolution over time [Clements 96].

Software change cycle time
the period of time that starts when a new system requirement is identified
and ends when the requirement has been incorporated into the system
and delivered for operational use.

Software life cycle
the period of time that begins when a software product is conceived and
ends when the software is no longer available for use. The life cycle
typically includes a concept phase, requirements phase, design phase,
implementation phase, test phase, installation and checkout phase,
operation and maintenance phase, and sometimes, retirement phase.
These phases may overlap or be performed iteratively, depending on the
software development approach used [IEEE 90].

Software maintenance
the cost associated with modifying a software system or component after
delivery to correct faults, improve performance or other attributes, or
adapt to a changed environment.

Software migration and evolution
see Adaptive maintenance.

Software upgrade and technology insertion
see Perfective maintenance.

Speed
the rate at which a software system or component performs its functions.

Statistical testing
employing statistical science to evaluate a system or component. Used to
demonstrate a system's fitness for use, to predict the reliability of a
system in an operational environment, to efficiently allocate testing
resources, to predict the amount of testing required after a system
change, to qualify components for reuse, and to identify when enough
testing has been accomplished [Poore 96].

Structural testing
testing that takes into account the internal mechanism of a system or

http://www.sei.cmu.edu/str/indexes/glossary/index_body.html (13 of 16)7/28/2008 11:31:58 AM

Glossary

component. Types include branch testing, path testing, statement testing.
Synonym: white-box testing [IEEE 90].

Structuredness
the degree to which a system or component possesses a definite pattern
of organization of its interdependent parts [Boehm 78].

Sufficiency of characteristics
the degree to which the features and capabilities of a software system
adequately meet the user's needs.

Survivability
the degree to which essential functions are still available even though
some part of the system is down [Deutsch 88].

System allocation
mapping the required functions to software and hardware. This activity is
the bridge between concept exploration and the definition of software
requirements [IEEE 91].

System analysis and optimization
a systematic investigation of a real or planned system to determine the
information requirements and processes of the system and how these
relate to each other and to any other system, and to make improvements
to the system where possible.

System security
a system function that restricts the use of objects to certain users
[McDaniel 94].

System testing
testing conducted on a complete, integrated system to evaluate the
system's compliance with its specified requirements [IEEE 90].

Taxonomy
a scheme that partitions a body of knowledge and defines the
relationships among the pieces. It is used for classifying and
understanding the body of knowledge [IEEE 90].

Test drivers
software modules used to invoke a module(s) under test and, often,
provide test inputs, control and monitor execution, and report test results
[IEEE 90].

Test phase
the period of time in the software life cycle during which the components
of a software product are evaluated and integrated, and the software
product is evaluated to determine whether or not requirements have been
satisfied [IEEE 90].

Test tools
computer programs used in the testing of a system, a component of the
system, or its documentation. Examples include monitor, test case
generator, timing analyzer [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/index_body.html (14 of 16)7/28/2008 11:31:58 AM

Glossary

Test

an activity in which a system or component is executed under specified
conditions, the results are observed or recorded, and an evaluation is
made of some aspect of the system or component [IEEE 90].

Testability
the degree to which a system or component facilitates the establishment
of test criteria and the performance of tests to determine whether those
criteria have been met [IEEE 90]. Note: Not only is testability a
measurement for software, it can also apply to the testing scheme.

Testing
the process of operating a system or component under specified
conditions, observing or recording the results, and making an evaluation
of some aspect of the system or component [IEEE 90].

Throughput
the amount of work that can be performed by a computer system or
component in a given period of time [IEEE 90].

Traceability
the degree to which a relationship can be established between two or
more products of the development process, especially products having a
predecessor-successor or master-subordinate relationship to one another
[IEEE 90].

Training
Provisions to learn how to develop, maintain, or use the software system.

Trouble report analysis
the methodical investigation of a reported operational system deficiency
to determine what, if any, corrective action needs to be taken.

Trustworthiness
the degree to which a system or component avoids compromising,
corrupting, or delaying sensitive information.

Understandability
the degree to which the purpose of the system or component is clear to
the evaluator [Boehm 78].

Unit testing
testing of individual hardware or software units or groups of related units
[IEEE 90].

Upgradeability
see Evolvability.

Usability
the ease with which a user can learn to operate, prepare inputs for, and
interpret outputs of a system or component [IEEE 90].

User interface

http://www.sei.cmu.edu/str/indexes/glossary/index_body.html (15 of 16)7/28/2008 11:31:58 AM

Glossary

an interface that enables information to be passed between a human user
and hardware or software components of a computer system [IEEE 90].

Verifiability
the relative effort to verify the specified software operation and
performance [Evans 87].

Vulnerability
the degree to which a software system or component is open to
unauthorized access, change, or disclosure of information and is
susceptible to interference or disruption of system services.

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/indexes/glossary/index_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/indexes/glossary/index_body.html (16 of 16)7/28/2008 11:31:58 AM

http://www.sei.cmu.edu/about/disclaimer.html

IEEE 90

References and Information Sources

[IEEE
90]

Institute of Electrical and Electronics Engineers. IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries. New York, NY: 1990.

http://www.sei.cmu.edu/str/indexes/references/IEEE_90.html7/28/2008 11:31:58 AM

Boehm 78

References and Information Sources

[Boehm
78]

Boehm, Barry W.; Brown, John R.; Kaspar, Hans; Lipow, Myron; MacLeod, Gordon J. &
Merritt, Michael J. Characteristics of Software Quality. New York, NY: North-Holland
Publishing Company, 1978.

http://www.sei.cmu.edu/str/indexes/references/Boehm_78.html7/28/2008 11:31:58 AM

Evans 87

References and Information Sources

[Evans
87]

Evans, Michael W. & Marciniak, John. Software Quality Assurance and Management. New
York, NY: John Wiley & Sons, Inc., 1987.

http://www.sei.cmu.edu/str/indexes/references/Evans_87.html7/28/2008 11:31:58 AM

McGill 96

References and Information Sources

[McGill
96]

The Software Agents Mailing List FAQ [online]. Available WWW
<URL: http://www.ee.mcgill.ca/~belmarc/agent_faq.html>
(1996).

http://www.sei.cmu.edu/str/indexes/references/McGill_96.html7/28/2008 11:31:59 AM

http://www.ee.mcgill.ca/~belmarc/agent_faq.html

ITS 96

References and Information Sources

[ITS
96]

Letter-by-Letter Listing [online]. Available WWW
<URL: http://www.its.bldrdoc.gov/fs-1037/dir-001/_0064.htm>
(1996).

http://www.sei.cmu.edu/str/indexes/references/ITS_96.html7/28/2008 11:31:59 AM

http://www.its.bldrdoc.gov/fs-1037/dir-001/_0064.htm

DoD 91

References and Information Sources

[DoD
91]

Department of Defense. Software Technology Strategy. DRAFT: December,
1991.

http://www.sei.cmu.edu/str/indexes/references/DoD_91.html7/28/2008 11:31:59 AM

Barbacci 95

References and Information Sources

[Barbacci
95]

Barbacci, Mario; Klein, Mark H.; Longstaff, Thomas H. & Weinstock, Charles B.
Quality Attributes (CMU/SEI-95-TR-021). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1995.

http://www.sei.cmu.edu/str/indexes/references/Barbacci_95.html7/28/2008 11:31:59 AM

McDaniel 94

References and Information Sources

[McDaniel
94]

McDaniel, George, ed. IBM Dictionary of Computing. New York, NY: McGraw-Hill,
Inc., 1994.

http://www.sei.cmu.edu/str/indexes/references/McDaniel_94.html7/28/2008 11:31:59 AM

IEEE 91

References and Information Sources

[IEEE
91]

IEEE Std 1074-1991. IEEE Standard for Developing Life Cycle Processes. New York, NY:
Institute of Electrical and Electronics Engineers, 1991.

http://www.sei.cmu.edu/str/indexes/references/IEEE_91.html7/28/2008 11:32:00 AM

ARC 96

References and Information Sources

[ARC
96]

Laforme, Deborah & Stropky, Maria E. An Automated Mechanism for Effectively Applying
Domain Engineering in Reuse Activities [online]. Available WWW
<URL: http://arc_www.belvoir.army.mil/htmldocs/arc/da_papers/
applying_domain_engineering.htm> (1996).

http://www.sei.cmu.edu/str/indexes/references/ARC_96.html7/28/2008 11:32:00 AM

http://arc_www.belvoir.army.mil/htmldocs/arc/da_papers/applying_domain_engineering.htm
http://arc_www.belvoir.army.mil/htmldocs/arc/da_papers/applying_domain_engineering.htm

SEI 96

References and Information Sources

[SEI
96]

What is Model Based Software Engineering (MBSE)? [online]. Available
WWW
<URL: http://www.sei.cmu.edu/mbse/> (1996).

http://www.sei.cmu.edu/str/indexes/references/SEI_96.html7/28/2008 11:32:00 AM

http://www.sei.cmu.edu/mbse/

Extendability - Definition

Glossary Term

Extendability
the ease with which a system or component can be modified to increase its storage or functional
capacity [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/extendability.html7/28/2008 11:32:00 AM

Toronto 95

References and Information Sources

[Toronto
95]

comp.human-factors faq WWW page [online]. Available WWW
<URL: http://www.dgp.toronto.edu/people/ematias/faq/G/G-1.html>
(1995).

http://www.sei.cmu.edu/str/indexes/references/Toronto_95.html7/28/2008 11:32:01 AM

http://www.dgp.toronto.edu/people/ematias/faq/G/G-1.html

Deutsch 88

References and Information Sources

[Deutsch
88]

Deutsch, Michael S. & Willis, Ronald R. Software Quality Engineering: A Total
Technical and Management Approach. Englewood Cliffs, NJ: Prentice-Hall, 1988.

http://www.sei.cmu.edu/str/indexes/references/Deutsch_88.html7/28/2008 11:32:01 AM

Webster 87

References and Information Sources

[Webster
87]

Webster's Ninth New Collegiate Dictionary. Springfield, MA: Merriam-Webster Inc.,
1987.

http://www.sei.cmu.edu/str/indexes/references/Webster_87.html7/28/2008 11:32:01 AM

Gotel 95

References and Information Sources

[Gotel
95]

Gotel, Orlena. Contribution Structures for Requirements Traceability. London, England:
Imperial College, Department of Computing, 1995.

http://www.sei.cmu.edu/str/indexes/references/Gotel_95.html7/28/2008 11:32:01 AM

Adaptive maintenance - Definition

Glossary Term

Adaptive maintenance
software maintenance performed to make a computer program usable in a changed environment
[IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/adaptive-maintenance.html7/28/2008 11:32:02 AM

Perfective maintenance - Definition

Glossary Term

Perfective maintenance
software maintenance performed to improve the performance, maintainability, or other attributes
of a computer program [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/perfective-maintenance.html7/28/2008 11:32:02 AM

Poore 96

References and Information Sources

[Poore
96]

Poore, Jesse. Re: Definition for Statistical Testing [email to Gary Haines], [online].
Available email: ghaines@spacecom.af.mil (October 2, 1996).

http://www.sei.cmu.edu/str/indexes/references/Poore_96.html7/28/2008 11:32:02 AM

mailto:ghaines@spacecom.af.mil

Keyword Index

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

Glossary &
Indexes

Glossary

Keyword Index

Keyword Index

The Keyword Index is structured as in any typical document; a few nuances of
our index include the following:

● If the keyword is defined in the glossary, it is linked to that glossary
definition.

● If the keyword is the name of a technology, it appears in bold type and is
linked to that technology description.

● If the keyword is a category in one of the taxonomies, it is followed by that
category's index label in parenthesis. AP and QM labels are linked to a
list of technology descriptions included in the category.

Each keyword is followed by a list of the technology descriptions that reference
it. After selecting one of the descriptions, use your browser's "find" capabilities to
locate instances of the keyword.

A| B| C| D| E| F| G| H| I| J| K| L| M| N| O| P| Q| R| S| T| U| V| W|
X| Y| Z

A
abstraction

Object-Oriented Analysis

abstractness (QM.4.4.1.x)

acceptance testing (AP.1.8.2.2)

accessibility (QM.2.1.4.1.3.x), (QM.4.4.1.x)

accountability (QM.2.1.4.2)

accuracy (QM.2.1.2.1)
Database Two Phase Commit

acquisition cycle time

Active Group
Component Object Model (COM), DCOM, and Related Capabilities

ActiveX
Component Object Model (COM), DCOM, and Related Capabilities

Ada 83
Ada 95

Ada 95

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (1 of 33)7/28/2008 11:32:06 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/indexes/keywords/index_body.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Keyword Index

Ada 83
Common Object Request Broker Architecture
Rate Monotonic Analysis

adaptability (QM.3.1.x)

adaptive-maintenance (AP.1.9.3.2)

adaptive-measures (QM.4)

ADL. see architecture description languages

agents (AP.2.8)

Algorithm Formalization

American National Standards Institute
Ada 83

anonymity (QM.2.1.4.1.2.x)

ANSI. see American National Standards Institute

aperiodic task/process
Rate Monotonic Analysis

API. see application program interfaces

application engineering
Domain Analysis and Domain Engineering

application program interfaces (AP.2.7)
Application Program Interface
COTS and Open Systems--An Overview
Java
Message-Oriented Middleware
Middleware
private

Defense Information Infrastructure Common Operating
Environment

public
Defense Information Infrastructure Common Operating
Environment

application server
Three Tier Software Architectures

applications
event-driven

Message-Oriented Middleware

architectural design (AP.1.3.1)

architecture
Architecture Description Languages
Cleanroom Software Engineering
description languages

Architecture Description Languages
Module Interconnection Languages

modeling
Feature-Oriented Domain Analysis

Reference Models, Architectures, Implementations--An Overview

Argument-Based Design Rationale Capture Methods for Requirements

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (2 of 33)7/28/2008 11:32:06 AM

Keyword Index

Tracing

artificial intelligence

asynchronous
processing

Distributed Computing Environment

auditable (QM.2.1.4.2.1)

Authenticode
Component Object Model (COM), DCOM, and Related Capabilities

automatic programming
availability (QM.2.1.1)

Intrusion Detection
Software Inspections
Statistical-Based Intrusion Detection

B
backfiring

Function Point Analysis

Bang measure
Function Point Analysis

binary large objects
Object-Oriented Database

black-box testing (AP.1.4.3.4.x)

BLOBS. see binary large objects

Bowles metrics
Cyclomatic Complexity

box structure method
Cleanroom Software Engineering

browsers
Computer System Security--An Overview

C
C

Ada 83
Common Object Request Broker Architecture
Distributed Computing Environment

C++
Ada 83
Common Object Request Broker Architecture
Distributed/Collaborative Enterprise Architectures

C4I
Computer System Security--An Overview

Capability Maturity Model

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (3 of 33)7/28/2008 11:32:06 AM

Keyword Index

Cleanroom Software Engineering
Personal Software Process for Module-Level Development
Software Inspections

capacity (QM.2.2.1)

cell
in distributed computing

Distributed Computing Environment

Cleanroom Software Engineering
Object-Oriented Analysis
Object-Oriented Design

client
Two Tier Software Architectures

client/server (AP.2.1.2.1)
communication (AP.2.2.1)
Distributed Computing Environment
Mainframe Server Software Architectures
Message-Oriented Middleware
Object Request Broker
Remote Procedure Call
Software Architectures

CMIP. see Common Management Information Protocol

CMM. see Capability Maturity Model

Coad-Yourdan
Object-Oriented Analysis

COCOMO. see constructive cost model

code (AP.1.4.2)
analyzers (AP.1.4.3.4.x)
complexity

Halstead Complexity Measures
entropy

Maintenance of Operational Systems--An Overview
generator

Graphical User Interface Builders

COE. see Common Operating Environment

commercial-off-the-shelf
Application Programming Interface
Component-Based Software Development/COTS Integration
COTS and Open Systems--An Overview
integration

Application Programming Interface

commit phase
Database Two Phase Commit

Common Management Information Protocol
Simple Network Management Protocol

Common Object Request Broker Architecture
Distributed/Collaborative Enterprise Architectures

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (4 of 33)7/28/2008 11:32:06 AM

Keyword Index

Distributed Computing Environment
Middleware
Object Request Broker
compliance

Object Request Broker
implementations

Object Request Broker

Common Operating Environment
TAFIM Reference Model
architecture

Defense Information Infrastructure Common Operating
Environment

compliance levels
Defense Information Infrastructure Common Operating
Environment

component segments
Defense Information Infrastructure Common Operating
Environment

Information Server
Defense Information Infrastructure Common Operating
Environment

Software Repository System
Defense Information Infrastructure Common Operating
Environment

commonality (QM.4.1.2.x)
Domain Engineering and Domain Analysis

communication software (AP.2.2)

compactness (QM.2.2.x)

compartmented mode workstations
Computer System Security--An Overview
Trusted Operating Systems

compatibility (QM.4.1.1)
Graphic Tools for Legacy Database Migration

compiler (AP.1.4.2.3)
Ada 83
Ada 95

completeness (QM.1.3.1)
Requirements Tracing

complexity (QM.3.2.1)
Halstead Complexity Measures
Message-Oriented Middleware
Remote Procedure Call
analysis

Maintenance of Operational Systems--An Overview
apparent (QM.3.2.1.x)
inherent (QM.3.2.1.x)

compliance (standalone)

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (5 of 33)7/28/2008 11:32:06 AM

Keyword Index

Common Object Request Broker Architecture
Defense Information Infrastructure Common Operating Environment

component
adaptation

Component-Based Software Development/COTS Integration
assembly

Component-Based Software Development/COTS Integration
selection and evaluation

Component-Based Software Development/COTS Integration
testing (AP.1.4.3.5)

Component Object Model
Distributed Computing Environment
Middleware
Object Request Broker

Component-Based Software Development/COTS Intergration

component-based software engineering
Component-Based Software Development/COTS Intergration

computational complexity
Halstead Complexity Measures

Computer System Security--An Overview

concept phase (AP.1.1)

conciseness (QM.3.2.4.x)

concurrent engineering
Cleanroom Software Engineering

confidentiality (QM.2.1.4.1.2)
Intrusion Detection

conformance
COTS and Open Systems--An Overview

connected graph
Cyclomatic Complexity

connectivity software
Middleware

consistency (QM.1.3.2)
Algorithm Formalization
Requirements Tracing

constructive cost model
Function Point Analysis

context analysis
Feature-Oriented Domain Analysis

CORBA. see Common Object Request Broker Architecture

corrective maintenance (AP.1.9.3.1)

correctness (QM.1.3)
Cleanroom Software Engineering

cost estimation (AP.1.3.7)
Function Point Analysis

cost of maintenance (QM.5.1.2)

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (6 of 33)7/28/2008 11:32:06 AM

Keyword Index

cost of operation (QM.5.1.1)

cost of ownership (QM.5.1)

COTS and Open Systems--An Overview

COTS. see commercial-off-the-shelf

cycle time
Cleanroom Software Engineering

Cyclomatic Complexity

D
data

analyzers (AP.1.4.3.4.x)
complexity

Cyclomatic Complexity
exchange

Object Request Broker
integrity

Database Two Phase Commit
Public Key Digital Signatures

management (AP.2.6.1)
management security (AP.2.4.2)
mining

Mainframe Server Software Architectures
recording (AP.2.9)
reduction (AP.2.9)
sharing

Application Programming Interface
visualization

Graphic Tools for Legacy Database Migration
warehouses

Mainframe Server Software Architectures

Data Encryption Standard
Simple Network Management Protocol

databases (AP.2.6)
Graphic Tools for Legacy Database Migration
administration (AP.1.9.1)
design (AP.1.3.2)
management

Three Tier Software Architecture
Two Tier Software Architectures

management system
Multi-Level Secure Database Management Schemes

server
Transaction Processing Monitor Technology

two phase commit
Database Two Phase Commit

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (7 of 33)7/28/2008 11:32:06 AM

Keyword Index

utilities (AP.1.4.2.2)

DBMS. see database management system

debugger (AP.1.4.2.4.x)

decision support systems
Two Tier Software Architectures

defect
detection

Software Inspections
leakage

Software Inspections
management

Personal Software Process for Module-Level Development

prevention
Cleanroom Software Engineering

Defense Information Infrastructure Common Operating Environment. see
Common Operating Environment

Defense Information Systems Agency
COTS and Open Systems--An Overview
TAFIM Reference Model

denial of service (QM.2.1.4.1.3)

Department of Defense systems
evolution of

TAFIM Reference Model

dependability (QM.2.1)
Rate Monotonic Analysis

DES. see Data Encryption Standard

design
Cleanroom Software Engineering
architectural (AP.1.3.1)
complexity

Cyclomatic Complexity
database (AP.1.3.2)
decision

history
Feature-Based Design Rationale Capture Method for
Requirements Tracing

decisions
Feature-Based Design Rationale Capture Method for
Requirements Tracing

detailed (AP.1.3.5)
interface (AP.1.3.3)
phase (AP.1.3)
rationale

Argument-Based Design Rationale Capture Methods for
Requirements Tracing
Feature-Based Design Rationale Capture Method for
Requirements Tracing

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (8 of 33)7/28/2008 11:32:06 AM

Keyword Index

Requirements Tracing
capture

Argument-Based Design Rationale Capture Methods for
Requirements Tracing

history
Argument-Based Design Rationale Capture Methods for
Requirements Tracing

detailed design (AP.1.3.5)

development phase
Cleanroom Software Engineering
Maintenance of Operational Systems--An Overview

digital signatures
Computer System Security--An Overview
Public Key Digital Signatures

DII COE. see Defense Information Infrastructure Common Operating
Environment

directory services
Distributed Computing Environment

DISA. see Defense Information Systems Agency

diskless support
Distributed Computing Environment

distributed
business models

Distributed/Collaborative Enterprise Architectures
client/server architecture

Three Tier Software Architecture
computing (AP.2.1.2)
database system

Database Two Phase Commit
environment

TAFIM Reference Model
system

Distributed Computing Environment
Object Request Broker
Remote Procedure Call
services

Middleware

Distributed/Collaborative Enterprise Architectures
Client/Server Software Architectures

Distributed Computing Environment
Common Object Request Broker Architecture
Middleware

domain
Domain Engineering and Domain Analysis
analysis

Cleanroom Software Engineering
Domain Engineering and Domain Analysis

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (9 of 33)7/28/2008 11:32:06 AM

Keyword Index

Feature-Oriented Domain Analysis
Organization Domain Modeling

design
engineering (AP.1.2.4)

Domain Engineering and Domain Analysis
Organization Domain Modeling

implementation
modeling

Feature-Oriented Domain Analysis
Organization Domain Modeling

Domain Engineering and Domain Analysis

dynamic binding
Object-Oriented Programming Languages

E
early operational phase

Maintenance of Operational Systems--An Overview

effectiveness (QM.1.1)

efficiency (QM.2.2)
Algorithm Formalization
Transaction Processing Monitor Technology

electronic encryption key distribution cryptography
Computer System Security--An Overview

end-to-end encryption
Computer System Security--An Overview

engineering function points
Function Point Analysis
Halstead Complexity Measures

entropy
Maintenance of Operational Systems--An Overview

error
handling (AP.2.11)
proneness (QM.2.3.1)
tolerance (QM.2.1.1.x)

essential complexity
Cyclomatic Complexity

estimating
Personal Software Process for Module-Level Development

event-driven applications
Message-Oriented Middleware

evolution/replacement phase
Maintenance of Operational Systems--An Overview

evolvability (QM.3.1.x)

expandability (QM.3.1.x)

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (10 of 33)7/28/2008 11:32:06 AM

Keyword Index

extendability (QM.3.1.x)

F
fail safe (QM.2.1.1.x)

fail soft (QM.2.1.1.x)

FARS. see Federal Acquisition Regulations

FASA. see Federal Acquisition Streamlining Acts

fault

fault tolerance (QM.2.1.1.x)

feature analysis
Feature-Oriented Domain Analysis

feature points
Function Point Analysis

Feature-Based Design Rationale Capture Method for Requirements Tracing

Feature-Oriented Domain Analysis

Federal Acquisition Regulations
COTS and Open Systems--An Overview

Federal Acquisition Streamlining Acts
COTS and Open Systems--An Overview

fidelity (QM.2.4)

file systems
Distributed Computing Environment
support for

Remote Procedure Call

file transfer
Application Programming Interface

firewalls
Computer System Security--An Overview
Firewalls and Proxies
proxies, and

Firewalls and Proxies

fixed priority
Rate Monotonic Analysis

flexibility (QM.3.1.x)
Ada 83
Ada 95
Client/Server Software Architectures
Component-Based Software Development/COTS Integration
Distributed/Collaborative Enterprise Architectures
Distributed Computing Environment
Mainframe Server Software Architectures
Message-Oriented Middleware
Remote Procedure Call
TAFIM Reference Model

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (11 of 33)7/28/2008 11:32:06 AM

Keyword Index

Three Tier Software Architecture
Transaction Processing Monitor Technology
Two Tier Software Architectures

FODA. see Feature-Oriented Domain Analysis

FORTEZZA
Computer System Security--An Overview

function call
Remote Procedure Call

Function Point Analysis

function points
early and easy

Function Point Analysis

functional scope (QM.4.4.1)

functional size measurement
Function Point Analysis

functional testing (AP.1.4.3.4.x)

functionality analysis
Maintenance of Operational Systems--An Overview

fundamental distributed services
Distributed Computing Environment

Futurebus+
Rate Monotonic Analysis

G
GCCS. see Global Command and Control System

GCSS. see Global Combat Support System

generality (QM.4.4.1.x)

Global Combat Support System
Defense Information Infrastructure Common Operating Environment
TAFIM Reference Model

Global Command and Control System
Defense Information Infrastructure Common Operating Environent
TAFIM Reference Model

Graphic Tools for Legacy Database Migration

graphical user interface
Graphical User Interface Builders
builders

Graphical User Interface Builders

graphics (AP.2.3.2)

GUI builders. see graphical user interface builders

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (12 of 33)7/28/2008 11:32:06 AM

Keyword Index

H
Halstead complexity measures

Cyclomatic Complexity
Function Point Analysis

hardware maintenance

hardware-software co-design (AP.1.3.1.x)

Henry metrics
Cyclomatic Complexity

heterogeneous databases
Three Tier Software Architecture

homogeneous environment
Two Tier Software Architectures

human computer interaction (AP.2.3)

human engineering

I
IDTs. see interface development tools

IFPUG. see International Function Point User Group

implementation phase (AP.1.4)

implementations
overview of

Reference Models, Architectures, Implementations--An
Overview

incompleteness (QM.1.3.1)

incremental development
Cleanroom Software Engineering

independence
Distributed Computing Environment

information
analysis

Feature-Oriented Domain Analysis
hiding

Object-Oriented Programming Languages
security (AP.2.4)
warfare

Intrusion Detection
Rule-Based Intrusion Detection
Statistical-Based Intrusion Detection

inheritance
Object-Oriented Programming Languages

installation and checkout phase (AP.1.8)

integration testing (AP.1.5.3.2)

integrity (QM.2.1.4.1.1)
Distributed Computing Environment

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (13 of 33)7/28/2008 11:32:06 AM

Keyword Index

Intrusion Detection

interface
definition language

Common Object Request Broker Architecture
Distributed Computing Environment

design (AP.1.3.3)
development tools

Graphical User Interface Builders
specification

COTS and Open Systems--An Overview
standards

COTS and Open Systems--An Overview
testing (AP.1.5.3.3)

International Function Point User Group
Function Point Analysis

International Standards Organization
Ada 83
Function Point Analysis
standards

Distributed Computing Environment

internet
Firewalls and Proxies
Object Request Broker
standards

Distributed Computing Environment

interoperability (QM.4.1)
Ada 83
Ada 95
Application Programming Interface
Client/Server Software Architectures
Defense Information Infrastructure Common Operating Environment
Distributed Computing Environment
Message-Oriented Middleware
Middleware
Remote Procedure Call
TAFIM Reference Model

intranet
Computer System Security--An Overview
Firewalls and Proxies
Object Request Broker

Intrusion Detection
Computer System Security--An Overview
model-based

Rule-Based Intrusion Detection
rule-based

Rule-Based Intrusion Detection
statistical-based

Statistical-Based Intrusion Detection

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (14 of 33)7/28/2008 11:32:06 AM

Keyword Index

ISO see International Standards Organization

J
Jacobson

Object-Oriented Analysis

Java
Ada 95
Common Object Request Broker Architecture
Distributed/Collaborative Enterprise Architectures
Object Request Broker

Joint Technical Architecture
Defense Information Infrastructure Common Operating Environment

JTA. see Joint Technical Architecture

K
Kafura metrics

Cyclomatic Complexity

kernel COE
Defense Information Infrastructure Common Operating Environment

L
latency (QM.2.2.2)

legacy systems
COTS and Open Systems--An Overview
Distributed Computing Environment
Domain Engineering and Domain Analysis

lifetime of operational capability

Ligier metrics
Cyclomatic Complexity

lines of code
Function Point Analysis
metrics

Halstead Complexity Measures

LOC. see lines of code

M
MAC. see message authentication code

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (15 of 33)7/28/2008 11:32:06 AM

Keyword Index

Mainframe Server Software Architectures

maintainability (QM.3.1)
Ada 83
Ada 95
Cyclomatic Complexity
Domain Engineering and Domain Analysis
Feature-Oriented Domain Analysis
Graphic Tools for Legacy Database Migration
Maintainability Index Technique for Measuring Program Maintainability
Module Interconnection Languages
Object-Oriented Analysis
Object-Oriented Database
Object-Oriented Design
Object-Oriented Programming Languages
Organization Domain Modeling
Software Inspections
Three Tier Software Architecture

Maintainability Index Technique for Measuring Program Maintainability

maintenance
adaptive (AP.1.9.3.2)
control
corrective (AP.1.9.3.1)
costs

Maintenance of Operational Systems--An Overview
documentation

Maintenance of Operational Systems--An Overview
measures
metric

Halstead Complexity Measures
perfective (AP.1.9.3.3)
personnel

Maintenance of Operational Systems--An Overview

managed device

managed object

managed objects
Simple Network Management Protocol

management agent

management information base
Simple Network Management Protocol

manufacturing phase (AP.1.7)

marshalling
Component Object Model (COM), DCOM, and Related Capabilities

mature operational phase
Maintenance of Operational Systems--An Overview

mature systems
Maintenance of Operational Systems--An Overview

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (16 of 33)7/28/2008 11:32:06 AM

Keyword Index

McCabe's complexity
Cyclomatic Complexity

message authentication code
Public Key Digital Signatures

message delivery
Application Programming Interface

message digest function
Public Key Digital Signatures

Message-Oriented Middleware
Middleware
Remote Procedure Call

metrics
Cyclomatic Complexity
Halstead

Cyclomatic Complexity
Function Point Analysis

Henry
Cyclomatic Complexity

McCabe
Cyclomatic Complexity

Troy
Cyclomatic Complexity

Zweben
Cyclomatic Complexity

MIB. see management information base

middle tier server
Three Tier Software Architecture

Middleware
Application Programming Interface
Message-Oriented Middleware
Object Request Broker
Transaction Processing Monitor Technology

minimal operator intervention
Two Tier Software Architecture

MISSI. see Multilevel Information Systems Security Initiative

MLS Host
Computer System Security--An Overview

MLS Operating System
Computer System Security--An Overview

MLS. see multi-level security

models (AP.2.1.1)

modifiability (QM.3.1.x)
Application Programming Interface
Cleanroom Software Engineering

Module Interconnection Languages

module-level development
Personal Software Process for Module-Level Development

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (17 of 33)7/28/2008 11:32:06 AM

Keyword Index

MOM. see message-oriented middleware

moniker
Component Object Model (COM), DCOM, and Related Capabilities

Morris Worm
Virus Detection

Motif
Graphical User Interface Builders

Multilevel Information Systems Security Initiative
Computer System Security--An Overview

multi-level secure
database management schemes

Computer System Security--An Overview
Multi-Level Secure Database Management Schemes

guard
Computer System Security--An Overview

one way guard with random acknowledgement
Multi-Level Secure One Way Guard with Random
Acknowledgment

systems
Computer System Security--An Overview

multi-level security
Multi-Level Secure Database Management Schemes
Trusted Operating System

multiplexing client transaction requests
Transaction Processing Monitor Technology

N
NDI. see non-developmental items

necessity of characteristics (QM.1.1.1)

need satisfaction measures

network
Application Programming Interface
Distributed Computing Environment
architecture

Middleware
hardware

Distributed Computing Environment
management (AP.2.2.2)
manager

Message-Oriented Middleware
overhead

Distributed Computing Environment
performance of

Remote Procedure Call
protocols

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (18 of 33)7/28/2008 11:32:06 AM

Keyword Index

interface to
Remote Procedure Call

security
Firewalls and Proxies

network management

network management application

network management information

network management protocol

network management station

Network Management--An Overview

non-developmental items
COTS and Open Systems--An Overview

Nonrepudiation in Network Communications

O
object activation

Object Request Broker

Object Linking and Embedding
Component Object Model (COM), DCOM, and Related Capabilities

Object Management Architecture
Common Object Request Broker Architecture

Object Management Group
Common Object Request Broker Architecture
Distributed/Collaborative Enterprise Architectures

object model
Object-Oriented Analysis
Object-Oriented Database

object orientation
Object Request Broker

object-oriented
Cleanroom Software Engineering
Distributed Computing Environment
Remote Procedure Call
analysis

Object-Oriented Analysis
database

Object-Oriented Database
design

Object-Oriented Design
programming

Ada 83
Ada 95

programming language
Object-Oriented Programming Languages

systems

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (19 of 33)7/28/2008 11:32:06 AM

Keyword Index

Message-Oriented Middleware

Object Request Broker
Client/Server Software Architectures
Common Object Request Broker Architecture
Distributed/Collaborative Enterprise Architectures
Middleware

objects
Object-Oriented Analysis
Object Request Broker

ODM. see organization domain modeling

one way guards
Computer System Security--An Overview

OOA. see object-oriented analysis
OOD. see object-oriented design
OODB. see object-oriented database
OOPL. see object-oriented programming languages

Open Group
Component Object Model (COM), DCOM, and Related Capabilities

open systems
Application Programming Interface
COTS and Open Systems--An Overview
Mainframe Server Software Architectures
cost

COTS and Open Systems--An Overview
COTS, and

COTS and Open Systems--An Overview
interconnect standards

Distributed Computing Environment

openness (QM.4.1.2)

operability (QM.2.3.2)

operational analysis
Feature-Oriented Domain Analysis

operational testing (AP.1.8.2.1)

operations
personnel
system

operations and maintenance phase (AP.1.9)

opportunistic reuse
Domain Engineering and Domain Analysis

ORB. see object request broker

Organization Domain Modeling

organizational measures

overview of reference models, architectures, implementations
Reference Models, Architectures, Implementations--An Overview

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (20 of 33)7/28/2008 11:32:06 AM

Keyword Index

P
parallel computing (AP.2.1.3)
payload

Virus Detection

peer reviews
Software Inspections

perfective maintenance (AP.1.9.3.3)

performance
Graphic Tools for Legacy Database Migration
Rate Monotonic Analysis
Three Tier Software Architecture

measures
testing (AP.1.5.3.5)

periodic task/process
Rate Monotonic Analysis

persistent
data

Object-Oriented Database
objects

Object-Oriented Database

Personal Software Process
Personal Software Process for Module-Level Development
for module-level development

Personal Software Process for Module-Level Development

piecewise reengineering
Maintenance of Operational Systems--An Overview

pilot project
Cleanroom Software Engineering

plug-and-play
COTS and Open Systems--An Overview

polymorphism
Object-Oriented Programming Languages

portability (QM.4.2)
Ada 83
Ada 95
Defense Information Infrastructure Common Operating Environment
Distributed Computing Environment
Graphic Tools for Legacy Database Migration

POSIX
Rate Monotonic Analysis

pre-delivery phase
Maintenance of Operational Systems--An Overview

prepare phase

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (21 of 33)7/28/2008 11:32:06 AM

Keyword Index

Database Two Phase Commit

priority inheritance
Rate Monotonic Analysis

priority inversion
Rate Monotonic Analysis

process management services
Three Tier Software Architecture

processing management
Two Tier Software Architectures

product line
Component-Based Software Development/COTS Integration

productivity (QM.5.2)
Function Point Analysis
Object-Oriented Analysis
rates

Function Point Analysis

profiles
Statistical-Based Intrusion Detection

programming language (AP.1.4.2.1)

proprietary interfaces
COTS and Open Systems--An Overview

protocols (AP.2.2.3)
COTS and Open Systems--An Overview
support of

Message-Oriented Middleware

provably correct (QM.1.3.4)

proxies
Computer System Security--An Overview
Firewalls and Proxies

PSP. see Personal Software Process

public key cryptography
Computer System Security--An Overview
Public Key Digital Signatures

Public Key Digital Signatures

Q
qualification phase (AP.1.6)

qualification testing (AP.1.6.1)

quality
Cleanroom Software Engineering

quality measures

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (22 of 33)7/28/2008 11:32:06 AM

Keyword Index

Component-Based Software Development/COTS Integration
Personal Software Process for Module-Level Development

queuing theory
Rate Monotonic Analysis

R
Rate Monotonic Analysis

rate monotonic scheduling
Rate Monotonic Analysis

rationale capture
Argument-Based Design Rationale Capture Methods for Requirements
Tracing
Feature-Based Design Rationale Capture Method for Requirements
Tracing

RBID. see Rule-Based Intrusion Detection

RDA. see remote data access

readability (QM.3.2.4)

real-time
Rate Monotonic Analysis
responsiveness

responsiveness (QM.2.2.2)
systems

COTS and Open Systems--An Overview
Rate Monotonic Analysis

recovery (AP.2.10)

reengineering (AP.1.9.5)
Cyclomatic Complexity
Graphic Tools for Legacy Database Migration
Graphical User Interface Builders
Maintenance of Operational Systems--An Overview

reference models
overview of

Reference Models, Architectures, Implementations--An
Overview

regression testing (AP.1.5.3.4)

reliability (QM.2.1.2)
Ada 83
Ada 95
Cleanroom Software Engineering
Distributed/Collaborative Enterprise Architectures
Software Inspections

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (23 of 33)7/28/2008 11:32:06 AM

Keyword Index

Transaction Processing Monitor Technology

remote data access
Transaction Processing Monitor Technology

remote method invocation
Object Request Broker

Remote Procedure Call
Application Programming Interface
Distributed Computing Environment
Message-Oriented Middleware
Middleware
Transaction Processing Monitor Technology

requirements
cross referencing

Requirements Tracing
engineering (AP.1.2.2)
growth (QM.5.1.2.6)
phase (AP.1.2)
tracing (AP.1.2.3)

Maintenance of Operational Systems--An Overview
Requirements Tracing

requirements-to-code (AP.1.2.3.1)

resource utilization (QM.2.2)

responsiveness (QM.1.2)

restart (AP.2.10)

restructuring
Maintenance of Operational Systems--An Overview

retirement phase (AP.1.10)

retrievability (QM.4.4.2)

reusability (QM.4.4)
Ada 83
Ada 95
Architecture Description Languages
Defense Information Infrastructure Common Operating Environment
Domain Engineering and Domain Analysis
Feature-Based Design Rationale Capture Method for Requirements
Tracing
Feature-Oriented Domain Analysis
Mainframe Server Software Architectures
Object-Oriented Analysis
Object-Oriented Design
Organization Domain Modeling
Three Tier Software Architecture
Transaction Processing Monitor Technology

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (24 of 33)7/28/2008 11:32:06 AM

Keyword Index

reuse
Component-Based Software Development/COTS Integration
Module Interconnection Languages

reverse-engineering (AP.1.9.4)
Maintenance of Operational Systems--An Overview
design recovery

Maintenance of Operational Systems--An Overview

REVIC. see revised intermediate COCOMO

revised intermediate COCOMO
Function Point Analysis

risk analysis
Cyclomatic Complexity

RMA. see rate monotonic analysis

RMI. see remote method invocation

robustness (QM.2.1.1)

RPC. see remote procedure call

Rule-Based Intrusion Detection

Rumbaugh
Object-Oriented Analysis

runtime environment
Defense Information Infrastructure Common Operating Environment

S
safety (QM.2.1.3)

scalability (QM.4.3)
Distributed/Collaborative Enterprise Architectures
Distributed Computing Environment
Mainframe Server Software Architectures
Three Tier Software Architecture
Two Tier Software Architectures

schedulability analysis
Rate Monotonic Analysis

scheduling
Rate Monotonic Analysis

security (QM.2.1.5)
Distributed Computing Environment
Firewalls and Proxies
Intrusion Detection
Multi-Level Secure Database Management Schemes
Public Key Digital Signatures
Trusted Operating Systems

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (25 of 33)7/28/2008 11:32:06 AM

Keyword Index

security services
Distributed Computing Environment

segments
Defense Information Infrastructure Common Operating Environment

select or develop algorithms

self descriptiveness (QM.3.2.4.x)

server
Two Tier Software Architecture

session based technology
Transaction Processing Monitor Technology

sharing services
Distributed Computing Environment

Shlaer-Mellor
Object-Oriented Analysis

Simple Network Management Protocol
secure SNMP

Simple Network Management Protocol
SNMPv1

Simple Network Management Protocol
SNMPv2

Simple Network Management Protocol

Simplex Architecture

simplicity (QM.3.2.2)

Smalltalk
Common Object Request Broker Architecture
Distributed/Collaborative Enterprise Architectures

SNMP. see Simple Network Management Protocol

software
architecture (AP.2.1)
change cycle time
complexity

Maintenance of Operational Systems--An Overview
engineering

Personal Software Process for Module-Level Development
engineering tools

Graphical User Interface Builders
entropy

Maintenance of Operational Systems--An Overview
generation

Algorithm Formalization
inspections

Software Inspections
life cycle

Cleanroom Software Engineering

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (26 of 33)7/28/2008 11:32:06 AM

Keyword Index

maintainability
Maintenance of Operational Systems--An Overview

maintenance (QM.5.1.2.5)
metrics

Cyclomatic Complexity
migration and evolution (AP.1.9.3.2)
process improvement

Personal Software Process for Module-Level Development
productivity

Function Point Analysis
synthesis

Algorithm Formalization
upgrade and technology insertion (AP.1.9.3.3)

Software Technology for Adaptable Reliable Systems
Cleanroom Software Engineering
Organization Domain Modeling

speed (QM.2.2.x)

SQL. see standard query language

standard query language
Application Programming Interface

STARS. see Software Technology for Adaptable Reliable Systems

static metrics
Cyclomatic Complexity

statistical quality control
Cleanroom Software Engineering

statistical testing (AP.1.5.3.5.x)
Cleanroom Software Engineering

Statistical-Based Intrusion Detection

structural complexity
Cyclomatic Complexity

structural testing (AP.1.4.3.4.x)

structuredness (QM.3.2.3)

sufficiency of characteristics (QM.1.1.2)

support requirements
Function Point Analysis

survivability (QM.2.1.4.1.4)

synchronous mechanism
Message-Oriented Middleware
Remote Procedure Call

synchronous processing
Distributed Computing Environment

system
administrators

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (27 of 33)7/28/2008 11:32:06 AM

Keyword Index

Distributed Computing Environment
allocation (AP.1.2.1)
analysis and optimization (AP.1.3.6)
Cleanroom Software Engineering
change costs

Function Point Analysis
evolution

Component-Based Software Development/COTS Integration
integration

Component-Based Software Development/COTS Integration
lifecycle

Maintenance of Operational Systems--An Overview
migration

Graphic Tools for Legacy Database Migration
security (AP.2.4.3)
testing (AP.1.5.3.1)

system engineering
Domain Engineering and Domain Analysis

systematic reuse
Domain Engineering and Domain Analysis
Organization Domain Modeling

T
TAFIM

Defense Information Infrastructure Common Operating Environment
Application Program Interface

TAFIM Reference Model
External Environment Interface

TAFIM Reference Model
reference model

TAFIM Reference Model

tasks
Rate Monotonic Analysis

taxonomy

test (AP.1.4.3)
drivers (AP.1.4.3.2, AP.1.5.1)
generation

Maintenance of Operational Systems--An Overview
optimization

Maintenance of Operational Systems--An Overview
phase (AP.1.5)
planning

Cyclomatic Complexity

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (28 of 33)7/28/2008 11:32:06 AM

Keyword Index

tools (AP.1.4.3.3, AP.1.5.2)

testability (QM.1.4.1)

testing (AP.1.5.3)
acceptance (AP.1.8.2.2)
black-box (AP.1.4.3.4.x)
component (AP.1.4.3.5)
functional (AP.1.4.3.4.x)
integration (AP.1.5.3.2)
interface (AP.1.5.3.3)
operational (AP.1.8.2.1)
performance (AP.1.5.3.5)
qualification (AP.1.6.1)
regression (AP.1.5.3.4)
statistical (AP.1.5.3.5.x)

Cleanroom Software Engineering
structural (AP.1.4.3.4.x)
system (AP.1.5.3.1)
unit (AP.1.4.3.4)
white-box (AP.1.4.3.4.x)

threads
Distributed Computing Environment
Rate Monotonic Analysis
services

Distributed Computing Environment

three tier
architecture

Mainframe Server Software Architectures
Three Tier Software Architecture

software architectures
Three Tier Software Architecture

client/server
Message-Oriented Middleware

with application server
Client/Server Software Architectures

with message server
Client/Server Software Architectures

with ORB architecture
Client/Server Software Architectures

throughput (QM.2.2.3)
Intrusion Detection

time services
Distributed Computing Environment

TP Heavy
Client/Server Software Architectures

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (29 of 33)7/28/2008 11:32:06 AM

Keyword Index

TP Lite
Client/Server Software Architectures

TP monitor. see transaction processing monitor technology.

traceability (QM.1.3.3)
Requirements Tracing

training (QM.5.1.1.2), QM.5.1.2.2)

transaction applications
Transaction Processing Monitor Technology

Transaction Processing Monitor Technology
Client/Server Software Architectures
Middleware

translation
Maintainability Index Technique for Measuring Program Maintainability
Maintenance of Operational Systems--An Overview
restructuring/modularizing

Maintenance of Operational Systems--An Overview

transport software
Distributed Computing Environment

trouble report analysis (AP.1.9.2)

Troy metrics
Cyclomatic Complexity

Trusted Operating Systems (AP.2.4.1)
Multi-Level Secure Database Management Schemes

trustworthiness (QM.2.1.4)
Public Key Digital Signatures

two life cycle model
Domain Engineering and Domain Analysis

two phase commit technology
Database Two Phase Commit

two tier
architecture

Mainframe Server Software Architectures
software architectures

Two Tier Software Architectures

U
UDP. see user datagram protocol

UIL. see user interface language

UIMS. see user interface management system

understandability (QM.3.2)
Architecture Description Languages

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (30 of 33)7/28/2008 11:32:06 AM

Keyword Index

Cleanroom Software Engineering
Domain Engineering and Domain Analysis
Graphic Tools for Legacy Database Migration
Module Interconnection Languages
Organization Domain Modeling

unit testing (AP.1.4.3.4)

UNIX
Mainframe Server Software Architectures

unmarshalling
Component Object Model (COM), DCOM, and Related Capabilities

upgradeability (QM.3.1.x)

usability (QM.2.3)
Client/Server Software Architectures
Domain Engineering and Domain Analysis
Graphical User Interface Builders
Two Tier Software Architectures

user datagram protocol
Simple Network Management Protocol

user interfaces (AP.2.3.1)
development tools

Graphical User Interface Builders
language

Graphical User Interface Builders
management system

Graphical User Interface Builders

user services
Three Tier Software Architecture

user system interface
Two Tier Software Architectures

user friendly interface
Two Tier Software Architectures

V
validation suite

Ada
Ada 83
Ada 95

variability
Domain Engineering and Domain Analysis

vendor-driven upgrades
Component-Based Software Development/COTS Integration

verifiability (QM.1.4)

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (31 of 33)7/28/2008 11:32:06 AM

Keyword Index

Cleanroom Software Engineering

VHDL. see VHSIC Hardware Description Language
VHSIC Hardware Description Language

Architecture Description Languages

virus
Virus Detection

Virus Detection
Computer System Security--An Overview

visualization tool
Graphic Tools for Legacy Database Migration

vulnerability (QM.2.1.4.1)

W
walkthroughs

Software Inspections

white-box testing (AP.1.4.3.4.x)

widgets
Graphical User Interface Builders

workstation compliance level three
Defense Information Infrastructure Common Operating Environment

World Wide Web
Firewalls and Proxies

X

Y

Z
Zweben metrics

Cyclomatic Complexity

A| B| C| D| E| F| G| H| I| J| K| L| M| N| O| P| Q| R| S| T| U| V| W| X| Y| Z

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (32 of 33)7/28/2008 11:32:06 AM

Keyword Index

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/indexes/keywords/index_body.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/indexes/keywords/index_body.html (33 of 33)7/28/2008 11:32:06 AM

http://www.sei.cmu.edu/about/disclaimer.html

Abstractness - Definition

Glossary Term

Abstractness
the degree to which a system or component performs only the necessary functions relevant to a
particular purpose.

http://www.sei.cmu.edu/str/indexes/glossary/abstractness.html7/28/2008 11:32:06 AM

Acceptance testing - Definition

Glossary Term

Acceptance testing
formal testing conducted to determine whether or not a system satisfies its acceptance criteria and
to enable the customer to determine whether or not to accept the system [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/acceptance-testing.html7/28/2008 11:32:06 AM

Accessibility - Definition

Glossary Term

Accessibility
1. (Denial of Service) the degree to which the software system protects system functions or service

from being denied to the user
2. (Reusability) the degree to which a software system or component facilitates the selective use of

its components [Boehm 78].

http://www.sei.cmu.edu/str/indexes/glossary/accessibility.html7/28/2008 11:32:06 AM

Accountability - Definition

Glossary Term

Accountability
the ability of a system to keep track of who or what accessed and/or made changes to the system.

http://www.sei.cmu.edu/str/indexes/glossary/accountability.html7/28/2008 11:32:07 AM

Acquisition cycle time - Definition

Glossary Term

Acquisition cycle time
the period of time that starts when a system is conceived and ends when the product meets its
initial operational capability.

http://www.sei.cmu.edu/str/indexes/glossary/acquisition-cycle-time.html7/28/2008 11:32:07 AM

Adaptive measures - Definition

Glossary Term

Adaptive measures
a category of quality measures that address how easily a system can evolve or migrate.

http://www.sei.cmu.edu/str/indexes/glossary/adaptive-measures.html7/28/2008 11:32:07 AM

Agent - Definition

Glossary Term

Agent
a piece of software which acts to accomplish tasks on behalf of its user [McGill 96].

http://www.sei.cmu.edu/str/indexes/glossary/agent.html7/28/2008 11:32:07 AM

ANSI - Definition

Glossary Term

ANSI
American National Standards Institute. This organization is responsible for approving U.S.
standards in many areas, including computers and communications. Standards approved by this
organization are often called ANSI standards (e.g., ANSI C is the version of the C language
approved by ANSI). ANSI is a member of ISO. See also: International Organization for
Standardization.

http://www.sei.cmu.edu/str/indexes/glossary/ANSI.html7/28/2008 11:32:08 AM

Anonymity - Definition

Glossary Term

Anonymity
the degree to which a software system or component allows for or supports anonymous
transactions.

http://www.sei.cmu.edu/str/indexes/glossary/anonymity.html7/28/2008 11:32:08 AM

Application program interface - Definition

Glossary Term

Application program interface
a formalized set of software calls and routines that can be referenced by an application program
in order to access supporting system or network services [ITS 96].

http://www.sei.cmu.edu/str/indexes/glossary/application-program-interface.html7/28/2008 11:32:08 AM

Architectural design - Definition

Glossary Term

Architectural design
the process of defining a collection of hardware and software components and their interfaces to
establish the framework for the development of a computer system [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/architectural-design.html7/28/2008 11:32:08 AM

Artificial intelligence - Definition

Glossary Term

Artificial intelligence
a subfield within computer science concerned with developing technology to enable computers to
solve problems (or assist humans in solving problems) using explicit representations of
knowledge and reasoning methods employing that knowledge [DoD 91].

http://www.sei.cmu.edu/str/indexes/glossary/artificial-intelligence.html7/28/2008 11:32:09 AM

Auditable - Definition

Glossary Term

Auditable
the degree to which a software system records information concerning transactions performed
against the system.

http://www.sei.cmu.edu/str/indexes/glossary/auditable.html7/28/2008 11:32:09 AM

Capacity - Definition

Glossary Term

Capacity
a measure of the amount of work a system can perform [Barbacci 95].

http://www.sei.cmu.edu/str/indexes/glossary/capacity.html7/28/2008 11:32:09 AM

Code - Definition

Glossary Term

Code
the transforming of logic and data from design specifications (design descriptions) into a
programming language [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/code.html7/28/2008 11:32:09 AM

Commonality - Definition

Glossary Term

Commonality
the degree to which standards are used to achieve interoperability.

http://www.sei.cmu.edu/str/indexes/glossary/commonality.html7/28/2008 11:32:09 AM

Communication software - Definition

Glossary Term

Communication software
software concerned with the representation, transfer, interpretation, and processing of data among
computer systems or networks. The meaning assigned to the data must be preserved during these
operations.

http://www.sei.cmu.edu/str/indexes/glossary/communication-software.html7/28/2008 11:32:10 AM

Compactness - Definition

Glossary Term

Compactness
the degree to which a system or component makes efficient use of its data storage space-
occupies a small volume.

http://www.sei.cmu.edu/str/indexes/glossary/compactness.html7/28/2008 11:32:10 AM

Component testing - Definition

Glossary Term

Component testing
testing of individual hardware or software components or groups of related components [IEEE
90].

http://www.sei.cmu.edu/str/indexes/glossary/component-testing.html7/28/2008 11:32:10 AM

Concept phase - Definition

Glossary Term

Concept phase
the initial phase of a software development project, in which the user needs are described and
evaluated through documentation (for example, statement of needs, advance planning report,
project initiation memo, feasibility studies, system definition, documentation, regulations,
procedures, or policies relevant to the project) [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/concept-phase.html7/28/2008 11:32:10 AM

Conciseness - Definition

Glossary Term

Conciseness
the degree to which a software system or component has no excessive information present.

http://www.sei.cmu.edu/str/indexes/glossary/conciseness.html7/28/2008 11:32:11 AM

Corrective maintenance - Definition

Glossary Term

Corrective maintenance
maintenance performed to correct faults in hardware or software [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/corrective-maintenance.html7/28/2008 11:32:11 AM

Cost of maintenance - Definition

Glossary Term

Cost of maintenance
the overall cost of maintaining a computer system to include the costs associated with personnel,
training, maintenance control, hardware and software maintenance, and requirements growth.

http://www.sei.cmu.edu/str/indexes/glossary/cost-of-maintenance.html7/28/2008 11:32:11 AM

Cost of operation - Definition

Glossary Term

Cost of operation
the overall cost of operating a computer system to include the costs associated with personnel,
training, and system operations.

http://www.sei.cmu.edu/str/indexes/glossary/cost-of-operation.html7/28/2008 11:32:11 AM

Data management - Definition

Glossary Term

Data management
the function that provides access to data, performs or monitors the storage of data, and controls
input/output operations [McDaniel 94].

http://www.sei.cmu.edu/str/indexes/glossary/data-management.html7/28/2008 11:32:12 AM

Data management security - Definition

Glossary Term

Data management security
the protection of data from unauthorized (accidental or intentional) modification, destruction, or
disclosure [ITS 96].

http://www.sei.cmu.edu/str/indexes/glossary/data-management-security.html7/28/2008 11:32:12 AM

Data recording - Definition

Glossary Term

Data recording
to register all or selected activities of a computer system. Can include both external and internal
activity.

http://www.sei.cmu.edu/str/indexes/glossary/data-recording.html7/28/2008 11:32:12 AM

Data reduction - Definition

Glossary Term

Data reduction
any technique used to transform data from raw data into a more useful form of data. For example,
grouping, summing, or averaging related data [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/data-reduction.html7/28/2008 11:32:12 AM

Database - Definition

Glossary Term

Database
1. a collection of logically related data stored together in one or more computerized files. Note:

Each data item is identified by one or more keys [IEEE 90].
2. an electronic repository of information accessible via a query language interface [DoD 91].

http://www.sei.cmu.edu/str/indexes/glossary/database.html7/28/2008 11:32:12 AM

Database administration - Definition

Glossary Term

Database administration
the responsibility for the definition, operation, protection, performance, and recovery of a
database [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/database-administration.html7/28/2008 11:32:13 AM

Database design - Definition

Glossary Term

Database design
the process of developing a database that will meet a user's requirements. The activity includes
three separate but dependent steps: conceptual database design, logical database design, and
physical database design [IEEE 91].

http://www.sei.cmu.edu/str/indexes/glossary/database-design.html7/28/2008 11:32:13 AM

Denial of service - Definition

Glossary Term

Denial of service
the degree to which a software system or component prevents the interference or disruption of
system services to the user.

http://www.sei.cmu.edu/str/indexes/glossary/denial-of-service.html7/28/2008 11:32:13 AM

Design phase - Definition

Glossary Term

Design phase
the period of time in the software life cycle during which the designs for architecture, software
components, interfaces, and data are created, documented, and verified to satisfy requirements
[IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/design-phase.html7/28/2008 11:32:13 AM

Detailed design - Definition

Glossary Term

Detailed design
the process of refining and expanding the preliminary design of a system or component to the
extent that the design is sufficiently complete to be implemented [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/detailed-design.html7/28/2008 11:32:14 AM

Distributed computing - Definition

Glossary Term

Distributed computing
a computer system in which several interconnected computers share the computing tasks assigned
to the system [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/distributed-computing.html7/28/2008 11:32:14 AM

Domain analysis - Definition

Glossary Term

Domain analysis
the activity that determines the common requirements within a domain for the purpose of
identifying reuse opportunities among the systems in the domain. It builds a domain architectural
model representing the commonalities and differences in requirements within the domain
(problem space) [ARC 96].

http://www.sei.cmu.edu/str/indexes/glossary/domain-analysis.html7/28/2008 11:32:14 AM

Domain design - Definition

Glossary Term

Domain design
the activity that takes the results of domain analysis to identify and generalize solutions for those
common requirements in the form of a Domain-Specific Software Architecture (DSSA). It
focuses on the problem space, not just on a particular system's requirements, to design a solution
(solution space) [ARC 96].

http://www.sei.cmu.edu/str/indexes/glossary/domain-design.html7/28/2008 11:32:14 AM

Domain engineering - Definition

Glossary Term

Domain engineering
the process of analysis, specification and implementation of software assets in a domain which
are used in the development of multiple software products [SEI 96]. The three main activities of
domain engineering are: domain analysis, domain design, and domain implementation [ARC 96].

http://www.sei.cmu.edu/str/indexes/glossary/domain-engineering.html7/28/2008 11:32:15 AM

Domain implementation - Definition

Glossary Term

Domain implementation
the activity that realizes the reuse opportunities identified during domain analysis and design in
the form of common requirements and design solutions, respectively. It facilitates the integration
of those reusable assets into a particular application [ARC 96].

http://www.sei.cmu.edu/str/indexes/glossary/domain-implementation.html7/28/2008 11:32:15 AM

Effectiveness - Definition

Glossary Term

Effectiveness
the degree to which a system's features and capabilities meet the user's needs.

http://www.sei.cmu.edu/str/indexes/glossary/effectiveness.html7/28/2008 11:32:15 AM

Error handling - Definition

Glossary Term

Error handling
the function of a computer system or component that identifies and responds to user or system
errors to maintain normal or at the very least degraded operations.

http://www.sei.cmu.edu/str/indexes/glossary/error-handling.html7/28/2008 11:32:15 AM

Error proneness - Definition

Glossary Term

Error proneness
the degree to which a system may allow the user to intentionally or unintentionally introduce
errors into or misuse the system.

http://www.sei.cmu.edu/str/indexes/glossary/error-proneness.html7/28/2008 11:32:15 AM

Error tolerance - Definition

Glossary Term

Error tolerance
the ability of a system or component to continue normal operation despite the presence of
erroneous inputs [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/error-tolerance.html7/28/2008 11:32:16 AM

Expandability - Definition

Glossary Term

Expandability
see Extendability [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/expandability.html7/28/2008 11:32:16 AM

Fail safe - Definition

Glossary Term

Fail safe
pertaining to a system or component that automatically places itself in a safe operating mode in
the event of a failure [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/fail-safe.html7/28/2008 11:32:16 AM

Fail soft - Definition

Glossary Term

Fail soft
pertaining to a system or component that continues to provide partial operational capability in the
event of certain failures [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/fail-soft.html7/28/2008 11:32:16 AM

Fault - Definition

Glossary Term

Fault
an incorrect step, process, or data definition in a computer program [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/fault.html7/28/2008 11:32:17 AM

Fault tolerance - Definition

Glossary Term

Fault tolerance
the ability of a system or component to continue normal operation despite the presence of
hardware or software faults [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/fault-tolerance.html7/28/2008 11:32:17 AM

Fidelity - Definition

Glossary Term

Fidelity
the degree of similarity between a model and the system properties being modeled [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/fidelity.html7/28/2008 11:32:17 AM

Functional scope - Definition

Glossary Term

Functional scope
the range or scope to which a system component is capable of being applied.

http://www.sei.cmu.edu/str/indexes/glossary/functional-scope.html7/28/2008 11:32:17 AM

Functional testing - Definition

Glossary Term

Functional testing
testing that ignores the internal mechanism of a system or component and focuses solely on the
outputs generated in response to selected inputs and execution conditions. Synonym: black-box
testing [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/functional-testing.html7/28/2008 11:32:17 AM

Generality - Definition

Glossary Term

Generality
the degree to which a system or component performs a broad range of functions [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/generality.html7/28/2008 11:32:18 AM

Graphics - Definition

Glossary Term

Graphics
methods and techniques for converting data to or from graphic display via computers [McDaniel
94].

http://www.sei.cmu.edu/str/indexes/glossary/graphics.html7/28/2008 11:32:18 AM

Hardware maintenance - Definition

Glossary Term

Hardware maintenance
the cost associated with the process of retaining a hardware system or component in, or restoring
it to, a state in which it can perform its required functions.

http://www.sei.cmu.edu/str/indexes/glossary/hardware-maintenance.html7/28/2008 11:32:18 AM

Human Computer Interaction - Definition

Glossary Term

Human Computer Interaction
a subfield within computer science concerned with the design, evaluation, and implementation of
interactive computing systems for human use and with the study of major phenomena
surrounding them [Toronto 95].

http://www.sei.cmu.edu/str/indexes/glossary/human-computer-interaction.html7/28/2008 11:32:18 AM

Human engineering - Definition

Glossary Term

Human engineering
the extent to which a software product fulfills its purpose without wasting user's time and energy
or degrading their morale [Boehm 78].

http://www.sei.cmu.edu/str/indexes/glossary/human-engineering.html7/28/2008 11:32:19 AM

Implementation phase - Definition

Glossary Term

Implementation phase
the period of time in the software life cycle during which a software product is created from
design documentation and debugged [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/implementation-phase.html7/28/2008 11:32:19 AM

Incompleteness - Definition

Glossary Term

Incompleteness
the degree to which all the parts of a software system or component are not present and each of
its parts is not fully specified or developed.

http://www.sei.cmu.edu/str/indexes/glossary/incompleteness.html7/28/2008 11:32:19 AM

Information Security - Definition

Glossary Term

Information Security
the concepts, techniques, technical measures, and administrative measures used to protect
information assets from deliberate or inadvertent unauthorized acquisition, damage, disclosure,
manipulation, modification, loss, or use [McDaniel 94].

http://www.sei.cmu.edu/str/indexes/glossary/information-security.html7/28/2008 11:32:19 AM

Installation and checkout phase - Definition

Glossary Term

Installation and checkout phase
the period of time in the software life cycle during which a software product is integrated into its
operational environment and tested in this environment to ensure it performs as required [IEEE
90].

http://www.sei.cmu.edu/str/indexes/glossary/installation-and-checkout-phase.html7/28/2008 11:32:19 AM

Integration testing - Definition

Glossary Term

Integration testing
testing in which software components, hardware components, or both are combined and tested to
evaluate the interaction between them [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/integration-testing.html7/28/2008 11:32:20 AM

Interfaces design - Definition

Glossary Term

Interfaces design
the activity concerned with the interfaces of the software system contained in the software
requirements and software interface requirements documentation. Consolidates the interface
descriptions into a single interface description of the software system [IEEE 91].

http://www.sei.cmu.edu/str/indexes/glossary/interfaces-design.html7/28/2008 11:32:20 AM

Interface testing - Definition

Glossary Term

Interface testing
testing conducted to evaluate whether systems or components pass data and control correctly to
one another [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/interface-testing.html7/28/2008 11:32:20 AM

ISO - Definition

Glossary Term

ISO
International Organization for Standardization. A voluntary, non-treaty organization founded in
1946 which is responsible for creating international standards in many areas, including computers
and communications. Its members are the national standards organizations of the 89 member
countries, including ANSI for the U.S.

http://www.sei.cmu.edu/str/indexes/glossary/ISO.html7/28/2008 11:32:20 AM

Latency - Definition

Glossary Term

Latency
the length of time it takes to respond to an event [Barbacci 95].

http://www.sei.cmu.edu/str/indexes/glossary/latency.html7/28/2008 11:32:21 AM

Lifetime of operational capability - Definition

Glossary Term

Lifetime of operational capability
the total period of time in a system's life that it is operational and meeting the user's needs.

http://www.sei.cmu.edu/str/indexes/glossary/lifetime-of-operational-capability.html7/28/2008 11:32:21 AM

Maintenance control - Definition

Glossary Term

Maintenance control
the cost of planning and scheduling hardware preventive maintenance, and software maintenance
and upgrades, managing the hardware and software baselines, and providing response for
hardware corrective maintenance.

http://www.sei.cmu.edu/str/indexes/glossary/maintenance-control.html7/28/2008 11:32:21 AM

Maintenance measures - Definition

Glossary Term

Maintenance measures
a category of quality measures that address how easily a system can be repaired or changed.

http://www.sei.cmu.edu/str/indexes/glossary/maintenance-measures.html7/28/2008 11:32:21 AM

Maintenance personnel - Definition

Glossary Term

Maintenance personnel
the number of personnel needed to maintain all aspects of a computer system, including the
support personnel and facilities needed to support that activity.

http://www.sei.cmu.edu/str/indexes/glossary/maintenance-personnel.html7/28/2008 11:32:21 AM

Managed device - Definition

Glossary Term

Managed device
any type of node residing on a network, such as a computer, printer or routers that contain a
management agent.

http://www.sei.cmu.edu/str/indexes/glossary/managed-device.html7/28/2008 11:32:22 AM

Managed object - Definition

Glossary Term

Managed object
a characteristic of a managed device that can be monitored, modified or controlled.

http://www.sei.cmu.edu/str/indexes/glossary/managed-object.html7/28/2008 11:32:22 AM

Management agent - Definition

Glossary Term

Management agent
software that resides in a managed device that allows the device to be monitored and/or
controlled by a network management application.

http://www.sei.cmu.edu/str/indexes/glossary/management-agent.html7/28/2008 11:32:22 AM

Manufacturing phase - Definition

Glossary Term

Manufacturing phase
the period of time in the software life cycle during which the basic version of a software product
is adapted to a specified set of operational environments and is distributed to a customer base
[IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/manufacturing-phase.html7/28/2008 11:32:22 AM

Model - Definition

Glossary Term

Model
an approximation, representation, or idealization of selected aspects of the structure, behavior,
operation, or other characteristics of a real-world process, concept, or system. Note: Models may
have other models as components [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/model.html7/28/2008 11:32:23 AM

Necessity of characteristics - Definition

Glossary Term

Necessity of characteristics
the degree to which all of the necessary features and capabilities are present in the software
system.

http://www.sei.cmu.edu/str/indexes/glossary/necessity-of-characteristics.html7/28/2008 11:32:23 AM

Need satisfaction measures - Definition

Glossary Term

Need satisfaction measures
a category of quality measures that address how well a system meets the user's needs and
requirements.

http://www.sei.cmu.edu/str/indexes/glossary/need-satisfaction-measures.html7/28/2008 11:32:23 AM

Network management - Definition

Glossary Term

Network management
the execution of the set of functions required for controlling, planning, allocating, deploying,
coordinating, and monitoring the resources of a computer network [ITS 96].

http://www.sei.cmu.edu/str/indexes/glossary/network-management.html7/28/2008 11:32:23 AM

Network management application - Definition

Glossary Term

Network management application
application that provides the ability to monitor and control the network.

http://www.sei.cmu.edu/str/indexes/glossary/network-management-application.html7/28/2008 11:32:23 AM

Network management information - Definition

Glossary Term

Network management information
information that is exchanged between the network management station(s) and the management
agents that allows the monitoring and control of a managed device.

http://www.sei.cmu.edu/str/indexes/glossary/network-management-information.html7/28/2008 11:32:24 AM

Network management protocol - Definition

Glossary Term

Network management protocol
protocol used by the network management station(s) and the management agent to exchange
management information.

http://www.sei.cmu.edu/str/indexes/glossary/network-management-protocol.html7/28/2008 11:32:24 AM

Network management station - Definition

Glossary Term

Network management station
system that hosts the network management application.

http://www.sei.cmu.edu/str/indexes/glossary/network-management-station.html7/28/2008 11:32:24 AM

Openness - Definition

Glossary Term

Openness
the degree to which a system or component complies with standards.

http://www.sei.cmu.edu/str/indexes/glossary/openness.html7/28/2008 11:32:24 AM

Operability - Definition

Glossary Term

Operability
the ease of operating the software [Deutsch 88].

http://www.sei.cmu.edu/str/indexes/glossary/operability.html7/28/2008 11:32:24 AM

Operational testing - Definition

Glossary Term

Operational testing
testing conducted to evaluate a system or component in its operational environment [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/operational-testing.html7/28/2008 11:32:25 AM

Operations personnel - Definition

Glossary Term

Operations personnel
the number of personnel needed to operate all aspects of a computer system, including the
support personnel and facilities needed to support that activity.

http://www.sei.cmu.edu/str/indexes/glossary/operations-personnel.html7/28/2008 11:32:25 AM

Operations system - Definition

Glossary Term

Operations system
the cost of environmentals, communication, licenses, expendables, and documentation
maintenance for an operational system.

http://www.sei.cmu.edu/str/indexes/glossary/operations-system.html7/28/2008 11:32:25 AM

Operations and maintenance phase - Definition

Glossary Term

Operations and maintenance phase
the period of time in the software life cycle during which a software product is employed in its
operational environment, monitored for satisfactory performance, and modified as necessary to
correct problems or to respond to changing requirements [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/operations-and-maintenance-phase.html7/28/2008 11:32:25 AM

Organizational measures - Definition

Glossary Term

Organizational measures
a category of quality measures that address how costly a system is to operate and maintain.

http://www.sei.cmu.edu/str/indexes/glossary/organizational-measures.html7/28/2008 11:32:26 AM

Parallel computing - Definition

Glossary Term

Parallel computing
a computer system in which interconnected processors perform concurrent or simultaneous
execution of two or more processes [McDaniel 94].

http://www.sei.cmu.edu/str/indexes/glossary/parallel-computing.html7/28/2008 11:32:26 AM

Performance measures - Definition

Glossary Term

Performance measures
a category of quality measures that address how well a system functions.

http://www.sei.cmu.edu/str/indexes/glossary/performance-measures.html7/28/2008 11:32:26 AM

Performance testing - Definition

Glossary Term

Performance testing
testing conducted to evaluate the compliance of a system or component with specified
performance requirements [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/performance-testing.html7/28/2008 11:32:26 AM

Protocol - Definition

Glossary Term

Protocol
a set of conventions that govern the interaction of processes, devices, and other components
within a system [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/protocol.html7/28/2008 11:32:26 AM

Provably correct - Definition

Glossary Term

Provably correct
the ability to mathematically verify the correctness of a system or component.

http://www.sei.cmu.edu/str/indexes/glossary/provably-correct.html7/28/2008 11:32:27 AM

Qualification phase - Definition

Glossary Term

Qualification phase
the period of time in the software life cycle during which it is determined whether a system or
component is suitable for operational use.

http://www.sei.cmu.edu/str/indexes/glossary/qualification-phase.html7/28/2008 11:32:27 AM

Qualification testing - Definition

Glossary Term

Qualification testing
testing conducted to determine whether a system or component is suitable for operational use
[IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/qualification-testing.html7/28/2008 11:32:27 AM

Quality measure - Definition

Glossary Term

Quality measure
a software feature or characteristic used to assess the quality of a system or component.

http://www.sei.cmu.edu/str/indexes/glossary/quality-measure.html7/28/2008 11:32:27 AM

Readability - Definition

Glossary Term

Readability
the degree to which a system's functions and those of its component statements can be easily
discerned by reading the associated source code.

http://www.sei.cmu.edu/str/indexes/glossary/readability.html7/28/2008 11:32:28 AM

Responsiveness - Definition

Glossary Term

Responsiveness
the degree to which a software system or component has incorporated the user's requirements.

http://www.sei.cmu.edu/str/indexes/glossary/responsiveness.html7/28/2008 11:32:28 AM

Recovery - Definition

Glossary Term

Recovery
the restoration of a system, program, database, or other system resource to a prior state following
a failure or externally caused disaster; for example, the restoration of a database to a point at
which processing can be resumed following a system failure [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/recovery.html7/28/2008 11:32:28 AM

Reengineering - Definition

Glossary Term

Reengineering
rebuilding a software system or component to suit some new purpose; for example to work on a
different platform, to switch to another language, to make it more maintainable.

http://www.sei.cmu.edu/str/indexes/glossary/reengineering.html7/28/2008 11:32:28 AM

Regression testing - Definition

Glossary Term

Regression testing
selective retesting of a system or component to verify that modifications have not caused
unintended effects and that the system or component still complies with its specified
requirements [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/regression-testing.html7/28/2008 11:32:28 AM

Requirements engineering - Definition

Glossary Term

Requirements engineering
involves all life-cycle activities devoted to identification of user requirements, analysis of the
requirements to derive additional requirements, documentation of the requirements as a
specification, and validation of the documented requirements against user needs, as well as
processes that support these activities [DoD 91].

http://www.sei.cmu.edu/str/indexes/glossary/requirements-engineering.html7/28/2008 11:32:29 AM

Requirements growth - Definition

Glossary Term

Requirements growth
the rate at which the requirements change for an operational system. The rate can be positive or
negative.

http://www.sei.cmu.edu/str/indexes/glossary/requirements-growth.html7/28/2008 11:32:29 AM

Requirements phase - Definition

Glossary Term

Requirements phase
the period of time in the software life cycle during which the requirements for a software product
are defined and documented [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/requirements-phase.html7/28/2008 11:32:29 AM

Requirements tracing - Definition

Glossary Term

Requirements tracing
describing and following the life of a requirement in both forwards and backwards direction (i.e.,
from its origins, through its development and specification, to its subsequent deployment and use,
and through periods of ongoing refinement and iteration in any of these phases) [Gotel 95].

http://www.sei.cmu.edu/str/indexes/glossary/requirements-tracing.html7/28/2008 11:32:30 AM

Resource utilization - Definition

Glossary Term

Resource utilization
the percentage of time a resource (CPU, Memory, I/O, Peripheral, Network) is busy [Barbacci
95].

http://www.sei.cmu.edu/str/indexes/glossary/resource-utilization.html7/28/2008 11:32:30 AM

Restart - Definition

Glossary Term

Restart
to cause a computer program to resume execution after a failure, using status and results recorded
at a checkpoint [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/restart.html7/28/2008 11:32:30 AM

Retirement Phase - Definition

Glossary Term

Retirement phase
the period of time in the software life cycle during which support for a software product is
terminated [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/retirement-phase.html7/28/2008 11:32:30 AM

Reverse Engineering - Definition

Glossary Term

Reverse engineering
the process of analyzing a system's code, documentation, and behavior to identify its current
components and their dependencies to extract and create system abstractions and design
information. The subject system is not altered; however, additional knowledge about the system
is produced.

http://www.sei.cmu.edu/str/indexes/glossary/reverse-engineering.html7/28/2008 11:32:31 AM

Robustness - Definition

Glossary Term

Robustness
the degree to which a system or component can function correctly in the presence of invalid
inputs or stressful environment conditions [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/robustness.html7/28/2008 11:32:31 AM

Safety - Definition

Glossary Term

Safety
a measure of the absence of unsafe software conditions. The absence of catastrophic
consequences to the environment [Barbacci 95].

http://www.sei.cmu.edu/str/indexes/glossary/safety.html7/28/2008 11:32:31 AM

Select or develop algorithms - Definition

Glossary Term

Select or develop algorithms
the activity concerned with selecting or developing a procedural representation of the functions in
the software requirements documentation for each software component and data structure. The
algorithms shall completely satisfy the applicable functional and/or mathematical specifications
[IEEE 91].

http://www.sei.cmu.edu/str/indexes/glossary/select-or-develop-algorithms.html7/28/2008 11:32:31 AM

Self-descriptiveness - Definition

Glossary Term

Self-descriptiveness
the degree to which a system or component contains enough information to explain its objectives
and properties [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/self-descriptiveness.html7/28/2008 11:32:32 AM

Simplicity - Definition

Glossary Term

Simplicity
the degree to which a system or component has a design and implementation that is
straightforward and easy to understand [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/simplicity.html7/28/2008 11:32:32 AM

Software architecture - Definition

Glossary Term

Software architecture
the structure of the components of a program/system, their interrelationships, and principles and
guidelines governing their design and evolution over time [Clements 96].

http://www.sei.cmu.edu/str/indexes/glossary/software-architecture.html7/28/2008 11:32:32 AM

Software change cycle time - Definition

Glossary Term

Software change cycle time
the period of time that starts when a new system requirement is identified and ends when the
requirement has been incorporated into the system and delivered for operational use.

http://www.sei.cmu.edu/str/indexes/glossary/software-change-cycle-time.html7/28/2008 11:32:32 AM

Software life cycle - Definition

Glossary Term

Software life cycle
the period of time that begins when a software product is conceived and ends when the software
is no longer available for use. The life cycle typically includes a concept phase, requirements
phase, design phase, implementation phase, test phase, installation and checkout phase, operation
and maintenance phase, and sometimes, retirement phase. These phases may overlap or be
performed iteratively, depending on the software development approach used [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/software-life-cycle.html7/28/2008 11:32:32 AM

Software maintenance - Definition

Glossary Term

Software maintenance
the cost associated with modifying a software system or component after delivery to correct
faults, improve performance or other attributes, or adapt to a changed environment.

http://www.sei.cmu.edu/str/indexes/glossary/software-maintenance.html7/28/2008 11:32:33 AM

Software migration and evolution - Definition

Glossary Term

Software migration and evolution
see Adaptive maintenance.

http://www.sei.cmu.edu/str/indexes/glossary/software-migration-and-evolution.html7/28/2008 11:32:33 AM

Software upgrade and technology insertion - Definition

Glossary Term

Software upgrade and technology insertion
see Perfective maintenance.

http://www.sei.cmu.edu/str/indexes/glossary/software-upgrade-and-technology-insertion.html7/28/2008 11:32:33 AM

Speed - Definition

Glossary Term

Speed
the rate at which a software system or component performs its functions.

http://www.sei.cmu.edu/str/indexes/glossary/speed.html7/28/2008 11:32:33 AM

Statistical testing - Definition

Glossary Term

Statistical testing
employing statistical science to evaluate a system or component. Used to demonstrate a system's
fitness for use, to predict the reliability of a system in an operational environment, to efficiently
allocate testing resources, to predict the amount of testing required after a system change, to
qualify components for reuse, and to identify when enough testing has been accomplished [Poore
96].

http://www.sei.cmu.edu/str/indexes/glossary/statistical-testing.html7/28/2008 11:32:34 AM

Structuredness - Definition

Glossary Term

Structuredness
the degree to which a system or component possesses a definite pattern of organization of its
interdependent parts [Boehm 78].

http://www.sei.cmu.edu/str/indexes/glossary/structuredness.html7/28/2008 11:32:34 AM

Sufficiency of characteristics - Definition

Glossary Term

Sufficiency of characteristics
the degree to which the features and capabilities of a software system adequately meet the user's
needs.

http://www.sei.cmu.edu/str/indexes/glossary/sufficiency-of-characteristics.html7/28/2008 11:32:34 AM

Survivability - Definition

Glossary Term

Survivability
the degree to which essential functions are still available even though some part of the system is
down [Deutsch 88].

http://www.sei.cmu.edu/str/indexes/glossary/survivability.html7/28/2008 11:32:34 AM

System allocation - Definition

Glossary Term

System allocation
mapping the required functions to software and hardware. This activity is the bridge between
concept exploration and the definition of software requirements [IEEE 91].

http://www.sei.cmu.edu/str/indexes/glossary/system-allocation.html7/28/2008 11:32:34 AM

System analysis and optimization - Definition

Glossary Term

System analysis and optimization
a systematic investigation of a real or planned system to determine the information requirements
and processes of the system and how these relate to each other and to any other system, and to
make improvements to the system where possible.

http://www.sei.cmu.edu/str/indexes/glossary/system-analysis-and-optimization.html7/28/2008 11:32:35 AM

System security - Definition

Glossary Term

System security
a system function that restricts the use of objects to certain users [McDaniel 94].

http://www.sei.cmu.edu/str/indexes/glossary/system-security.html7/28/2008 11:32:35 AM

System testing - Definition

Glossary Term

System testing
testing conducted on a complete, integrated system to evaluate the system's compliance with its
specified requirements [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/system-testing.html7/28/2008 11:32:35 AM

Taxonomy - Definition

Glossary Term

Taxonomy
a scheme that partitions a body of knowledge and defines the relationships among the pieces. It is
used for classifying and understanding the body of knowledge [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/taxonomy.html7/28/2008 11:32:35 AM

Test - Definition

Glossary Term

Test
an activity in which a system or component is executed under specified conditions, the results are
observed or recorded, and an evaluation is made of some aspect of the system or component
[IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/test.html7/28/2008 11:32:36 AM

Test drivers - Definition

Glossary Term

Test drivers
software modules used to invoke a module(s) under test and, often, provide test inputs, control
and monitor execution, and report test results [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/test-drivers.html7/28/2008 11:32:36 AM

Test phase - Definition

Glossary Term

Test phase
the period of time in the software life cycle during which the components of a software product
are evaluated and integrated, and the software product is evaluated to determine whether or not
requirements have been satisfied [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/test-phase.html7/28/2008 11:32:36 AM

Test tools - Definition

Glossary Term

Test tools
computer programs used in the testing of a system, a component of the system, or its
documentation. Examples include monitor, test case generator, timing analyzer [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/test-tools.html7/28/2008 11:32:36 AM

Testing - Definition

Glossary Term

Testing
the process of operating a system or component under specified conditions, observing or
recording the results, and making an evaluation of some aspect of the system or component
[IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/testing.html7/28/2008 11:32:36 AM

Unit testing - Definition

Glossary Term

Unit testing
testing of individual hardware or software units or groups of related units [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/unit-testing.html7/28/2008 11:32:37 AM

Training - Definition

Glossary Term

Training
Provisions to learn how to develop, maintain, or use the software system.

http://www.sei.cmu.edu/str/indexes/glossary/training.html7/28/2008 11:32:37 AM

Trouble report analysis - Definition

Glossary Term

Trouble report analysis
the methodical investigation of a reported operational system deficiency to determine what, if
any, corrective action needs to be taken.

http://www.sei.cmu.edu/str/indexes/glossary/trouble-report-analysis.html7/28/2008 11:32:37 AM

Upgradeability - Definition

Glossary Term

Upgradeability
see Evolvability.

http://www.sei.cmu.edu/str/indexes/glossary/upgradeability.html7/28/2008 11:32:37 AM

User interface - Definition

Glossary Term

User interface
an interface that enables information to be passed between a human user and hardware or
software components of a computer system [IEEE 90].

http://www.sei.cmu.edu/str/indexes/glossary/user-interface.html7/28/2008 11:32:37 AM

Verifiability - Definition

Glossary Term

Verifiability
the relative effort to verify the specified software operation and performance [Evans 87].

http://www.sei.cmu.edu/str/indexes/glossary/verifiability.html7/28/2008 11:32:38 AM

Vulnerability - Definition

Glossary Term

Vulnerability
the degree to which a software system or component is open to unauthorized access, change, or
disclosure of information and is susceptible to interference or disruption of system services.

http://www.sei.cmu.edu/str/indexes/glossary/vulnerability.html7/28/2008 11:32:38 AM

Submit Comments

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

Glossary &
Indexes

Submit Comments

Submitter and Contact Information

Please enter the following information. We need it to process your comments.
(Required fields are in boldface.)

Submitter name:

Job Title:

Organization:

Phone:

FAX:

E-mail:

Comments or Additional Information

Name of Technology:

Please enter below any comments or additional information you have about this
technology, such as:

● Suggested correction of information in the technology description
● Results (good or bad) of using this technology
● New releases of actual and defacto industry standards

Whenever possible, please provide justifications and/or references to support
your comments.

http://www.sei.cmu.edu/str/feedback/comments-description.html (1 of 2)7/28/2008 11:32:39 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/feedback/comments-description.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Submit Comments

To prevent automated submissions, please enter the text shown on the image as

the verification code below:

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/feedback/comments-description.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/feedback/comments-description.html (2 of 2)7/28/2008 11:32:39 AM

http://www.sei.cmu.edu/about/disclaimer.html

Submit Comments

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

Glossary &
Indexes

Submit Comments

Submitter and Contact Information

Please enter the following information. We need it to process your comments.
(Required fields are in boldface.)

Submitter name:

Job Title:

Organization:

Phone:

FAX:

E-mail:

Your Comments

Please enter below any comments you have about the STR, such as:

● How the STR has helped you to accomplish your job
● In what context you have used the STR (names of projects, programs,

efforts, and application domains will be kept confidential)
● What sections you have found useful
● Whether or not you have found the STR easy to use
● How the STR could be improved

http://www.sei.cmu.edu/str/feedback/comments-overall.html (1 of 2)7/28/2008 11:32:39 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/feedback/comments-overall.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Submit Comments

To prevent automated submissions, please enter the text shown on the image as

the verification code below:

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/feedback/comments-overall.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/feedback/comments-overall.html (2 of 2)7/28/2008 11:32:39 AM

http://www.sei.cmu.edu/about/disclaimer.html

Submitting a New Technology Description

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

Glossary &
Indexes

Submitting a New Technology Description

Thank you for your interest in becoming an author for the Software Technology
Review!

Potential topics are listed below. If you are interested in writing a technology
description on any of these or on another topic, please send mail to str@sei.cmu.
edu and review Guidelines for Authoring a Technology Description.

Potential Topics for the Software Technology Review

Agents/Agent-Based Computing

Algebraic Specification Method

AI/Expert Systems

ATM

Bindings

Bowles Metrics

C Programming Language

C++ Programming Language

COCOMO Method

Collaboration Technologies

Common LISP Object System
(CLOS) Programming Language

Comparative/Taxonomic Modeling

Computer-Human Interface
Technology

Configuration Management

Data Complexity

Data Fusion

Data Integrity

Data Mining

Data Warehousing

Design Complexity

Dynamic Languages

Dynamic Simulation

Object-Oriented Programming
Language*

Object Pascal Programming
Language

Objective C Programming Language

OSI

Parallel Processing Software
Architecture

Peer Reviews

PERL Programming Language

POSIX

Probabilistic Automata

Program Slicing

Program Understanding

Project Support Environment
Reference Model (PSERM)

Public Key Cryptography

Rationale Capture Overview

Real-Time Computing

Real-Time Operating Systems

Redundant Test Case Elimination

Regression Testing Techniques

Relational DBMS

Remote Data Access (RDA)

http://www.sei.cmu.edu/str/feedback/new-description.html (1 of 3)7/28/2008 11:32:40 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/feedback/new-description.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
mailto:str@sei.cmu.edu
mailto:str@sei.cmu.edu

Submitting a New Technology Description

Eiffel Programming Language

Electronic Encryption Key
Distribution

Encryption

End-to-End Encryption

Entity-Relationship Modeling

Essential Complexity

Essential Systems Analysis

European Computer
Manufacturers Association
Reference Model [ECMA]

Fault Tolerant Computing

File Server Software Architecture

Finite State Automata

Formal Methods

Functional Decomposition

Henry and Kafura Metrics

HTML Programming Language

Interface Definition Language

Joint Technical Architecture (JTA)

Legacy Systems Migration/
Evolution

Ligier Metrics

LISP Programming Language

Mediators

Model Checking

Motif User Interface Language
(UIL)

MSSI (NSA)

Multimedia

Network Auditing Techniques

Network Security Guards

Network Simulation

Neural Networks

Object-Oriented Analysis*

Object-Oriented Database*

Object-Oriented Design*

Representation and Maintenance of
Process Knowledge Method

Resolution-Based Theorem Proving

Risk Management

Security (Guards, Compartmented
Mode Workstations)

Session-Based Technology

Simula Programming Language

Smalltalk Programming Language

Software Architecture Overview

Software Generation Systems

Software Reliability Modeling and
Analysis

Software Reuse

Specification Construction
Techniques

SQL

Statistical Test Plan Generation and
Coverage Analysis Techniques

Stochastic Methods

Structured Analysis and Design

Systems Engineering Tools

TCL Programming Language

TCP/IP

Test and Analysis Tool Generation

Test Case Generation

Test Data Generation by Chaining

Testing Technologies Overview

Troy and Zweben Metric

Trusted Computing Base

Virtual Reality

Visual Programming Techniques

X.25

Web-Based Computing/Software
Development

Web Security

Window Managers

Wrappers

*Technology description currently exists, but needs to be substantially rewritten/
expanded.

http://www.sei.cmu.edu/str/feedback/new-description.html (2 of 3)7/28/2008 11:32:40 AM

Submitting a New Technology Description

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/feedback/new-description.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/feedback/new-description.html (3 of 3)7/28/2008 11:32:40 AM

http://www.sei.cmu.edu/about/disclaimer.html

ANSI 83

References and Information Sources

[ANSI
83]

ANSI/MIL-STD-1815A-1983. Reference Manual for the Ada Programming Language.
New York, NY: American National Standards Institute, Inc., 1983.

http://www.sei.cmu.edu/str/indexes/references/ANSI_83_bold.html7/28/2008 11:32:40 AM

AdaIC 96

References and Information Sources

[AdaIC
96]

AdaIC NEWS [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/news/>
(1996).

http://www.sei.cmu.edu/str/indexes/references/AdaIC_96_bold.html7/28/2008 11:32:40 AM

http://sw-eng.falls-church.va.us/AdaIC/news/

Syiek 95

References and Information Sources

[Syiek
95]

Syiek, David. "C vs. Ada: Arguing Performance Religion." ACM Ada Letters 15, 6
(November/December 1995): 67-9.

http://www.sei.cmu.edu/str/indexes/references/Syiek_95.html7/28/2008 11:32:41 AM

Hefley 92

References and Information Sources

[Hefley
92]

Hefley, W.; Foreman, J.; Engle, C.; & Goodenough, J. Ada Adoption Handbook: A
Program Manager's Guide Version 2.0 (CMU/SEI-92-TR-29, ADA258937). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University, 1992.

http://www.sei.cmu.edu/str/indexes/references/Hefley_92_bold.html7/28/2008 11:32:41 AM

Engle 96

References and Information Sources

[Engle
96]

Engle, Chuck. Re[2]: Ada 83/Ada 95 [email to Gary Haines], [online]. Available email:
ghaines@spacecom.af.mil (August 19, 1996).

http://www.sei.cmu.edu/str/indexes/references/Engle_96.html7/28/2008 11:32:41 AM

mailto:ghaines@spacecom.af.mil

Compilers 96

References and Information Sources

[Compilers
96]

Ada 83 Validated Compilers List [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/AdaIC/compilers/83val/83vcl.txt> (August
1996).

http://www.sei.cmu.edu/str/indexes/references/Compilers_96.html7/28/2008 11:32:41 AM

http://sw-eng.falls-church.va.us/AdaIC/compilers/83val/83vcl.txt

Holzer 96

References and Information Sources

[Holzer
96]

Holzer, Robert. "Sea Trials Prompt U.S. Navy to Tout Seawolf Sub's Virtues," Defense
News 11, 28 (July 15-20, 1996): 12.

http://www.sei.cmu.edu/str/indexes/references/Holzer_96.html7/28/2008 11:32:41 AM

Pehrson 96

References and Information Sources

[Pehrson
96]

Pehrson, Ron J. Software Development for the Boeing 777 [online]. Available
WWW
<URL: http://www.stsc.hill.af.mil/CrossTalk/1996/jan/Boein777.html> (1996).

http://www.sei.cmu.edu/str/indexes/references/Pehrson_96.html7/28/2008 11:32:42 AM

http://www.stsc.hill.af.mil/CrossTalk/1996/jan/Boein777.html

ReuseIC 95

References and Information Sources

[ReuseIC
95]

Boeing 777: Flying High with Ada and Reuse [online]. Available WWW
<URL: http://sw-eng.falls-church.va.us/ReuseIC/pubs/flyers/boe-reus.shtml>
(1995).

http://www.sei.cmu.edu/str/indexes/references/ReuseIC_95.html7/28/2008 11:32:42 AM

http://sw-eng.falls-church.va.us/ReuseIC/pubs/flyers/boe-reus.shtml

Zeigler 95

References and Information Sources

[Zeigler
95]

Zeigler, Stephen F. Comparing Development Costs of C and Ada [online]. Available
WWW
<URL: http://sw-eng.falls-church.va.us/> (1995).

http://www.sei.cmu.edu/str/indexes/references/Zeigler_95.html7/28/2008 11:32:42 AM

http://sw-eng.falls-church.va.us/

IEEE 87

References and Information Sources

[IEEE
87]

IEEE Std 1002-1987. IEEE Standard Taxonomy for Software Engineering Standards. New
York, NY: Institute of Electrical and Electronics Engineers, 1987.

http://www.sei.cmu.edu/str/indexes/references/IEEE_87.html7/28/2008 11:32:43 AM

Guidelines for Authoring a Technology Description

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

Glossary &
Indexes

Guidelines for Authoring a Technology Description

[Top] [Prev] [Next] [Bottom]

Guidelines for Authoring a Technology
Description

The purpose of this document is to provide guidance to those writing technology
descriptions for the Software Technology Roadmap. It provides background
information about the document and guides authors through the development
and review processes for technology descriptions.

1 Introduction

The Software Technology Roadmap (STR) is a reference document containing
the latest information, in the form of technology descriptions, on approximately
63 software technologies. The STR is of interest to anyone building or
maintaining systems. For more information about the background and audience
of the STR, please see Appendix A.

 The purpose of a technology description is to

● identify a technology
● characterize it in terms of the properties of systems and measures of

software quality that it affects
● point out tradeoffs, benefits, risks and limitations that may arise in various

situations of use

Each technology description also provides reference(s) to literature, indications
of the current maturity of the technology, and cross references to related
technologies.

Technology descriptions are not meant to be comprehensive--each description
should provide the reader with enough knowledge to decide whether to
investigate the technology further, to find out where to go for more information,

http://www.sei.cmu.edu/str/feedback/guide/guide.ch01.html (1 of 2)7/28/2008 11:32:44 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/feedback/guide/guide.ch01.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Guidelines for Authoring a Technology Description

and to know what questions to ask in gathering more information.

Typically, technology descriptions range in size from six to eight pages,
depending on the amount of information available or the maturity of the
technology.

For other examples of technology descriptions, please review the hard copy
document (CMU/SEI-97-HB-001) or visit the STR Web site. The Web site always
has the most recent version of the technology descriptions.

[Top] [Prev] [Next] [Bottom]

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/feedback/guide/guide.ch01.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/feedback/guide/guide.ch01.html (2 of 2)7/28/2008 11:32:44 AM

http://www.sei.cmu.edu/about/disclaimer.html

Software Technology Roadmap: A Guide for Authors

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

Glossary &
Indexes

Software Technology Roadmap: A Guide for Authors

[Top] [Prev] [Next] [Bottom]

2 Writing a Technology Description

This list provides a quick overview of the process involved in creating a
technology description; details are to follow:

1. contact us
2. obtain template
3. write description
4. submit description
5. undergo review cycle
6. enter maintenance phase

 If you are interested in submitting a technology description, please send email
to str@sei.cmu.edu.

 Each technology description follows a structured template; to obtain a copy of
the template, send email to str@sei.cmu.edu or refer to /str/descriptions/
template/template.html.

A description of each section of the template follows.

Status. Each technology description begins with a status indicator. This status
indicator provides an assessment of the overall quality and maturity of the
technology description. One of four indicators is assigned by the STR staff:
Draft, In Review, Advanced, or Complete. All technology descriptions begin in
Draft status. (For a more detailed description of these states, please see Section
2.5.)

Note. Include this section if prerequisite or follow-on reading is recommended.
The prerequisites are usually technology descriptions that provide an overview
of the general topic area and establish a context for the different technologies in
the area.

http://www.sei.cmu.edu/str/feedback/guide/guide.ch02.html (1 of 10)7/28/2008 11:32:45 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/feedback/guide/guide.ch02.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
mailto:str@sei.cmu.edu
mailto:str@sei.cmu.edu

Software Technology Roadmap: A Guide for Authors

Purpose and Origin. This section should provide a general description and brief
background of the technology. It should include what capability or benefit was
anticipated for the technology when originally conceived, and identify common
aliases for the technology as well as its originator(s) or key developer(s) (if
known).

Technical Detail. This section should answer--succinctly--the question, "What
does the technology do?" It should include the salient quality measures (see
Taxonomy Categories) that are influenced by the technology in all situations and
describe the tradeoffs that are enabled by the technology. It may also provide
some insight into why the technology works and what advances are expected.
Since the STR is not a "how-to" manual, do not provide any implementation
details.

Usage Considerations. This section should provide insight for the use of the
technology. Issues to be addressed include

● example applications into which this technology may be incorporated (or
should not be incorporated); for instance, "this technology, because of its
emphasis on synchronized processing, is particularly suited for real-time
applications"

● quality measures that may be influenced by this technology, depending
on the particular context in which the application is employed

Maturity. The purpose of this section is to provide an indication as to how well-
developed the technology is. (A technology that was developed a year or two
ago and is still in the experimental stage--or still being developed at the
university research level--will likely be more difficult to adopt than one that has
been in use in many systems for a decade.) It is not the intent of this document
to provide an absolute measure of maturity, but to provide enough information to
allow the reader to make an informed judgment as to the technology's maturity
for their application area. Details that will help in this determination include

● the extent to which the technology has been incorporated into real
systems, tools, or commercial products

● the success that developers have had in adopting and using the
technology

● notable failures of the technology (if any)

Other information that might appear in this section includes trend information,
such as a projection of the technology's long term potential; observations about
the rate of maturation; and implications of rapid maturation.

Costs and Limitations. This section should point out limitations and costs of
using a particular technology. Some examples of the kinds of costs and
limitations associated with a technology are the following: a technology may
impose an otherwise unnecessary interface standard; it might require investment
in other technologies (see Dependencies below); it might require investment of
time or money; or it may directly conflict with security or real-time requirements.
Specific items to discuss include

http://www.sei.cmu.edu/str/feedback/guide/guide.ch02.html (2 of 10)7/28/2008 11:32:45 AM

Software Technology Roadmap: A Guide for Authors

● what is needed to adopt this technology (this could mean training
requirements, skill levels needed, programming languages, or specific
architectures)?

● how long it takes to incorporate or implement this technology?
● barriers to the use of this technology
● reasons why this technology would not be used

Dependencies. This section should identify other technologies that influence or
are influenced by the technology being described. You should only include
dependencies for which significant influence in either direction is expected. You
should also provide an indication as to why the dependency exists (usually in
terms of quality measure or usage consideration). If the dependent technology
appears in the document, provide a cross-reference to it. Omit this paragraph if
no dependencies are known.

Alternatives. An alternative technology is one that could be used for the same
purposes as the technology being described. A technology is an alternative if
there is any situation or purpose for which both technologies are viable or likely
to be considered candidates. Alternatives may represent a simple choice among
technologies that achieve the same solution to a problem, or they may represent
completely different approaches to the problem being addressed by the
technology.

For each alternative technology, provide a concise description of the situations
for which it provides an alternative. Also provide any special considerations that
could help in selecting among alternatives. If the alternative technology appears
in the document, provide a cross-reference to it.

Alternative technologies are distinct from dependent or complementary
technologies, which must be used in combination with the technology being
described to achieve the given purpose.

Complementary Technologies. A complementary technology is one that
enhances or is enhanced by the technology being described, but for which
neither is critical to the development or use of the other (if it were critical, then it
would appear in the "Dependencies" section above). Typically, a complementary
technology is one that--in combination with this technology--will achieve benefits
or capabilities that are not obvious when the technologies are considered
separately. For each complementary technology, provide a concise description
of the conditions under which it is complementary and the additional benefits that
are provided by the combination. If the complementary technology appears in
the document, provide a cross-reference to it.

Taxonomy Categories. We have created several taxonomies to categorize
technology descriptions. These taxonomies are:

● Application taxonomy. This taxonomy refers to how this technology would
be employed, either in support of operational systems (perhaps in a
particular phase of the life cycle) or in actual operation of systems (for
example, to provide system security).

● Quality measures taxonomy. This is a list of those quality attributes (e.g.,

http://www.sei.cmu.edu/str/feedback/guide/guide.ch02.html (3 of 10)7/28/2008 11:32:45 AM

Software Technology Roadmap: A Guide for Authors

reliability or responsiveness) that are influenced in some way by the
application of this technology.

● Computing Reviews taxonomy: This taxonomy describes the technical
subdiscipline within Computer Science into which the technology falls.
The category is based on the ACM Computing Reviews Classification
System developed in 1991 (and currently undergoing revision). A
complete description of the Classification System and its contents can be
found in any January issue of Computing Surveys or in the annual ACM
Guide to Computing Literature.

For each of these taxonomies, you should suggest terms under which your
technology description can be classified. See our Web site for the full
taxonomies: /str/taxonomies/

References and Information Sources. The final section in each technology
description provides bibliographic information. You should include sources cited
in the technology description, as well as pointers to additional resources that a
reader can go to for more information. You should designate one to four key
references with an asterisk (*). Key references are those that will best assist a
reader in learning more about the technology.

Current Author/Maintainer. The author(s)/maintainer(s) of the current version
of the technology description are listed in this section. The only exceptions are
Draft technology descriptions, which are published without an author's name.

Internal Team Reviewer(s). Name(s) of those on the project team who
reviewed the technology description. (This section will not appear in the
published version of the technology description.)

External Reviewer(s). This section contains names of external experts who
have reviewed this technology description. If no "External Reviewer(s)" heading
is present, then an external review has not occurred. Note: if the preface
"candidate" is used, the individual has been suggested as a reviewer, but has
not yet agreed to participate.

Keyword Index. You should provide a list keywords under which this technology
may be indexed (or indicate those by making a notation in the text). This section
of the templates indicates whether keywords were chosen for this technology
description. This step is not necessary until a technology description reaches the
"In Review" state. (This section will not appear in the published version of the
technology description.)

Future. This section includes items to be considered as part of the future
evolution of this technology description. (This section will not appear in the
published version of the technology description.)

Background/Support. Provides an explanation for some key piece of
information in the technology description. (This section will not appear in the
published version of the technology description.)

Modifications. This area lists the modification history of the technology

http://www.sei.cmu.edu/str/feedback/guide/guide.ch02.html (4 of 10)7/28/2008 11:32:45 AM

Software Technology Roadmap: A Guide for Authors

description and includes the names of contributing authors from earlier versions
of the description.

Pending. A known item that needs to be addressed in future versions of the
description. These are posted (when known) so that the reader can pursue these
items on their own if necessary.

We ask that you follow these guidelines when writing and submitting new
material to the STR. If you have any questions about these guidelines, send
email to str@sei.cmu.edu.

2.3.1 Electronic Format

All technology descriptions should be submitted in ASCII (plain text) on a disk or
by email. Note: You may develop the description in a word processor if you
prefer, but you should save your technology description in a plain text format
before you submit the file.

2.3.2 Graphics

Any graphics used in technology descriptions should be drawn in either
PowerPoint or FrameMaker and submitted on a disk or by email.

2.3.3 Cross-References and Minor Formatting

When working in ASCII text, use the following notations to indicate cross-
references and formatting conventions.

To denote cross-references (to other technology descriptions, etc.), use the
format [xref: <name of technology description, heading, etc.>]. For example

See object-oriented programming languages [xref: object-oriented programming
languages] for more information about this topic.

The Cleanroom [xref: Cleanroom] technology description covers this in more
detail. To denote bold and italics, use the formats <b text to be bold /b> for bold
text, <i text to be italicized /i> for italicized text. For example

This is <b not /b> an object-oriented programming language.

This technology supports <i maintainability /i> of large-scale software systems.
To denote terms you would like to have included in the Keyword Index, use the
format [index: <term to be indexed>].

See object-oriented programming languages [index: object-oriented
programming languages] for more information about this topic.

http://www.sei.cmu.edu/str/feedback/guide/guide.ch02.html (5 of 10)7/28/2008 11:32:45 AM

mailto:str@sei.cmu.edu

Software Technology Roadmap: A Guide for Authors

2.3.4 References and Information Sources

Please follow these guidelines when including references and information
sources in your technology descriptions.

● Include only published documents, i.e., do not cite draft documents or
those "to be published." If you must reference an unpublished document,
use a footnote.

● Include only publicly-available documents.
● To the extent possible, follow the reference guidelines below.

Note: Don't forget to indicate key references with an asterisk.

Citations in text should appear in brackets and contain the last name of the
author, editor, or publishing organization by which the document is identified in
the reference list followed by a space and the last two digits of the year of
publication.

[Brown 89]

[IEEE 90]

The only legitimate function of a citation is to refer the reader to the list at the
end of the document. Therefore, a citation should not be a semantic element of
the sentence in which it occurs. All sentences should be complete without
citations. [wrong] The process is described in [Brown 89].

[right] Brown has described this process [Brown 89].

For consecutive citations, use a single bracket.

[Brown 89, IEEE 90]

For consecutive citations by the same author, use a single bracket but enclose
the complete citations:

[Brown 89, Brown 90]

The following examples offer formatting information for several types of
references. Please make an effort to include all of the information requested for
each reference; we need to have the information before the technology

http://www.sei.cmu.edu/str/feedback/guide/guide.ch02.html (6 of 10)7/28/2008 11:32:45 AM

Software Technology Roadmap: A Guide for Authors

description can be published.

Citing Books

Template

[<citation>] <last name>, <first name> <middle initial>. <title>. <city, state of
publication>: <publisher's name>, <date of publication>.

Example

[Yourdon 89] Yourdon, Edward N. Modern Structured Analysis. Englewood
Cliffs, N.J.: Prentice-Hall, 1989.

Citing Technical and Research Reports

Template

[<citation>] <last name>, <first name> <middle initial>. <title of report>
(<report number>, <DTIC number when available>). <city and
state of publication>: <publisher's name>, <date of publication>.

Example

[Graham 89] Graham, Marc H. Guidelines for the Use of SAME (CMU/SEI-89-
TR-16, ADA228027). Pittsburgh, Pa.: Software Engineering
Institute, Carnegie Mellon University, 1989.

Citing Journals

Template

[<citation>] <last name>, <first name> <middle initial>. "<title of article>."
<journal title> <volume number>, <number of issue> (<month or
season and year of issue>): <inclusive page numbers>.

Example

http://www.sei.cmu.edu/str/feedback/guide/guide.ch02.html (7 of 10)7/28/2008 11:32:45 AM

Software Technology Roadmap: A Guide for Authors

[Bohm 66] Bohm, Charles. "Flow Diagrams, Turing Machines, and Languages
With Only Two Formation Rules." Communications of the ACM 8,
5 (May 1966): 366-371.

Citing WWW sites

Template

[<citation>] <last name>, <first name> <middle initial>. <title> [online].
Available <FTP/Telnet/WWW>: <<URL>> <(year of publication)>.

Example

[Rogers 92] Rogers, Robin. User's Guide to the Beaches of Southern California
[online]. Available WWW <URL: http://www.acme.com:/rogers/
docs/beaches/so_cal/ug> (1992).

Citing Meetings and Symposia

Template

[<citation>] <last name>, <first name> <middle initial>. "<title of the article>,"
<page numbers>. Proceedings of <name of the meeting or
symposium>. <city and state of meeting or symposium>, <date(s)
and year of meeting or symposium>. <city, state of publication>:
<publisher's name>, <date of publication>.

Example

[Kaiser 89] Kaiser, G. "Mechanisms," 256-275. Proceedings of the 5th
International Software Process Workshop. Kennebunkport, Maine,
Oct. 10-13, 1989. New York: IEE Computer Society Press, 1990.

2.3.5 Editing

All technology descriptions will be edited for consistency and conformance to the
SEI Style Guide. Any substantial edits will be subject to the approval of the
author and/or the STR review staff. To obtain a copy of the style guide, send
mail to str@sei.cmu.edu.

http://www.sei.cmu.edu/str/feedback/guide/guide.ch02.html (8 of 10)7/28/2008 11:32:45 AM

mailto:str@sei.cmu.edu

Software Technology Roadmap: A Guide for Authors

 See Appendix B for a pre-submission checklist. By following the checklist, you
can make sure your submissions are complete before you send them in.

Email submissions to: str@sei.cmu.edu

Mail submissions to: Lauren Heinz
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-3890

 In order to sustain credibility and accuracy, each technology description goes
through a review process. Please see Appendix C for a copy of the checklist
used by reviewers. (The checklist may help you as you write your technology
description.)

The review cycle includes the following steps:

● review by technology cluster leader (if one exists)
● internal team review*
● external review

While in the review cycle, a technology description progresses through the
following stages: Draft, In Review, Advanced, and Complete. Each of the four
status indicators is explained below:

Draft technology descriptions have the following attributes:

● They need more work.
● They have generally not been reviewed.
● Overall assessment: While technology descriptions labeled "Draft" will

contain some useful information, readers should not rely on these
descriptions as their only source of information about the topic. Readers
should consider these descriptions as starting points for conducting their
own research about the technology.

In Review technology descriptions have the following attributes:

● They are thought to be in fair technical shape.
● They have begun an internal review cycle*.
● They may have major issues that must be resolved, or some sections that

may require additional text.
● Relevant keywords have been added to the Keyword Index.
● Overall assessment: Readers can get some quality information from

these, but because these descriptions have not been completely
reviewed, readers should explore some of the references for additional
information and consider conducting their own research about the
technology.

Advanced technology descriptions have the following attributes:

http://www.sei.cmu.edu/str/feedback/guide/guide.ch02.html (9 of 10)7/28/2008 11:32:45 AM

mailto:str@sei.cmu.edu

Software Technology Roadmap: A Guide for Authors

● They are in good technical shape.
● Internal review has occurred.
● There are minor issues to be worked, but it is generally polished.
● They are subject to additional review by external reviewers.
● Relevant keywords have been added to the Keyword Index.
● Overall assessment: These descriptions are in rather good shape, but

because they have not been through external review, readers should
exercise some caution.

Complete technology descriptions have the following attributes:

● At least one expert external review has occurred, and issues from that
review have been resolved.

● Relevant keywords have been added to the Keyword Index.
● No additional work is necessary at this time.
● Overall assessment: These technology descriptions are believed to be

complete and correct. They would be revised in the future based on
additional external reviewers, new information, and public feedback.

 Please note: Once the technology description has been formatted in
FrameMaker and coded in HTML, we will accept submissions as hard-copy
markups only, unless the technology description has been sufficiently revised to
warrant total replacement.

* Internal review cycle refers to the review process that takes place within the
development/editorial team.

[Top] [Prev] [Next] [Bottom]

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/feedback/guide/guide.ch02.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/feedback/guide/guide.ch02.html (10 of 10)7/28/2008 11:32:45 AM

http://www.sei.cmu.edu/about/disclaimer.html

http://www.sei.cmu.edu/str/feedback/guide/guide.appc.html

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

Glossary &
Indexes

[Top] [Prev] [Next] [Bottom]

Appendix C: Reviewer Checklist

Check Yes or No to indicate whether or not the following criteria have been
satisfied. If you check No for an item, please document why in the Reviewer's
Notes and Comments to STR Staff section below. The author will use your
comments for future revisions.

Yes No

There is a clear message of value to the reader ____ ____

The technology description contains information that is relevant to
the reader, whether or not the reader is already aware of its
relevance

____ ____

The technology description does not discuss specific products or
compare products

____ ____

The technology description includes all the prescribed
information

____ ____

sufficient level of technical detail ____ ____

pointers to literature ____ ____

applications employing technology description ____ ____

quality measure influenced ____ ____

usage contexts and considerations ____ ____

maturity indication, including trends ____ ____

costs and limitations ____ ____

all appropriate cross-references ____ ____

The technology description is as concise as possible ____ ____

irrelevant issues are not discussed ____ ____

words and phrases have a purpose ____ ____

words and phrases add meaning ____ ____

http://www.sei.cmu.edu/str/feedback/guide/guide.appc.html (1 of 3)7/28/2008 11:32:45 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/feedback/guide/guide.appc.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

http://www.sei.cmu.edu/str/feedback/guide/guide.appc.html

points made have value to the reader ____ ____

information is not redundantly provided ____ ____

hype is excluded ____ ____

Most new readers will go away with information they did not
previously have

____ ____

The technology description assists the reader in making tradeoffs ____ ____

The reader can tell whether to investigate further ____ ____

The reader can tell where to investigate further ____ ____

The reader who wants to further pursue this topic will know where
to look next

____ ____

The technology description does not advocate, it only characterizes ____ ____

The technology description gives a balanced and unbiased
treatment of the subject matter

____ ____

The technology description gives the reader confidence ____ ____

in the claims being made ____ ____

evidence is provided or indicated ____ ____

quality of sources and evidence is indicated ____ ____

short examples or illustrations are given ____ ____

Limits of the technology are clearly stated ____ ____

Reviewer's Notes and Comments to STR Staff:

reviewer's name

review date

reviewer's organization

reviewer's phone number

reviewer's title

reviewer's email address

Submit Reviewer Checklist by email to: str@sei.cmu.eduSubmit Reviewer
Checklist by US mail to:

Software Technology Review Administrator
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-3890

http://www.sei.cmu.edu/str/feedback/guide/guide.appc.html (2 of 3)7/28/2008 11:32:45 AM

mailto:str@sei.cmu.edu

http://www.sei.cmu.edu/str/feedback/guide/guide.appc.html

[Top] [Prev] [Next] [Bottom]

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/feedback/guide/guide.appc.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/feedback/guide/guide.appc.html (3 of 3)7/28/2008 11:32:45 AM

http://www.sei.cmu.edu/about/disclaimer.html

I forgot to put in a title

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

Glossary &
Indexes

I forgot to put in a title

[Top] [Prev] [Next] [Bottom]

Appendix A: Background of the STR

The Air Force acquisition community tasked the Software Engineering Institute
(SEI) to create a reference document that would provide the Air Force with a
better understanding of software technologies. This knowledge will allow the Air
Force to systematically plan the research and development (R&D) and
technology insertion required to meet current and future Air Force needs, from
the upgrade and evolution of current systems to the development of new
systems.

The document is intended to be a guide to specific software technologies of
interest to those building or maintaining systems, especially those in command,
control, and/or communications applications. The document has many goals:

●

● to provide common ground by which contractors, commercial companies,
researchers, government program offices, and software maintenance
organizations may assess technologies

● to serve as Cliffs Notes for specific software technologies; to encapsulate
a large amount of information so that the reader can rapidly read the
basics and make a preliminary decision on whether further research is
warranted

● to achieve objectivity, balance, and a quantitative focus, bringing out both
shortcomings as well as advantages, and provide insight into areas such
as costs, risks, quality, ease of use, security, and alternatives

● to layer information so that readers can find subordinate technology
descriptions (where they exist) to learn more about the topic(s) of specific
interest, and to provide references to sources of more detailed technical
information, to include usage and experience

While the document provides balanced coverage of a wide scope of
technologies, there are certain constraints on the content of the document:

http://www.sei.cmu.edu/str/feedback/guide/guide.appa.html (1 of 5)7/28/2008 11:32:46 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/feedback/guide/guide.appa.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

I forgot to put in a title

●

● Not prescriptive. This document is not prescriptive; it does not make
recommendations, establish priorities, or dictate a specific path/approach.
The reader must make decisions about whether a technology is
appropriate for a specific engineering and programmatic context
depending on the planned intended use, its maturity, other technologies
that will be used, the specific time frame envisioned, and funding
constraints.

● Not a product reference. This document is not a survey or catalog of
products. There are many reasons for this, including the rapid
proliferation of products, the need to continually assess product
capabilities, questions of perceived endorsement, and the fact that
products are almost always a collection of technologies. It is up to the
reader to decide which products are appropriate for their context. DataPro
and Auerbach would likely be better sources of product-specific
information.

● Not an endorsement. Inclusion or exclusion of a topic in this document
does not constitute an endorsement of any type, or selection as any sort
of "best technical practice." Judgements such as these must be made by
the readers based on their contexts; our goal is to provide the balanced
information to enable those judgements.

● Not a market forecasting tool. While the technology descriptions may
project the effect of a technology and discuss trends, more complete
technology market analysis and forecast reports are produced by
organizations such as The Yankee Group, Gartner Group, and IDC.

● Not a focused analysis of specific technical areas. Various sources such
as Ovum, Ltd. and The Standish Group offer reports on a subscription or
one-time basis on topics such as workflow, open systems, and software
project failure analyses, and may also produce specialized analyses and
reporting on a consulting basis.

This document is relevant to many audiences. The audiences and a description
of how each audience can use this document are shown in the table below.

User Job Roles/Tasks
Document Capabilities/

Value

http://www.sei.cmu.edu/str/feedback/guide/guide.appa.html (2 of 5)7/28/2008 11:32:46 AM

I forgot to put in a title

PEO/Executive

Pentagon Action
Officer

Acquisition oversight,
funding advocacy

Motivate introduction of
new/commercial
technologies

Policy issues

Overview/introductory
info

Baseline reference
document

"Cliff Notes" approach--
provides high-level, 6-8
page quick study

Tradeoff information

System Program
Manager (SPM) and
Technical Staff

(Includes FFRDCs
(MITRE, etc.) and
may include
government
laboratories)

Writes Request for
Proposal (RFP) or some
form of solicitation based
on user requirements

Reviews proposals and
selects developers

Manages development
and/or maintenance work

All of previous category,
plus:

Taxonomies to aid in
identifying alternatives

Back pointers to high-
level, related technologies

Criteria and guidance for
decision-making

Tech transfer/insertion
guidelines

Selected high-value
references to more
technical information, to
include usage and
experience data

Generally the sort of
analysis and survey
information that would
not be accomplished
under normal project
circumstances

http://www.sei.cmu.edu/str/feedback/guide/guide.appa.html (3 of 5)7/28/2008 11:32:46 AM

I forgot to put in a title

Developer (to include
research and
development (R&D)
activity)

Performs advanced
development, prototyping,
and technology
investigation focused on
risk reduction and
securing competitive
advantage

Concerned about
transition and insertion
issues

Writes a proposal in
response to solicitations

Performs engineering
development and provides
initial operational system

Same as previous category.

Maintainer Maintains operational
system until the end of the
life cycle

Responds to user
requirements for
corrections or
enhancements

Concerned about inserting
new technologies and
migrating to different
approaches

Same as previous category.

User Communicates
operational needs

End customer for
operational system

Communicates
alternatives and risks, and
provides perspective of
what technology can
(reasonably) provide

[Top] [Prev] [Next] [Bottom]

http://www.sei.cmu.edu/str/feedback/guide/guide.appa.html (4 of 5)7/28/2008 11:32:46 AM

I forgot to put in a title

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/feedback/guide/guide.appa.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/feedback/guide/guide.appa.html (5 of 5)7/28/2008 11:32:46 AM

http://www.sei.cmu.edu/about/disclaimer.html

http://www.sei.cmu.edu/str/feedback/guide/guide.appb.html

Software
Technology
Roadmap

Background &
Overview

Technology
Descriptions

Taxonomies

Glossary &
Indexes

[Top] [Prev] [Next] [Bottom]

Appendix B: Technology Description Checklist

Please review this checklist before you submit a new technology description.

____ text is in ascii

____ images are in PowerPoint or FrameMaker

____ all relevant sections of the template have been addressed

____ cross-references are marked

____ references contain all required information

____ key references have been indicated with an asterisk

____ taxonomy categories have been assigned

____ keyword index terms are marked

Submit files by email to: str@sei.cmu.edu

Submit files by US mail to:

Software Technology Review Administrator
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-3890

[Top] [Prev] [Next] [Bottom]

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

http://www.sei.cmu.edu/str/feedback/guide/guide.appb.html (1 of 2)7/28/2008 11:32:46 AM

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/str/feedback/guide/guide.appb.html?owner=cch
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
mailto:str@sei.cmu.edu

http://www.sei.cmu.edu/str/feedback/guide/guide.appb.html

Copyright 2008 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/str/feedback/guide/guide.appb.html
Last Modified: 24 July 2008

http://www.sei.cmu.edu/str/feedback/guide/guide.appb.html (2 of 2)7/28/2008 11:32:46 AM

http://www.sei.cmu.edu/about/disclaimer.html

	cmu.edu
	Software Technology Roadmap
	Software Technology Roadmap
	About The STR
	STR Technology Descriptions
	Taxonomies
	Glossary & Indexes
	Background
	Target Audiences
	Sponsors and Contributors
	Defining Software Technology
	Technology Categories
	Template for Technology Descriptions
	Ada 95
	Algorithm Formalization
	Application Programming Interface
	Architecture Description Languages
	Argument-Based Design Rationale Capture Methods for Requirements Tracing
	Maintenance of Operational Systems--An Overview
	Message-Oriented Middleware
	Middleware
	Model-Based Verification (MBV) for Software
	Module Interconnection Languages
	Multi-Level Secure Database Management Schemes
	Black-box Modernization of Information Systems
	Capability Maturity Model Integration (CMMI)
	Cleanroom Software Engineering
	Client/Server Software Architectures--An Overview
	Common Management Information Protocol
	Common Object Request Broker Architecture
	Component-Based Software Development / COTS Integration
	Component Object Model (COM), DCOM, and Related Capabilities
	Computer System Security--An Overview
	COTS and Open Systems--An Overview
	Cyclomatic Complexity
	Database Two Phase Commit
	Defense Information Infrastructure Common Operating Environment (DII COE)
	Multi-Level Secure One Way Guard With Random Acknowledgment
	Network Management -- An Overview
	Nonrepudiation in Network Communications
	Object-Oriented Analysis
	Object-Oriented Database
	Object-Oriented Design
	Object-Oriented Programming Languages
	Object Request Broker
	Organization Domain Modeling
	People Capability Maturity Model (People CMM)
	Personal Software Process for Module-Level Development
	Public Key Cryptography
	Public Key Digital Signatures
	Rate Monotonic Analysis
	Reference Models, Architectures, Implementations--An Overview
	Remote Procedure Call
	Requirements Tracing--An Overview
	Digital Certificates
	Distributed/Collaborative Enterprise Architectures
	Distributed Computing Environment
	Domain Engineering and Domain Analysis
	Feature-Based Design Rationale Capture Method for Requirements Tracing
	Feature-Oriented Domain Analysis
	Firewalls and Proxies
	Function Point Analysis
	Graphic Tools for Legacy Database Migration
	Graphical User Interface Builders
	Halstead Complexity Measures
	Intrusion Detection
	Java
	Mainframe Server Software Architectures
	Rule-Based Intrusion Detection
	Simple Network Management Protocol
	Six Sigma
	Simplex Architecture
	Software Inspections
	Statistical-Based Intrusion Detection
	Statistical Process Control for Software
	TAFIM Reference Model
	Team Software Process (TSP)
	Three Tier Software Architectures
	Transaction Processing Monitor Technology
	Trusted Operating Systems
	Two Tier Software Architectures
	Virus Detection
	Maintainability Index Technique for Measuring Program Maintainability
	About the Taxonomies
	View the Application Taxonomy
	View the Quality Measures Taxonomy
	Glossary
	Keywords Index
	Notes
	Feedback and Participation
	Notes
	Notes
	Status - Section Explanation
	Note - Section Explanation
	Purpose and Origin - Section Explanation
	Technical Detail - Section Explanation
	Usage Considerations - Section Explanation
	Maturity - Section Explanation
	Costs and Limitations - Section Explanation
	Dependencies - Section Explanation
	Alternatives - Section Explanation
	Complementary Technologies - Section Explanation
	Index Categories - Section Explanation
	Author - Section Explanation
	Author - Section Explanation
	External Reviewer - Section Explanation
	Last Modified - Section Explanation
	Pending - Section Explanation
	Portability - Definition
	Maintainability - Definition
	Flexibility - Definition
	Reliability - Definition
	Interoperability - Definition
	Lawlis 96
	AdaLRM 95
	Ada 83
	AdaIC 97a
	AdaIC 97b
	Reusability - Definition
	Brosgol 93
	Taylor 95
	Ada 95 - Notes
	AJPO 95
	AJPO 94
	Patton 95
	AdaIC 95
	AdaIC 96a
	Wheeler 96
	Compilers 97
	Mangold 96
	Ada 95
	Ada 83 Related Topics
	Ada 83 Related Topics
	Ada 83 Related Topics
	Related Topics
	Related Topics
	Related Topics
	Related Topics
	Related Topics
	Footnotes - Section Explanation
	Consistency - Definition
	Smith 93b
	Efficiency - Definition
	Smith 90
	Smith 86
	Smith 91
	Smith 93c
	Related Topics
	Related Topics
	Related Topics
	Related Topics
	Modifiability - Definition
	Krechmer 92
	Hines 96
	King 95
	Related Topics
	Architecture Description Languages - Notes
	Architecture Description Languages - Notes
	Garlan 93
	Understandability - Definition
	Garlan 94a
	Luckham 95
	Shaw 95
	Hoare 85
	Architecture Description Languages
	Architecture Description Languages - Notes
	Garlan 94b
	Vestal 96
	Tracz 93
	SATG 96
	SEI 96
	Architecture Description Languages - Notes
	Architecture Description Languages - Notes
	Related Topics
	Related Topics
	Related Topics
	Related Topics
	Paulisch 94
	Perry 92
	Evolvability - Definition
	Shum 94
	Ramesh 92
	Related Topics
	Related Topics
	Related Topics
	Related Topics
	Related Topics
	IEEE 83
	Coleman 94
	Coleman 95
	Maintenance of Operational Systems--An Overview
	Sittenauer 92
	Oman 91
	Welker 95
	Boehm 81
	Alberts 76
	DeMillo 87
	Myers 79
	Maintenance of Operational Systems - Notes
	Related Topics
	Related Topics
	Related Topics
	Related Topics
	Related Topics
	Related Topics
	Related Topics
	Complexity - Definition
	Rao 95
	Message-Oriented Middleware
	Steinke 95
	Related Topics
	Related Topics
	Eckerson 95
	Middleware
	Bernstein 96
	Schreiber 95
	Client 95
	Gluch 98
	Clark 95
	Fujita 96
	Raimi 97
	Gluch 99
	Related Topics
	Related Topics
	DeRemer 76
	Prieto-Diaz 86
	Tichy 79
	Cooprider 79
	Module Interconnection Languages
	Garlan 94
	Geschke 77
	Mitchell 79
	Zand 93
	Module Interconnection Languages - Notes
	Multi-Level Secure Database Management Schemes
	Abrams 95
	Castano 95
	Multi-Level Secure Database Management Schemes - Notes
	Multi-Level Secure Database Management Schemes - Notes
	TPEP 96
	Related Topics
	Related Topics
	DoD 85
	Weiderman 97
	Carr 98
	Karpinski 98
	Shklar
	Eichman 95
	Phoenix Group 97
	De Lucia 97
	Bisdal 97
	Technology Descriptions
	Linger 94
	Mills 87
	Correctness - Definition
	Hausler 94
	Cleanroom Software Technology - Notes
	STARSSCAI 95
	Sherer 96a
	Sherer 96b
	Ett 96
	Linger 96b
	Linger 96a
	Paulk 93
	Related Topics
	Related Topics
	Related Topics
	Related Topics
	Usability - Definition
	Scalability - Definition
	Schussel 96
	Edelstein 94
	OMG 96
	Shelton 93
	Adler 95
	Related Topics
	Common Management Information Protocol - Notes
	Common Management Information Protocol - Notes
	Common Management Information Protocol - Notes
	Vallillee 96
	Stallings 93
	Common Management Information Protocol - Notes
	Common Management Information Protocol - Notes
	Common Management Information Protocol
	Related Topics
	Related Topics
	Related Topics
	Related Topics
	Related Topics
	OMG 96
	Common Object Request Broker Architecture
	Adaptability - Definition
	CORBA 96
	CORBANet 96
	Wallace 96
	Brown 96
	Mowbray 93
	Deng 95
	Brooks 87
	Brown 96a
	Brown 96b
	Component-Based Software Development - Notes
	Clements 95
	Component-Based Software Development / COTS Integration
	ISO 91
	IEEE 93
	Poston 92
	Lettes 96
	STARSSCAI 95
	Valetto 95
	Component-Based Software Development - Notes
	Vidger 96
	Abowd 94
	Kontio 96
	PRISM 96
	PLAS 96
	NASA 96a
	NASA 96b
	Monfort 96
	Related Topics
	COM 95
	DCOM 97
	Brockschmidt 95
	Active 97
	COM 95
	Component Object Model (COM), DCOM, and Related Capabilities
	COM 95
	Microsoft 96
	VeriSign 97
	Foody 96
	Computer System Security--An Overview
	Woodward 87
	MISSI 96
	Related Topics
	FAR 96
	COTS and Open Systems - An Overview - Notes
	Meyers 97
	COTS and Open Systems - An Overview - Notes
	COTS and Open Systems - An Overview - Notes
	Carney 97a
	Carney 97b
	IEWCS 96
	OSJTF 96
	Related Topics
	Related Topics
	Related Topics
	McCabe 94
	McCabe 89
	Cyclomatic Complexity
	Testability - Definition
	Marciniak 94
	Related Topics
	Accuracy - Definition
	ORACLE7 92
	UCSB 94
	Database Two Phase Commit
	Citron 93
	X/Open 96
	Related Topics
	Related Topics
	DII COE 96a
	DII COE 96b
	Defense Information Infrastructure Common Operating Environment (DII COE)
	Perry 96
	JTA 96
	ECMA 93
	HP 96
	Multi-Level Secure One Way Guard with Random Acknowledgment - Notes
	Related Topics
	Related Topics
	Network Management -- An Overview
	X.700 96
	Network Management -- An Overview
	Network Management--An Overview
	Cisco 96
	Network Management -- An Overview
	Network Management -- An Overview
	Network Management -- An Overview
	Related Topics
	Related Topics
	Productivity - Definition
	Baudoin 96
	Yourdon 79
	Malan 95
	Kamath 93
	Related Topics
	Related Topics
	Martin 93
	Vorwerk 94
	Tkach 94
	Desanti 94
	Object 96
	Related Topics
	Related Topics
	Related Topics
	Baudoin 96
	Maring 96
	Tokar 96
	Malan 95
	Wade 94
	Cobb 95
	Object Request Broker
	Reddy 95
	Object Request Broker - Notes
	RMI 97
	Abowd 96
	Object Request Broker - Notes
	Object Request Broker - Notes
	Object Request Broker - Notes
	Object Request Broker - Notes
	Brown 96
	Wallnau 96
	Organization Domain Modeling - Notes
	Organization Domain Modeling - Notes
	Simos 96
	STARS 93
	STARS 96c
	STARS 96a
	Klinger 96
	STARS 96b
	Cornwell 96
	Lettes 96
	Related Topics
	Personal Software Process for Module-Level Development - Notes
	Humphrey 95
	Personal Software Process for Module-Level Development - Notes
	Paulk 95
	Personal Software Process for Module-Level Development - Notes
	Humphrey 96b
	Humphrey 96a
	McAndrews 00
	Related Topics
	Related Topics
	Related Topics
	Related Topics
	Schneier 96
	White 96
	Public Key Digital Signatures - Notes
	Public Key Digital Signatures
	Dependability - Definition
	Serlin 72
	Liu 73
	Sha 91a
	Klein 93
	Rajkumar 91
	Lucas 92
	Locke 91
	Ignace 94
	Sha 91b
	Fowler 93
	Related Topics
	Reference Models, Architectures, Implementations--An Overview
	Birrell 84
	Remote Procedure Call
	Completeness - Definition
	Traceability - Definition
	SPS 94
	Gotel 95
	Requirements Tracing--An Overview
	STSC 98
	Ramesh 95
	Public Key Cryptography
	Distributed/Collaborative Enterprise Architectures - Notes
	Shelton 93
	Adler 95
	OSF 96a
	Schill 93
	Distributed Computing Environment
	Security - Definition
	OSF 96b
	Chappell 93
	Chappell 96
	Related Topics
	Foreman 96
	Katz 94
	Domain Engineering and Domain Analysis
	Eisner 94
	Domain Engineering and Domain Analysis - Notes
	Simos 96
	Randall 96
	Prieto-Diaz 90
	Domain Engineering and Domain Analysis - Notes
	Wartik 92
	Kang 90
	Arango 94
	Prieto-Diaz 91
	SPC 93
	Bailin 90
	Kang 90
	Cohen 92
	Krut 93
	Petro 95
	Devasirvatham 94
	Schnell 96
	Firewalls and Proxies - Notes
	Firewalls and Proxies - Notes
	Firewalls and Proxies - Notes
	Firewalls and Proxies - Notes
	Firewalls and Proxies - Notes
	Firewalls and Proxies - Notes
	Firewalls and Proxies - Notes
	Firewalls and Proxies - Notes
	Firewalls and Proxies - Notes
	Ogletree 00
	Smith 01
	Tyson
	Marciniak 94
	IFPUG 96
	Umholtz 94
	DeMarco 82
	Rehesaar 96
	Wittig 94
	Kemerer 93
	Siddiqee 93
	Jones 95
	Selfridge 94
	Bennett 95
	Compatibility - Definition
	Gray 94
	Ning 94
	Related Topics
	Myers 95
	OSF 96
	Halstead 77
	Jones 94
	Oman 91
	Szulewski 84
	Marciniak 94
	Oman 94
	Related Topics
	Ware 79
	Spafford 88
	Kemmerer 94
	Adaptability - Definition
	Integrity - Definition
	Confidentiality - Definition
	Lunt 93
	Mukherjee 94
	Throughput - Definition
	Sun 97e
	van Hoff 96
	Trustworthiness - Definition
	Sun 99d
	Yourdon 96
	Java(TM)
	Sun 99a
	Sun 97b
	Cost of ownership - Definition
	Java - Notes
	Clark 97
	Halfhill 97
	Sun 97a
	Sun 99f
	Sun 99e
	Java - Notes
	Hamilton 96
	Levin 97
	Sun 97c
	JARS 97
	Gamelan 97
	Sun 97c
	Sun 96a
	Sun 97d
	EJB-SIG 99
	OMG 99
	JavaSoft 97
	Siwolp 95
	Data 96
	Mainframe Server Software Architectures
	Mainframe Server Software Architectures - Notes
	Rule-Based Intrusion Detection - Notes
	Ilgun 93
	Tener 86
	Denning 87
	Vaccarro 89
	Simple Network Management Protocol - Notes
	Simple Network Management Protocol - Notes
	IETF 96
	Henderson 95
	SNMPv1 Specs
	SNMPv2 Specs
	Simple Network Management Protocol
	RFC 96
	Simple Network Management Protocol - Notes
	Lake 96
	Moorhead 95
	DES 93
	Simple Network Management Protocol - Notes
	Broadhead 95
	SNMP FAQ 98
	Wellens 96
	Simple Network Management Protocol - Notes
	X.700 96
	Vallillee 96
	MIB 96
	Reference-Title
	Reference-Title
	Reference-Title
	Reference-Title
	Reference-Title
	Reference-Title
	Reference-Title
	Reference-Title
	Reference-Title
	Simplex Architecture
	Related Topics
	Related Topics
	Fagan 76
	Software Inspections - Notes
	Ebenau 94
	O'Neill 95
	O'Neill 88
	O'Neill 92
	Linger 79
	Freedman 90
	O'Neill 95
	O'Neill 95
	O'Neill 89
	O'Neill 95
	O'Neill 95
	Humphrey 89
	Sundaram 96
	Teng 90
	Lunt 93
	Smaha 88
	Statistical-Based Intrusion Detection - Notes
	Florac 99
	Wheeler 92
	Paige 93
	TAFIM 94
	TAFIM Reference Model
	Temin 96
	JTA 96
	Clements 96
	Humphrey 95
	Ferguson 97
	Humphrey 00
	Eckerson 95
	Three Tier Software Architectures
	Louis 95
	Edelstein 95
	About The STR
	Taxonomies
	Glossary & Indexes
	Dickman 95
	Hudson 94
	Transaction Processing Monitor Technology
	Schussel 96
	Abrams 95
	Trusted Operating Systems
	Related Topics
	Two Tier Software Architectures
	Dickman 95
	Denning 90
	Slade 96b
	Slade 96a
	Related Topics
	Peercy 81
	Bennett 93
	Oman 92a
	Oman 94
	Oman 91
	Pearse 95
	Maintainability Index Technique for Measuring Program Maintainability
	AFOTEC 89
	Application Taxonomy
	Quality Measures Taxonomy
	Related Topics
	Related Topics
	Related Topics
	Related Topics
	Related Topics
	Related Topics
	Related Topics
	Related Topics
	Glossary
	IEEE 90
	Boehm 78
	Evans 87
	McGill 96
	ITS 96
	DoD 91
	Barbacci 95
	McDaniel 94
	IEEE 91
	ARC 96
	SEI 96
	Extendability - Definition
	Toronto 95
	Deutsch 88
	Webster 87
	Gotel 95
	Adaptive maintenance - Definition
	Perfective maintenance - Definition
	Poore 96
	Keyword Index
	Abstractness - Definition
	Acceptance testing - Definition
	Accessibility - Definition
	Accountability - Definition
	Acquisition cycle time - Definition
	Adaptive measures - Definition
	Agent - Definition
	ANSI - Definition
	Anonymity - Definition
	Application program interface - Definition
	Architectural design - Definition
	Artificial intelligence - Definition
	Auditable - Definition
	Capacity - Definition
	Code - Definition
	Commonality - Definition
	Communication software - Definition
	Compactness - Definition
	Component testing - Definition
	Concept phase - Definition
	Conciseness - Definition
	Corrective maintenance - Definition
	Cost of maintenance - Definition
	Cost of operation - Definition
	Data management - Definition
	Data management security - Definition
	Data recording - Definition
	Data reduction - Definition
	Database - Definition
	Database administration - Definition
	Database design - Definition
	Denial of service - Definition
	Design phase - Definition
	Detailed design - Definition
	Distributed computing - Definition
	Domain analysis - Definition
	Domain design - Definition
	Domain engineering - Definition
	Domain implementation - Definition
	Effectiveness - Definition
	Error handling - Definition
	Error proneness - Definition
	Error tolerance - Definition
	Expandability - Definition
	Fail safe - Definition
	Fail soft - Definition
	Fault - Definition
	Fault tolerance - Definition
	Fidelity - Definition
	Functional scope - Definition
	Functional testing - Definition
	Generality - Definition
	Graphics - Definition
	Hardware maintenance - Definition
	Human Computer Interaction - Definition
	Human engineering - Definition
	Implementation phase - Definition
	Incompleteness - Definition
	Information Security - Definition
	Installation and checkout phase - Definition
	Integration testing - Definition
	Interfaces design - Definition
	Interface testing - Definition
	ISO - Definition
	Latency - Definition
	Lifetime of operational capability - Definition
	Maintenance control - Definition
	Maintenance measures - Definition
	Maintenance personnel - Definition
	Managed device - Definition
	Managed object - Definition
	Management agent - Definition
	Manufacturing phase - Definition
	Model - Definition
	Necessity of characteristics - Definition
	Need satisfaction measures - Definition
	Network management - Definition
	Network management application - Definition
	Network management information - Definition
	Network management protocol - Definition
	Network management station - Definition
	Openness - Definition
	Operability - Definition
	Operational testing - Definition
	Operations personnel - Definition
	Operations system - Definition
	Operations and maintenance phase - Definition
	Organizational measures - Definition
	Parallel computing - Definition
	Performance measures - Definition
	Performance testing - Definition
	Protocol - Definition
	Provably correct - Definition
	Qualification phase - Definition
	Qualification testing - Definition
	Quality measure - Definition
	Readability - Definition
	Responsiveness - Definition
	Recovery - Definition
	Reengineering - Definition
	Regression testing - Definition
	Requirements engineering - Definition
	Requirements growth - Definition
	Requirements phase - Definition
	Requirements tracing - Definition
	Resource utilization - Definition
	Restart - Definition
	Retirement Phase - Definition
	Reverse Engineering - Definition
	Robustness - Definition
	Safety - Definition
	Select or develop algorithms - Definition
	Self-descriptiveness - Definition
	Simplicity - Definition
	Software architecture - Definition
	Software change cycle time - Definition
	Software life cycle - Definition
	Software maintenance - Definition
	Software migration and evolution - Definition
	Software upgrade and technology insertion - Definition
	Speed - Definition
	Statistical testing - Definition
	Structuredness - Definition
	Sufficiency of characteristics - Definition
	Survivability - Definition
	System allocation - Definition
	System analysis and optimization - Definition
	System security - Definition
	System testing - Definition
	Taxonomy - Definition
	Test - Definition
	Test drivers - Definition
	Test phase - Definition
	Test tools - Definition
	Testing - Definition
	Unit testing - Definition
	Training - Definition
	Trouble report analysis - Definition
	Upgradeability - Definition
	User interface - Definition
	Verifiability - Definition
	Vulnerability - Definition
	Submit Comments
	Submit Comments
	Submitting a New Technology Description
	ANSI 83
	AdaIC 96
	Syiek 95
	Hefley 92
	Engle 96
	Compilers 96
	Holzer 96
	Pehrson 96
	ReuseIC 95
	Zeigler 95
	IEEE 87
	Guidelines for Authoring a Technology Description
	Software Technology Roadmap: A Guide for Authors
	http://www.sei.cmu.edu/str/feedback/guide/guide.appc.html
	I forgot to put in a title
	http://www.sei.cmu.edu/str/feedback/guide/guide.appb.html

	HGOLNGMFPALNGAHLKJDKIHBDBCIMHFGJ:
	form1:
	x:
	f1: url:www.sei.cmu.edu/str/
	f2:
	f3:
	f4:
	f5: 100%
	f6: 0
	f7:
	f8: 0
	f9: 1
	f10: 10
	f11: 1
	f12: 0
	f13:
	f14: 0

	f15: search
	f16:

	KBHKBLGOFPJEBPAPPDKPMHBOHHDONDPP:
	form1:
	x:
	f1: str-comments-description.setup.file
	f2:
	f3:
	f4:
	f5:
	f6:
	f7:
	f8:
	f9:
	f10:

	f11: Submit Comments
	f12:
	f13:

	JANELFJDEGIFPNLJHMKPLFCBBCOFJHPA:
	form1:
	x:
	f1: str-comments-overall.setup.file
	f2:
	f3:
	f4:
	f5:
	f6:
	f7:
	f8:
	f9:

	f10: Submit Comments
	f11:
	f12:

